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Sigma–Delta (��) Quantization and Finite Frames
John J. Benedetto, Alexander M. Powell, and Özgür Yılmaz

Abstract—The -level Sigma–Delta (��) scheme with step
size is introduced as a technique for quantizing finite frame
expansions for . Error estimates for various quantized frame
expansions are derived, and, in particular, it is shown that ��
quantization of a unit-norm finite frame expansion in achieves
approximation error

2
( ( ) + 1)

where is the frame size, and the frame variation ( ) is a
quantity which reflects the dependence of the �� scheme on the
frame. Here is the -dimensional Euclidean 2-norm. Lower
bounds and refined upper bounds are derived for certain specific
cases. As a direct consequence of these error bounds one is able to
bound the mean squared error (MSE) by an order of 1 2. When
dealing with sufficiently redundant frame expansions, this repre-
sents a significant improvement over classical pulse-code modula-
tion (PCM) quantization, which only has MSE of order1 under
certain nonrigorous statistical assumptions. �� also achieves the
optimal MSE order for PCM with consistent reconstruction.

Index Terms—Finite frames, Sigma–Delta quantization.

I. INTRODUCTION

I N signal processing, one of the primary goals is to obtain a
digital representation of the signal of interest that is suitable

for storage, transmission, and recovery. In general, the first step
toward this objective is finding an atomic decomposition of the
signal. More precisely, one expands a given signal over an at
most countable dictionary such that

(1)

where are real or complex numbers. Such an expansion is
said to be redundant if the choice of in (1) is not unique.

Although (1) is a discrete representation, it is certainly not
“digital” since the coefficient sequence is real or com-
plex valued. Therefore, a second step is needed to reduce the
continuous range of this sequence to a discrete, and preferably
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finite, set. This second step is called quantization. A quantizer
maps each expansion (1) to an element of

where the quantization alphabet is a given discrete, and
preferably finite, set. The performance of a quantizer is re-
flected in the approximation error , where is a
suitable norm, and

(2)

is the quantized expansion.
The process of reconstructing in (2) from the quantized co-

efficients, , is called linear reconstruction. More gen-
eral approaches to quantization, such as consistent reconstruc-
tion, e.g., [1]–[3], use nonlinear reconstruction, but unless oth-
erwise mentioned, we shall focus on quantization using linear
reconstruction, as in (2).

A simple example of quantization, for a given expansion (1),
is to choose to be the closest point in the alphabet to .
Quantizers defined this way are usually called pulse-code mod-
ulation (PCM) algorithms. If is an orthonormal basis
for a Hilbert space , then PCM algorithms provide the optimal
quantizers in that they minimize for every in , where

is the Hilbert space norm. On the other hand, PCM can per-
form poorly if the set is redundant. We shall discuss
this in detail in Section II-B.

In this paper, we shall examine the quantization of redundant
real finite atomic decompositions (1) for . The signal, , and
dictionary elements are elements of , the index set

is finite, and the coefficients are real numbers. For
some existing approaches to this problem see [2]–[7].

A. Frames, Redundancy, and Robustness

In various applications it is convenient to assume that the sig-
nals of interest are elements of a Hilbert space , e.g.,

, or , or is a space of band-limited functions.
In this case, one can consider more structured dictionaries, such
as frames. Frames are a special type of dictionary which can be
used to give stable redundant decompositions (1). Redundant
frames are used in signal processsing because they yield repre-
sentations that are robust under

• additive noise [8] (in the setting of Gabor and wavelet
frames for ), [9] (in the setting of oversampled
band-limited functions), and [10] (in the setting of tight
Gabor frames);

• quantization [11]–[13] (in the setting of oversampled
band-limited functions), [14] (in the setting of tight

0018-9448/$20.00 © 2006 IEEE



BENEDETTO et al.: SIGMA–DELTA QUANTIZATION AND FINITE FRAMES 1991

Gabor frames), and [2] (in the setting of finite frames
for ); and

• partial data loss [4], [15] (in the setting of finite frames
for ).

Although redundant frame expansions use a larger than nec-
essary bit budget to represent a signal (and hence are not pre-
ferred for storage purposes where data compression is the main
goal), the robustness properties listed above make them ideal
for applications where data is to be transferred over noisy chan-
nels, or to be quantized very coarsely. In particular, in the case
of Sigma–Delta modulation of oversampled band-limited
functions , one has very good reconstruction using only 1-bit
quantized values of the frame coefficients [11], [16], [17]. More-
over, the resulting approximation is robust under quantizer im-
perfections as well as bit-flips [11]–[13].

Another example, where redundant frames are used, this time
to ensure robust transmission, can be found in the works of
Goyal, Kovačević, Kelner, and Vetterli [4], [18], cf., [19]. They
propose using finite tight frames for to transmit data over era-
sure channels; these are channels over which transmission errors
can be modeled in terms of the loss (erasure) of certain packets
of data. They show that the redundancy of these frames can be
used to “mitigate the effect of the losses in packet-based com-
munication systems,” [20], cf., [21]. Further, the use of finite
frames has been proposed for generalized multiple description
coding [22], [15], for multiple-antenna code design [23], and
for solving modified quantum detection problems [24]. Thus,
finite frames for or are emerging as a natural mathemat-
ical model and tool for many applications.

B. Redundancy and Quantization

A key property of frames is that greater frame redundancy
translates into more robust frame expansions. For example,
given a unit-norm tight frame for with frame bound , any
transmission error that is caused by the erasure of coeffi-
cients can be corrected as long as [4]. In other words,
increasing the frame bound, i.e., the redundancy of the frame,
makes the representation more robust with respect to erasures.
However, increasing redundancy also increases the number of
coefficients to be transmitted. If one has a fixed bit budget,
a consequence is that one has fewer bits to spend for each
coefficient and hence needs to be more resourceful in how one
allocates the available bits.

• When dealing with PCM, using linear reconstruction,
for finite frame expansions in , a long-standing anal-
ysis with certain assumptions on quantization “noise”
bounds the resulting mean-square approximation error
by where is a constant, is the frame bound,
and is the quantizer step size [25], see Section II-B.

• On the other hand, for 1-bit first-order quantization of
oversampled band-limited functions, the approximation
error is bounded by pointwise [11], and the mean-
square approximation error is bounded by [16],
[17].

Thus, if we momentarily “compare apples with oranges,” we
see that quantization algorithms for band-limited functions

utilize the redundancy of the expansion more efficiently than
PCM algorithms for .

C. Overview of the Paper and Main Results

Section II discusses necessary background material. In par-
ticular, Section II-A gives basic definitions and theorems from
frame theory, and Section II-B presents basic error estimates for
PCM quantization of finite frame expansions for .

In Section III, we introduce the -level scheme with step
size as a new technique for quantizing unit-norm finite frame
expansions. A main theme of this paper is to show that the
scheme outperforms linearly reconstructed PCM quantization
of finite frame expansions. In Section III-A, we introduce the
notion of frame variation, , as a quantity which reflects
the dependence of the scheme’s performance on properties
of the frame. Section III-B uses the frame variation, , to
derive basic approximation error estimates for the scheme.
For example, we prove that if is a unit-norm tight frame for

of cardinality , then the -level scheme with
quantization step size gives approximation error

where is the -dimensional Euclidean -norm.
Section IV is devoted primarily to examples. We give exam-

ples of infinite families of frames with uniformly bounded frame
variation. We compare the error bounds of Section III with the
numerically observed error for these families of frames. Since

schemes are iterative, they require one to choose a quanti-
zation order, , in which frame coefficients are given as input
to the scheme. We present a numerical example which shows
the importance of carefully choosing the quantization order to
ensure good approximations.

In Section V, we derive lower bounds and refined upper
bounds for the scheme. This partially explains properties
of the approximation error which are experimentally observed
in Section IV. In particular, we show that in certain situations,
if the frame size is even, then one has the improved ap-
proximation error bound for an

-dependent constant . On the other hand, if is odd, we
prove the lower bound for an -dependent
constant . In both cases, is the Euclidean norm.

In Section VI, we compare the mean square (approximation)
error (MSE) for the scheme with PCM using linear recon-
struction. If we have a harmonic frame for of cardinality

, then we show that the MSE for the scheme is
bounded by an order of , whereas the standard MSE esti-
mates for PCM are only of order . Thus, if the frame redun-
dancy is large enough then outperforms PCM. We present
numerical examples to illustrate this. This also shows that
quantization achieves the optimal approximation order for PCM
with consistent reconstruction.

II. BACKGROUND

A. Frame Theory

The theory of frames in harmonic analysis is due to Duffin
and Schaeffer [26]. Modern expositions on frame theory can be
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found in [8], [27], [28]. In the following definitions, is an at
most countable index set.

Definition II.1: A collection in a Hilbert
space is a frame for if there exists
such that

The constants and are called the frame bounds.

A frame is tight if . An important remark is that the
size of the frame bound of a unit-norm tight frame, i.e., a tight
frame with for all , “measures” the redundancy of
the system. For example, if , then a unit-norm tight frame
must be an orthonormal basis and there is no redundancy, see
[8, Proposition 3.2.1]. The larger the frame bound is, the
more redundant a unit-norm tight frame is.

Definition II.2: Let be a frame for a Hilbert space
with frame bounds and The analysis operator

is defined by . The operator is called
the frame operator, and it satisfies

(3)

where is the identity operator on . The inverse of , , is
called the dual frame operator, and it satisfies

(4)

The following theorem illustrates why frames can be useful
in signal processing.

Theorem II.3: Let be a frame for with frame
bounds and , and let be the corresponding frame operator.
Then is a frame for with frame bounds and

. Further, for all

(5)

(6)

with unconditional convergence of both sums.

The atomic decompositions in (5) and (6) are the first step
toward a digital representation. If the frame is tight with frame
bound , then both frame expansions are equivalent and we
have

(7)

When the Hilbert space is or , and is finite, the
frame is referred to as a finite frame for . In this case, it is
straightforward to check if a set of vectors is a tight frame. Given
a set of vectors, , in or , define the associated
matrix to be the matrix whose rows are the . The
following lemma can be found in [29].

Lemma II.4: A set of vectors in or
is a tight frame with frame bound if and only if its as-

sociated matrix satisfies , where is the
conjugate transpose of , and is the identity matrix.

For the important case of finite unit-norm tight frames for
and , the frame constant is , where is the cardinality
of the frame [30], [4], [2], [29].

B. PCM Algorithms and Bennett’s White Noise Assumption

Let and . Given the midrise quantization al-
phabet

consisting of elements, we define the -level midrise uni-
form scalar quantizer with stepsize by

(8)

Thus, is the element of the alphabet which is closest to .
If two elements of are equally close to then let be
the larger of these two elements, i.e., the one larger than . For
simplicity, we only consider midrise quantizers, although many
of our results are valid more generally.

Let be a unit-norm tight frame for , so that each
has the frame expansion

The -level PCM quantizer with step size replaces each
with . Thus, PCM quantizes by

It is easy to see that

(9)

PCM quantization as defined above assumes linear reconstruc-
tion from the PCM quantized coefficients . We very briefly
address the nonlinear technique of consistent reconstruction in
Section VI.

Fix and , and let be the -dimensional
Euclidean -norm. Let and let be the quantized ex-
pansion which is obtained by using -level PCM quantization
with step size . If then by (9), the approxi-
mation error satisfies

(10)

This error estimate does not utilize the redundancy of the frame.
A common way to improve the estimate (10) is to make statis-
tical assumptions on the differences , e.g., [25], [2].

Example II.5 (Bennett’s White Noise Assumption): Let
be a unit-norm tight frame for with frame bound
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, let , and let , , and be defined as
above. Since the “pointwise” estimate (10) is unsatisfactory, a
different idea is to derive better error estimates which hold “on
average” under certain statistical assumptions.

Let be a probability measure on , and consider the
random variables with the probability distribu-
tion induced by as follows. For measurable

The classical approach dating back to Bennett, [25], is to as-
sume that the quantization noise sequence is a se-
quence of independent and identically distributed random vari-
ables with mean and variance . In other words,
for , and the joint probability distribution
of is given by We shall refer to this
statistical assumption on as Bennett’s white noise as-
sumption.

It was shown in [2], that under Bennett’s white noise assump-
tion, the mean square (approximation) error (MSE) satisfies

where the expectation is defined by

which can be rewritten using Bennett’s white noise assumption
as

Since we are considering PCM quantization with step size ,
and in view of (9), it is quite natural to assume that each is
a uniform random variable on , and hence has mean ,
and variance , [31]. In this case one has

(12)

Although (12) in Example II.5 represents an improvement
over (10) it is still unsatisfactory for the following reasons.

a) The MSE bound (12) only gives information about the
average quantizer performance.

b) As one increases the redundancy of the expansion, i.e., as
the frame bound increases, the MSE given in (12) de-
creases only as , i.e., the redundancy of the expansion
is not utilized very efficiently.

c) Equation (12) is computed under assumptions that are not
rigorous and, at least in certain cases, not true. See [32] for
an extensive discussion and a partial deterministic anal-
ysis of the quantizer error sequence . In Example II.6,
we show an elementary setting where Bennett’s white
noise assumption does not hold for PCM quantization of
finite frame expansions.

Since a redundant frame has more elements than are neces-
sary to span the signal space, there will be interdependencies
between the frame elements, and hence between the frame co-
efficients. It is intuitively reasonable to expect that this redun-
dancy and interdependency may violate the independence part

of Bennett’s white noise assumption. The following example
makes this intuition precise.

Example II.6 (Shortcomings of the Noise Assump-
tion): Consider the unit-norm tight frame for , with frame
bound , given by

where is assumed to be even. Given , and let
be the corresponding th-frame coefficient. It is

easy to see that since is even

and hence,

Next, note that for almost every (with respect to
Lebesgue measure) one has

By the definition of the PCM scheme, this implies that for almost
every with one has , and
hence, This means that the quantization noise
sequence is not independent and that Bennett’s white noise
assumption is violated. Thus, the MSE predicted by (12) will not
be attained in this case. One can rectify the situation by applying
the white noise assumption to the frame that is generated by
deleting half of the points to ensure that only one of and

is left in the resulting set.

In addition to the limitations of PCM mentioned above, it is
also well known that PCM has poor robustness properties in
the band-limited setting, [11]. In view of these shortcomings of
PCM quantization, we seek an alternate quantization scheme
which is well suited to utilizing frame redundancy. We shall
show that the class of Sigma–Delta schemes perform ex-
ceedingly well when used to quantize redundant finite frame ex-
pansions.

III. ALGORITHMS FOR FRAMES FOR

Sigma–Delta quantizers are widely implemented to
quantize oversampled band-limited functions [33], [11]. Here,
we define the fundamental algorithm with the aim of using
it to quantize finite frame expansions, see [34].

Definition III.1: Given , , and the corre-
sponding midrise quantization alphabet and -level midrise
uniform scalar quantizer with stepsize . Let ,
and let be a permutation of . The associated
first-order quantizer is defined by the iteration

(13)

for , where The first-order quantizer
produces the quantized sequence , and an auxiliary se-
quence of state variables.
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Thus, a first-order quantizer is a -level first-order
quantizer with step size if it is defined by means of (13), where

is defined by (8). We shall refer to the permutation as the
quantization order. For simplicity, we have defined the initial
state variable to be , but it is straightforward to also
consider nonzero initial conditions .

The following proposition, cf., [11], shows that the first-order
quantizer is stable, i.e., the auxiliary sequence defined

by (13) is uniformly bounded if the input sequence is ap-
propriately uniformly bounded.

Proposition III.2: Let be a positive integer, let , and
consider the system defined by (13) and (8). If

then

Proof: Without loss of generality assume that is the iden-
tity permutation. The proof proceeds by induction. The base
case, , holds by assumption. Next, suppose that

This implies that , and hence,
by (13) and the definition of

A. Frame Variation

Let be a finite frame for and let

(14)

be the corresponding frame expansion for some . Since
this frame expansion is a finite sum, the representation is inde-
pendent of the order of summation. In fact, recall that by The-
orem II.3, any frame expansion in a Hilbert space converges un-
conditionally.

Although frame expansions do not depend on the ordering
of the frame, the scheme in Definition III.1 is iterative
in nature, and does depend strongly on the order in which
the frame coefficients are quantized. In particular, we shall
show that changing the order in which frame coefficients are
quantized can have a drastic effect on the performance of the

scheme. This, of course, stands in stark contrast to PCM
schemes which are order independent. The scheme (13)
takes advantage of the fact that there are “interdependencies”
between the frame elements in a redundant frame expansion.
This is a main underlying reason why schemes outperform
PCM schemes, which quantize frame coefficients without
considering any “interdependencies.”

We now introduce the notion of frame variation. This will
play an important role in our error estimates and it directly re-
flects the importance of carefully choosing the order in which
frame coefficients are quantized.

Definition III.3: Let be a finite frame for ,
and let be a permutation of . We define the vari-
ation of the frame with respect to as

(15)

Roughly speaking, if a frame has low variation with re-
spect to , then the frame elements will not oscillate too much
in that ordering and there is more “interdependence” between
succesive frame elements.

B. Basic Error Estimates

We now derive error estimates for the scheme in Defini-
tion III.1 for and . Given a frame
for , a permutation of , and , we shall
calculate how well the quantized expansion

approximates the frame expansion

Here, is the quantized sequence which is calculated
using Definition III.1 and the sequence of frame coefficients,

. We now state our first result on the approximation
error . We shall use to denote the operator norm
induced by the Euclidean norm for .

Theorem III.4: Given the scheme of Definition III.1, let
be a finite unit-norm frame for , let be a

permutation of , and let satisfy
. The approximation error satisfies

(16)

where is the inverse frame operator for
Proof:

(17)

Since , it follows that

Thus, by Proposition III.2

In is important to observe that the estimate (16) consists
of two fundamentally different error terms. The term
summation in (17) contributes the main error term and the
remaining items are boundary terms resulting from the sum-
mation by parts. An analogous computation in the setting of

quantization of band-limited signals, e.g., [11], gives a
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similar main error term. However, the boundary terms are a
special consequence of the finite length encoding here, and
are not present in the band-limited setting. For an intuitive
explaination of the boundary terms note that the scheme
is a type of error diffusion algorithm. The finite nature of our
problem means that one can only diffuse and compensate for
errors finitely many times, leading to the possibility of a final
uncompensated residual error, i.e., boundary terms.

Theorem III.4 is stated for general unit-norm frames, but
since finite tight frames are especially desirable in applica-
tions, we shall restrict the remainder of our discussion to tight
frames. The utility of finite unit-norm tight frames is apparent
in the simple reconstruction formula (7). Note that general
finite unit-norm frames for are elementary to construct. In
fact, any finite subset of is a frame for its span. However,
the construction and characterization of finite unit-norm tight
frames is much more interesting due to the additional algebraic
constraints involved [30].

Corollary III.5: Given the scheme of Definition III.1,
let be a unit-norm tight frame for with frame
bound , let be a permutation of , and
let satisfy . The approximation error

satisfies

Proof: As discussed in Section II-A, a tight frame
for has frame bound , and, by (4) and

Lemma II.4

The result now follows from Theorem III.4.

Corollary III.6: Given the scheme of Definition III.1,
let be a unit-norm tight frame for with frame
bound , let be a permutation of , and
let satisfy . The approximation error

satisfies

Proof: Apply Corollary III.5 and Proposition III.2.

The approximation error estimate in Theorem III.4 can be
made more precise if one has more information about the final
state variable, . It is somewhat surprising that for zero sum
frames the value of is completely determined by whether
the frame has an even or odd number of elements.

Theorem III.7: Given the scheme of Definition III.1. Let
be a unit-norm tight frame for with frame

bound , and assume that satisfies the zero sum
condition

(18)

Then

if even
if odd.

(19)

Proof: Note that (13) implies

(20)

Next, (18) implies

(21)

By the definition of the midrise quantization alphabet , each
is an odd integer multiple of .

If is even, it follows that is an integer multiple
of . Thus, by (20) and (21), is an integer multiple of .
However, by Proposition III.2, so that we have

.
If is odd, it follows that is an odd integer multiple

of . Thus, by (20) and (21), is an odd integer multiple of
. However, by Proposition III.2, so that we have

.

Corollary III.8: Given the scheme of Definition III.1, let
be a unit-norm tight frame for with frame

bound , and assume that satisfies the zero sum
condition (18). Let be a permutation of and let

satisfy . Then the approximation
error satisfies

if even
if odd.

(22)

Proof: Apply Corollary III.5, Theorem III.7, and Proposi-
tion III.2.

Corollary III.8 shows that as a consequence of Theorem III.7,
one has smaller constants in the error estimate for when
the frame size is even. Theorem III.7 makes an even bigger
difference when deriving refined estimates as in Section V, or
when dealing with higher order schemes [35].

IV. FAMILIES OF FRAMES WITH BOUNDED VARIATION

One way to obtain arbitrarily small approximation error
using the estimates of the previous section is simply to fix a

frame and decrease the quantizer step size toward zero, while
letting , where is the ceiling function. By Corol-
lary III.6, as goes to , the approximation error goes to zero.
However, this approach is not always be desirable. For example,
in analog-to-digital (A/D) conversion of band-limited signals, it
can be quite costly to build quantizers with very high resolution,
i.e., small and large , e.g., [11]. Instead, many practical ap-
plications involving A/D and digital-to-analog (D/A) converters
make use of oversampling, i.e., redundant frames, and use low-
resolution quantizers, e.g., [36]. To be able to adopt this type
of approach for the quantization of finite frame expansions, it
is important to be able to construct families of frames with uni-
formly bounded frame variation.

Let us begin by making the observation that if
is a finite unit-norm frame and is any permutation of

then However, this bound
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Fig. 1. The frame coefficients of x = (1=�; 3=17) with respect to the N th roots of unity are quantized using the first-order �� scheme. This log–log plot
shows the approximation error kx � xk as a function of N compared with 5=N and 5=N .

is too weak to be of much use since substituting it into an error
bound such as the even case of (22) only gives

In particular, this bound does not go to zero as gets large,
i.e., as one chooses more redundant frames. On the other hand,
if one finds a family of frames and a sequence of permutations,
such that the resulting frame variations are uniformly bounded,
then one is able to obtain an approximation error of order .

Example IV.1 (Roots of Unity): For , let
be the th roots of unity viewed as vectors in ,

namely

It is well known that is a tight frame for with frame
bound , e.g., see [30]. In this example, we shall always
consider in its natural ordering Note that

.
Since , it follows that

(23)

where is the identity permutation of .
Thus, the error estimate of Corollary III.8 gives

if even
if odd.

(24)

Fig. 1 shows a log–log plot of the approximation error
as a function of , when the th roots of unity are

used to quantize the input . The figure also
shows a log–log plot of and for comparison. Note
that the approximation error exhibits two very different types
of behavior. In particular, for odd , the approximation error
appears to behave like asymptotically, whereas for even

, the approximation error is much smaller. We shall explain
this phenomenon in Section V.

The most natural examples of unit-norm tight frames in
are the harmonic frames, e.g., see [4], [29], [2].

These frames are constructed using rows of the Fourier matrix.

Example IV.2 (Harmonic Frames): We shall show that har-
monic frames in their natural ordering have uniformly bounded
frame variation. We follow the notation of [29], although the ter-
minology “harmonic frame” is not specifically used there. The
definition of the harmonic frame , , de-
pends on whether the dimension is even or odd.

If is even, let

for .
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If is odd let

for .
It is shown in [29] that , as defined above, is a unit-norm

tight frame for . If is even then satisfies the zero sum
condition (18). If is odd the frame is not zero sum, and, in fact

The verification of the zero sum condition for even follows by
noting that, for each and not of the form , we
have

and

Note that we are simply considering one particular class of har-
monic frames in this example, and that one could instead con-
sider other families of frames which are zero sum in all dimen-
sions.

Let us now estimate the frame variation for harmonic frames.
First, suppose even, and let be the identity permutation. Cal-
culating directly and using the mean value theorem in the first
inequality, we have

If is odd then, proceeding as above, we have

Thus,

(25)

where is the identity permutation, i.e., we consider the natural
ordering as in the definition of .

We can now derive error estimates for quantization of
harmonic frames in their natural order. If we set and as-
sume that satisfies , then combining
(25), Corollaries III.2, III.5, and III.8, and the fact that sat-
isfies (18) if is even gives

if is even and is even

otherwise.

Fig. 2 shows a log–log plot of the approximation error
as a function of , when the harmonic frame is used

to quantize the input . The figure
also shows a log–log plot of and for compar-
ison.

It is worth pointing out the different behavior of the implicit
main error term and boundary terms in the error estimate for
harmonic frames in Example IV.2. First, note that the boundary
term vanishes when is even but not when is odd. Second,
note that the main error term, i.e., the frame variation term, dom-
inates the boundary term in large dimensions, meaning that the
boundary term becomes less significant in higher dimensions.
This should be compared with the infinite-dimensional situa-
tion in quantization of band-limited signals, where there is
no boundary term.

As discussed earlier, the algorithm is quite sensitive to
the ordering in which the frame coefficients are quantized. In
Examples IV.1 and IV.2, the natural frame order gave uniformly
bounded frame variation. Let us next consider an example where
a bad choice of frame ordering leads to poor approximation
error.

Example IV.3 (Order Matters): Consider the unit-norm tight
frame for which is given by the seventh roots of unity, viz.,

, where . We
randomly choose 10 000 points in the unit ball of . For each
of these 10 000 points, we first quantize the corresponding frame
coefficients in their natural order using (13) with the alphabet

and setting . Fig. 3 shows the histogram of the cor-
responding approximation errors. Next, we quantize the frame
coefficients of the same 10 000 points, only this time after re-
ordering the frame coefficients as , , , , , , .
Fig. 4 shows the histogram of the corresponding approximation
errors in this case.

Clearly, the average approximation error for the new ordering
is significantly larger than the average approximation error asso-
ciated with the original ordering. This is intuitively explained by
the fact that the natural ordering has significantly smaller frame
variation than the other ordering. In particular, let be the iden-
tity permutation and let be the permutation corresponding
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Fig. 2. The frame coefficients of x = (1=�; 1=50; 3=17; e ) with respect to the harmonic frame H are quantized using the first-order �� scheme. This
log–log plot shows the approximation error kx� xk as a function of N compared with 10=N and 10=N .

the reordered frame coefficients used above. A direct calculation
shows that

and

In view of this example, it is important to choose carefully
the order in which frame coefficients are quantized. In , there
is always a simple good choice.

Theorem IV.4: Let be a unit-norm frame for
, where and . If is

a permutation of such that for
all , then .

Proof: Is is easy to verify that

By the choice of , and since , it follows that

V. REFINED ESTIMATES AND LOWER BOUNDS

In Fig. 1 of Example IV.1, we saw that the approximation
error appears to exhibit very different types of behavior de-
pending on whether is even or odd. In the even case, the
approximation error appears to decay better than the es-
timate given by the results in Section III-B; in the odd case, it
appears that the actually serves as a lower bound, as well
as an upper bound, for the approximation error. This dichotomy
goes beyond Corollary III.8, which only predicts different con-

stants in the even/odd approximations as opposed to different
orders of approximation. In this section, we shall explain this
phenomenon.

Let be a family of unit-norm tight frames for ,
with , so that has frame bound . If

, then will denote the corresponding sequence
of frame coefficients with respect to , i.e., .
Let be the quantized sequence which is obtained by
running the scheme, (13), on the input sequence ,
and let be the associated state sequence. Thus, if

is expressed as a frame expansion with respect to , and if
this expansion is quantized by the first-order scheme, then
the resulting quantized expansion is

Let us begin by rewriting the approximation error in a slightly
more revealing form than in Section III-B. Starting with (17),
specifiying , and specializing to the tight frame case
where , we have

(26)
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Fig. 3. Histogram of approximation error in Example IV.3 for the natural ordering.

where we have defined

and (27)

When working with the approximation error written as (26), the
main step toward finding improved upper error bounds, as well
as lower bounds, for , is to find a good estimate for

Let be the class of -band-limited functions con-
sisting of all functions in whose Fourier transforms
(as distributions) are supported in . We shall work
with the Fourier transform which is formally defined by

By the Paley–Wiener theorem, ele-
ments of are restrictions of entire functions to the real line.

Definition V.1: Let and let be the finite set
of zeros of contained in . We say that if

For simplicity and to avoid having to keep track of too many
different constants, we shall use the notation to mean
that there exists a fixed constant such that .
When necessary, we shall point out the dependence of on
other parameters. The following theorem relies on the uniform
distribution techniques utilized by Güntürk in [16]. We briefly
collect the necessary background on discrepancy and uniform
distribution in Appendix I.

Theorem V.2: Let be a family of unit-norm
tight frames for , with . Fix such that

, and let be the sequence of frame
coefficients of with respect to . If, for some , there
exists such that

and

and if is sufficiently large, then

(28)

The implicit constants are independent of and , but they
do depend on . The value of what constitutes a sufficiently
large depends on .

Proof: Let be the state variable of the scheme and
define By the definition of (see (27)), and by
applying Koksma’s inequality (see Appendix I), one has

(29)

where denotes the discrepancy of a sequence as de-
fined in Appendix I. Therefore, we need to estimate

. Using the Erdös–Turán inequality (see Ap-
pendix I)

(30)

we see that it suffices for us to estimate
Proceeding as in [16, Proposition 1], for each there exists

an analytic function such that

(31)

and

(32)

Bernstein’s inequality gives

(33)

In (32) and (33), the implicit constants are independent of
and , but do depend on .

By hypothesis, satisfies . Let
be the set of zeros of in , and let be
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Fig. 4. Histogram of approximation error in Example IV.3 for an ordering giving higher variation.

a fixed constant to be specified later. Define the intervals and
by

and

and

In the case where either or is a zero of , one no longer needs
the corresponding endpoint interval , but needs to modify the
corresponding interval to have or as its appropriate end-
point. Note that if is sufficiently large then

It follows from the properties of that if is suffi-
ciently large then

(34)

Thus, by (33), we have that

(35)

Also, since , and by (32), we obtain

(36)

In (34)–(36) the implicit constants do not depend on and .
Using (35), (36), [37, Theorem 2.7], and since , we
have that for

Also, we have the trivial estimate

Thus,

Here, the implicit constant is independent of and , but it
does depend on due to the role of . Set
and . By (30), we have that if is sufficiently large
compared to then

Thus, by (29), we have

and the proof is complete.

Combining Theorem V.2 and (26) gives the following im-
proved error estimate. Although this estimate guarantees ap-
proximation on the order of for even , it is important
to emphasize that the implicit constants depend on . For com-
parison, note that Corollary III.8 only bounds the error by the
order of , but has explicit constants independent of .

Corollary V.3: Let be a family of unit-norm
tight frames for , for which each satisfies
the zero sum condition (18). Fix such that



BENEDETTO et al.: SIGMA–DELTA QUANTIZATION AND FINITE FRAMES 2001

, let be the frame coefficients of with re-
spect to , and suppose there exists , ,
such that

and

Additionally, suppose that satisfies

and

If is even and sufficiently large we have

If is odd and sufficiently large we have

The implicit constants are independent of and , but do de-
pend on .

Proof: By Theorem V.2

(37)
Thus, by Theorem III.7, (37), and (26), being even implies

If is odd, then by Theorem III.7, (26), and (37) we have

Combining this with (22) completes the proof.

Applying Corollary V.3 to the quantization of frame expan-
sions given by the roots of unity explains the different error be-
havior for even and odd seen in Fig. 1.

Example V.4 (Refined Estimates for ): Let
be as in Example IV.1, i.e., is the unit-norm tight

frame for given by the th roots of unity. Suppose ,
, and that is sufficiently large with

respect to . The frame coefficients of with
respect to are given by

where .
It is straightforward to show that satisfies

and

and that . Therefore, by Corollary V.3 and (23), if is
even then

and if is odd then

The implicit constants are independent of and , but do de-
pend on .

It is sometimes also possible to apply Corollary V.3 to har-
monic frames.

Example V.5 (Refined Estimates for ): Let the dimension
be even, and let be as in Example IV.2, i.e.,

is an harmonic frame for . Suppose ,
, and that is sufficiently large with respect to .

The frame coefficients of
with respect to are given by ,
where

Fig. 2 in Example IV.2 shows the approximation error when
the point

is represented with the harmonic frames and quan-
tized using the scheme. For this choice of it is straight-
forward to verify that . A direct estimate also shows
that satisfies

and

Therefore, by Corollary V.3 and (23), if is even, then

and if is odd, then

The implicit constants are independent of and , but do de-
pend on .

VI. COMPARISON OF WITH PCM

In this section, we shall compare the MSE given by
quantization of finite frame expansions with that given by PCM
schemes. We shall show that the scheme gives better MSE
estimates than PCM quantization when dealing with sufficiently
redundant frames. Throughout this section, let
be a family of unit-norm tight frames for , and let

and
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be corresponding frame expansions and quantized frame expan-
sions, where are the frame coefficients of
with respect to , and where are quantized versions of .

In Example II.5, we showed that if one uses PCM quantiza-
tion to produce the quantized frame expansion , then under
Bennett’s white noise assumption, the PCM scheme has MSE

(38)

However, as illustrated in Example II.6, this estimate is not rig-
orous since Bennett’s white noise assumption is not mathemat-
ically justified and may in fact fail dramatically in certain cir-
cumstances.

If one uses quantization to produce the quantized frame
expansion , then one has the error estimate

(39)

given by Corollary III.5. Here, is a permutation of
which denotes the order in which the scheme is run. This
immediately yields the following MSE estimate for the
scheme.

Theorem VI.1: Given the scheme of Definition III.1, let
be a unit-norm tight frame for , and let be

a permutation of . For each satisfying
, shall denote the corresponding quantized

output of the scheme. Let

and define the MSE of the scheme over by

where is any probability measure on . Then

Proof: Square (39) and integrate.

One may analogously derive MSE bounds from any of the
error estimates in Section III-B; we shall examine this in the
subsequent example. The above estimate is completely deter-
ministic; namely, it does not depend on statistical assumptions
such as the analysis for PCM using Bennett’s white noise as-
sumption.

It is also possible to derive MSE estimates for schemes
by making empirically reasonable statistical assumptions sim-
ilar to Bennett’s white noise assumption for PCM. The classical
approach, e.g., see [31], [38], is to assume that the state variables

in the scheme (13) are independent and identically dis-
tributed uniform random variables with zero mean and variance

. We shall refer to this as the classical white noise as-
sumption.

The classical white noise assumption yields MSE es-
timates in a manner similar to the PCM setting. Let us illus-
trate this for the case where is the th roots of unity

unit-norm tight frame for given in Example IV.1. Special-
izing the error term (17) from Theorem III.4 to this particular
frame and taking gives

where, by Theorem III.7, when is even, and
when is odd. Using the classical white noise assump-

tion for , a computation for
similar to that in [2] yields

Since

it follows that if is even then

(40)

whereas if is odd then

(41)

Analogous MSE estimates may also be derived for general
classes of frames. For the th roots of unity frame and even,
the estimate (40) shows that if one is justified in making the
classical white noise assumption then one obtains better
MSE estimates than given by Theorem VI.1. On the other hand,
for the th roots of unity frame with odd, the estimate (41)
has the same order of approximation, but with a better constant,
as the bound in Theorem VI.1 which was made without any
statistical assumptions.

In Section IV, we saw that it is possible to choose families
of frames, , for , and permutations

, such that the resulting frame variation is uni-
formly bounded. Whenever this is the case, Theorem VI.1 yields
the MSE bound , which is better than the
PCM bound (38) by one order of approximation. For example, if
one quantizes harmonic frame expansions in their natural order,
then, by (25), Theorem VI.1 gives . Thus, for
the quantization of harmonic frame expansions one may sum-
marize the difference between and PCM as

and

This says that schemes utilize redundancy better than PCM.
Let us remark that for the class of consistent reconstruction

schemes considered in [2], Goyal, Vetterli, and Thao bound the
MSE from below by , where is some constant and

is the redundancy of the frame. Thus, the estimate
derived in Theorem VI.1 for the scheme achieves this same
optimal MSE order.

Returning to classical PCM (with linear reconstruction), it
is important to note that although is much
better than for large , it is still possible to
have if is small, i.e., if the frame has
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Fig. 5. Comparison of the MSE for 2K-level PCM algorithms and 2K-level first-order �� quantizers with step size � = 1=(K � 1=2). Frame expansions of
100 randomly selected points in for frames obtained by the N th roots of unity were quantized. In the figure legend, PCM and SD correspond to the MSE for
PCM and the MSE for first-order �� obtained experimentally, respectively. As the asymptotic behavior of the MSE depends on the parity of N in both cases,
the MSEs for even N and odd N were plotted using different markers. In the legend, the bound on the MSE for PCM, computed with white noise assumption, is
denoted by PCM-WNA, which again depends on the parity of N as discussed in Example II.6. SDWN in the legend denotes MSE bound on the performance of
�� given by (40) and (41) for even and odd N , respectively. Finally, SDUB in the legend stands for the MSE bound for �� that follows from (24).

low redundancy. For example, if the frame being quantized is
an orthonormal basis, then PCM schemes certainly offer better
MSE than since in this case there is an isometry between the
frame coefficients and the signal they represent. Nonetheless,
for sufficiently redundant frames, schemes provide better
MSE than PCM.

Example VI.2 (Unit-Norm Frames for ): In view of The-
orem IV.4, it is easy to obtain uniform bounds for the frame
variation of frames for . In particular, one can always find
a permutation such that .

A simple comparison of the MSE error bounds for PCM and
discussed above shows that the MSE corresponding to first-

order quantizers is less than the MSE corresponding to
PCM algorithms for unit-norm tight frames for in the fol-
lowing cases when the redundancy satisfies the specified in-
equalities:

• if the unit-norm tight frame for
has even length, is zero sum, is ordered as in Theorem
IV.4, and we set , see Corollary III.8;

• for any unit-norm tight frame for
, as long as the frame elements are ordered as described

in Theorem IV.4, and is chosen to be , see Corollary
III.5;

• for any unit-norm tight frame for
, as long as the frame elements are ordered as described

in Theorem IV.4, see Corollary III.6.
Fig. 5 shows the MSE achieved by -level PCM algorithms

and -level first-order quantizers with step size
for several values of for unit-norm tight frames for ob-
tained by the th roots of unity. The plots suggest that if the

frame bound is larger than approximately , the first-order
quantizer outperforms PCM.

Example VI.3 (7th Roots of Unity): Let
and let be the unit-norm tight frame for
given by

The point has the frame expansion

One may compute that

If we consider the 1-bit alphabet then the quan-
tization problem is to replace by an element of

Fig. 6 shows the elements of denoted by solid dots, and shows
the point denoted by a “ ” symbol. Note that .

The first-order scheme with two-level alphabet and
natural ordering quantizes by .
This corresponds to replacing by

The two-level PCM scheme quantizes by
. This corresponds to replacing
by
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Fig. 6. The elements of � from Example VI.3 are denoted by solid dots, and
the point x = (1=3; 1=2) is denoted by “�.” Note that x =2 �. “X ” is the
quantized point in � obtained using first-order �� quantization, and “X ”
is the quantized point in � obtained by PCM quantization.

The points and are shown in Fig. 6 and it is visu-
ally clear that .

The sets corresponding to more general frames and alpha-
bets than in Example VI.3 possess many interesting properties.
This is a direction of ongoing work of the authors together with
Yang Wang.

VII. CONCLUSION

We have introduced the -level scheme with stepsize
as a technique for quantizing finite frame expansions for .
In Section III, we have proven that if is a unit-norm tight
frame for of cardinality , and , then the -level

scheme with stepsize has approximation error

where the frame variation depends only on the frame
and the order in which frame coefficients are quantized. As
a corollary, for harmonic frames for this
gives the approximation error estimate

In Section V, we showed that there are certain cases where the
above error bounds can be improved to

where the implicit constant depends on . Section VI compares
MSE for schemes and PCM schemes. A main consequence
of our approximation error estimates is that

whereas

when linear reconstruction is used, see (39) and (38). This
shows that first-order schemes outperform the standard
PCM scheme if the frame being quantized is sufficiently re-
dundant. We have also shown that quantization with linear
reconstruction achieves the same order MSE as PCM
with consistent reconstruction.

Our error estimates for first-order schemes make it rea-
sonable to hope that second-order schemes can perform
even better. This is, in fact, the case, but the analysis of second-

order schemes becomes much more complicated and is consid-
ered separately in [35].

APPENDIX

DISCREPANCY AND UNIFORM DISTRIBUTION

Let , where is identified
with the torus . The discrepancy of is defined by

where the is taken over all subarcs of
The Erdös–Turan inequality allows one to estimate discrep-

ancy in terms of exponential sums

Koksma’s inequality states that for any function
of bounded variation
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