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Sigma-Delta (Σ∆) quantization and finite frames
John J. Benedetto, Alexander M. Powell, and Özgür Yılmaz

Abstract— The K-level Sigma-Delta (Σ∆) scheme with step
size δ is introduced as a technique for quantizing finite frame
expansions for R

d. Error estimates for various quantized frame
expansions are derived, and, in particular, it is shown that
Σ∆ quantization of a normalized finite frame expansion in R

d

achieves approximation error ||x− ex|| ≤ δd

2N
(σ(F, p)+2), where

N is the frame size, and the frame variation σ(F, p) is a quantity
which reflects the dependence of the Σ∆ scheme on the frame.
Here || · || is the d-dimensional Euclidean 2-norm. Lower bounds
and refined upper bounds are derived for certain specific cases.
As a direct consequence of these error bounds one is able to
bound the mean squared error (MSE) by an order of 1/N 2.
When dealing with sufficiently redundant frame expansions,
this represents a significant improvement over classical PCM
quantization, which only has MSE of order 1/N under certain
nonrigorous statistical assumptions. Σ∆ also achieves the optimal
MSE order for PCM with consistent reconstruction.

Index Terms— Sigma-Delta quantization, finite frames.

I. INTRODUCTION

IN signal processing, one of the primary goals is to obtain a
digital representation of the signal of interest that is suitable

for storage, transmission, and recovery. In general, the first step
towards this objective is finding an atomic decomposition of
the signal. More precisely, one expands a given signal x over
an at most countable dictionary {en}n∈Λ such that

x =
∑

n∈Λ

cnen, (1)

where cn are real or complex numbers. Such an expansion is
said to be redundant if the choice of cn in (1) is not unique.

Although (1) is a discrete representation, it is certainly
not “digital” since the coefficient sequence {cn}n∈Λ is real
or complex valued. Therefore, a second step is needed to
reduce the continuous range of this sequence to a discrete, and
preferably finite, set. This second step is called quantization.
A quantizer maps each expansion (1) to an element of

ΓA = {
∑

n∈Λ

qnen : qn ∈ A},

where the quantization alphabet A is a given discrete, and
preferably finite, set. The performance of a quantizer is re-
flected in the approximation error ‖x − x̃‖, where ‖ · ‖ is a
suitable norm, and

x̃ =
∑

n∈Λ

qnen (2)
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is the quantized expansion.
The process of reconstructing x̃ in (2) from the quantized

coefficients, qn, n ∈ Λ, is called linear reconstruction. More
general approaches to quantization, such as consistent recon-
struction, e.g., [1], [2], use nonlinear reconstruction, but unless
otherwise mentioned, we shall focus on quantization using
linear reconstruction, as in (2).

A simple example of quantization, for a given expansion (1),
is to choose qn to be the closest point in the alphabet A to
cn. Quantizers defined this way are usually called pulse code
modulation (PCM) algorithms. If {en}n∈Λ is an orthonormal
basis for a Hilbert space H , then PCM algorithms provide the
optimal quantizers in that they minimize ‖x− x̃‖ for every x
in H , where ‖·‖ is the Hilbert space norm. On the other hand,
PCM can perform poorly if the set {en}n∈Λ is redundant. We
shall discuss this in detail in Section II-B.

In this paper we shall examine the quantization of redundant
real finite atomic decompositions (1) for R

d. The signal, x,
and dictionary elements, en, n ∈ Λ, are elements of Rd, the
index set Λ is finite, and the coefficients, cn, n ∈ Λ, are real
numbers.

A. Frames, redundancy, and robustness

In various applications it is convenient to assume that the
signals of interest are elements of a Hilbert space H , e.g., H =
L2(Rd), or H = R

d, or H is a space of bandlimited functions.
In this case, one can consider more structured dictionaries,
such as frames. Frames are a special type of dictionary which
can be used to give stable redundant decompositions (1).
Redundant frames are used in signal processsing because they
yield representations that are robust under

• additive noise [3] (in the setting of Gabor and wavelet
frames for L2(R)), [4] (in the setting of oversampled
bandlimited functions), and [5] (in the setting of tight
Gabor frames),

• quantization [6], [7], [8] (in the setting of oversampled
bandlimited functions), [9] (in the setting of tight Gabor
frames), and [2] (in the setting of finite frames for Rd),
and

• partial data loss [10], [11] (in the setting of finite frames
for R

d).
Although redundant frame expansions use a larger than nec-
essary bit-budget to represent a signal (and hence are not
preferred for storage purposes where data compression is the
main goal), the robustness properties listed above make them
ideal for applications where data is to be transferred over noisy
channels, or to be quantized very coarsely. In particular, in
the case of Sigma-Delta (Σ∆) modulation of oversampled
bandlimited functions x, one has very good reconstruction
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using only 1-bit quantized values of the frame coefficients [6],
[12], [13]. Moreover, the resulting approximation x̃ is robust
under quantizer imperfections as well as bit-flips [6], [7], [8].

Another example where redundant frames are used, this
time to ensure robust transmission, can be found in the
works of Goyal, Kovačević, Kelner, and Vetterli [10], [14],
cf., [15]. They propose using finite tight frames for Rd to
transmit data over erasure channels; these are channels over
which transmission errors can be modeled in terms of the
loss (erasure) of certain packets of data. They show that the
redundancy of these frames can be used to “mitigate the effect
of the losses in packet-based communication systems”[16],
cf., [17]. Further, the use of finite frames has been proposed
for generalized multiple description coding [18], [11], for
multiple-antenna code design [19], and for solving modified
quantum detection problems [20]. Thus, finite frames for R

d

or Cd are emerging as a natural mathematical model and tool
for many applications.

B. Redundancy and quantization

A key property of frames is that greater frame redundancy
translates into more robust frame expansions. For example,
given a normalized tight frame for Rd with frame bound
A, any transmission error that is caused by the erasure of
e coefficients can be corrected as long as e < A [10]. In other
words, increasing the frame bound, i.e., the redundancy of the
frame, makes the representation more robust with respect to
erasures. However, increasing redundancy also increases the
number of coefficients to be transmitted. If one has a fixed
bit-budget, a consequence is that one has fewer bits to spend
for each coefficient and hence needs to be more resourceful
in how one allocates the available bits.

• When dealing with PCM, using linear reconstruction, for
finite frame expansions in Rd, a longstanding analysis
with certain assumptions on quantization “noise” bounds
the resulting mean square approximation error by C1δ

2/A
where C1 is a constant, A is the frame bound, and δ is
the quantizer step size [21], see Section II-B.

• On the other hand, for 1-bit first order Σ∆ quantization
of oversampled bandlimited functions, the approximation
error is bounded by C2/A pointwise [6], and the mean
square approximation error is bounded by C3/A

3 [12],
[13].

Thus, if we momentarily “compare apples with oranges”, we
see that Σ∆ quantization algorithms for bandlimited functions
utilize the redundancy of the expansion more efficiently than
PCM algorithms for Rd.

C. Overview of the paper and main results

Section II discusses necessary background material. In par-
ticular, Section II-A gives basic definitions and theorems from
frame theory, and Section II-B presents basic error estimates
for PCM quantization of finite frame expansions for R

d.
In Section III, we introduce the K-level Σ∆ scheme with

step size δ as a new technique for quantizing normalized
finite frame expansions. A main theme of this paper is to

show that the Σ∆ scheme outperforms linearly reconstructed
PCM quantization of finite frame expansions. In Section III-
A, we introduce the notion of frame variation, σ(F, p), as a
quantity which reflects the dependence of the Σ∆ scheme’s
performance on properties of the frame. Section III-B uses the
frame variation, σ(F, p), to derive basic approximation error
estimates for the Σ∆ scheme. For example, we prove that if F
is a normalized tight frame for Rd of cardinality N ≥ d, then
the K-level Σ∆ scheme with quantization step size δ gives
approximation error

||x − x̃|| ≤ δd

2N
(σ(F, p) + 2),

where || · || is the d-dimensional Euclidean 2-norm.
Section IV is devoted primarily to examples. We give ex-

amples of infinite families of frames with uniformly bounded
frame variation. We compare the error bounds of Section
III with the numerically observed error for these families of
frames. Since Σ∆ schemes are iterative, they require one to
choose a quantization order, p, in which frame coefficients
are given as input to the scheme. We present a numerical
example which shows the importance of carefully choosing
the quantization order to ensure good approximations.

In Section V, we derive lower bounds and refined upper
bounds for the Σ∆ scheme. This partially explains properties
of the approximation error which are experimentally observed
in Section IV. In particular, we show that in certain situations,
if the frame size N is even, then one has the improved
approximation error bound ||x − x̃|| ≤ C1/N

5/4 for an x-
dependent constant C1. On the other hand, if N is odd we
prove the lower bound C2/N ≤ ||x − x̃|| for an x-dependent
constant C2. In both cases || · || is the Euclidean norm.

In Section VI, we compare the mean square (approximation)
error (MSE) for the Σ∆ scheme with PCM using linear recon-
struction. If we have an harmonic frame for Rd of cardinality
N ≥ d, then we show that the MSE for the Σ∆ scheme is
bounded by an order of 1/N 2, whereas the standard MSE
estimates for PCM are only of order 1/N . Thus, if the frame
redundancy is large enough then Σ∆ outperforms PCM. We
present numerical examples to illustrate this. This also shows
that Σ∆ quantization achieves the optimal approximation
order for PCM with consistent reconstruction.

II. BACKGROUND

A. Frame theory

The theory of frames in harmonic analysis is due to Duffin
and Schaeffer [22]. Modern expositions on frame theory can
be found in [3], [23], [24]. In the following definitions, Λ is
an at most countable index set.

Definition II.1. A collection F = {en}n∈Λ in a Hilbert space
H is a frame for H if there exists 0 < A ≤ B < ∞ such that

∀x ∈ H, A||x||2 ≤
∑

n∈Λ

|〈x, en〉|2 ≤ B||x||2.

The constants A and B are called the frame bounds.

A frame is tight if A = B. An important remark is that
the size of the frame bound of a normalized or uniform tight
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frame, i.e., a tight frame with ||en|| = 1 for all n, “measures”
the redundancy of the system. For example, if A = 1 then a
normalized tight frame must be an orthonormal basis and there
is no redundancy, see Proposition 3.2.1 of [3]. The larger the
frame bound A ≥ 1 is, the more redundant a normalized tight
frame is.

Definition II.2. Let {en}n∈Λ be a frame for a Hilbert space
H with frame bounds A and B. The analysis operator

L : H → l2(Λ)

is defined by (Lx)k = 〈x, ek〉. The operator S = L∗L is
called the frame operator, and it satisfies

AI ≤ S ≤ BI, (3)

where I is the identity operator on H . The inverse of S, S−1,
is called the dual frame operator, and it satisfies

B−1I ≤ S−1 ≤ A−1I. (4)

The following theorem illustrates why frames can be useful
in signal processing.

Theorem II.3. Let {en}n∈Λ be a frame for H with frame
bounds A and B, and let S be the corresponding frame
operator. Then {S−1en}n∈Λ is a frame for H with frame
bounds B−1 and A−1. Further, for all x ∈ H

x =
∑

n∈Λ

〈x, en〉(S−1en) (5)

=
∑

n∈Λ

〈x, (S−1en)〉en, (6)

with unconditional convergence of both sums.

The atomic decompositions in (5) and (6) are the first step
towards a digital representation. If the frame is tight with frame
bound A, then both frame expansions are equivalent and we
have

∀x ∈ H, x = A−1
∑

n∈Λ

〈x, en〉en. (7)

When the Hilbert space H is Rd or Cd, and Λ is finite, the
frame is referred to as a finite frame for H . In this case, it is
straightforward to check if a set of vectors is a tight frame.
Given a set of N vectors, {vn}N

n=1, in Rd or Cd, define the
associated matrix L to be the N × d matrix whose rows are
the vn. The following lemma can be found in [25].

Lemma II.4. A set of vectors {vn}N
n=1 in H = Rd or H = Cd

is a tight frame with frame bound A if and only if its associated
matrix L satisfies S = L∗L = AId, where L∗ is the conjugate
transpose of L, and Id is the d × d identity matrix.

For the important case of finite normalized tight frames for
R

d and C
d, the frame constant A is N/d, where N is the

cardinality of the frame [26], [10], [2], [25].

B. PCM algorithms and Bennett’s white noise assumption

Let {en}N
n=1 be a normalized tight frame for R

d, so that
each x ∈ Rd has the frame expansion

x =
d

N

N∑

n=1

xnen, xn = 〈x, en〉.

Given δ > 0, the 2 d1/δe-level PCM quantizer with step size
δ replaces each xn ∈ R with

qn = qn(x) =





δ(dxn/δe − 1/2) if |xn| < 1,
δ(d1/δe − 1/2) if xn ≥ 1,

−δ(d1/δe − 1/2) if xn ≤ −1,

(8)

where d·e denotes the ceiling function. Thus, PCM quantizes
x by

x̃ =
d

N

N∑

n=1

qnen.

It is easy to see that

∀n, |xn| < 1 =⇒ |xn − qn| ≤ δ/2. (9)

PCM quantization as defined above assumes linear reconstruc-
tion from the PCM quantized coefficients, qn. We very briefly
address the nonlinear technique of consistent reconstuction in
Section VI.

Fix δ > 0, and let ‖ · ‖ be the d-dimensional Euclidean 2-
norm. Let x ∈ Rd and let x̃ be the quantized expansion given
by 2d1/δe-level PCM quantization. If ||x|| < 1 then by (9)
the approximation error ||x − x̃|| satisfies

‖x − x̃‖ =
d

N
‖

N∑

n=1

(xn − qn)en‖

≤
(

δ

2

)(
d

N

) N∑

n=1

‖en‖ =

(
d

2

)
δ. (10)

This error estimate does not utilize the redundancy of the
frame. A common way to improve the estimate (10) is to
make statistical assumptions on the differences xn − qn, e.g.,
[21], [2].

Example II.5 (Bennett’s white noise assumption). Let
{en}N

n=1 be a normalized tight frame for Rd with frame bound
A = N/d, let x ∈ Rd, and let xn, qn, and x̃ be defined as
above. Since the “pointwise” estimate (10) is unsatisfactory,
a different idea is to derive better error estimates which hold
“on average” under certain statistical assumptions.

Let ν be a probability measure on Rd, and consider the ran-
dom variables ηn = xn − qn with the probability distribution
µn induced by ν as follows. For B ⊆ R measurable,

µn(B) = ν({x ∈ R
d : 〈x, en〉 − qn(x) ∈ B}).

The classical approach dating back to Bennett, [21], is to
assume that the quantization noise sequence, {ηn}N

n=1, is
a sequence of independent, identically distributed random
variables with mean 0 and variance σ2. In other words, µn =
µ for n = 1, · · · , N , and the joint probability distribution
µ1,··· ,N of {ηn}N

n=1 is given by µ1,··· ,N = µN . We shall refer
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to this statistical assumption on {ηn}N
n=1 as Bennett’s white

noise assumption.
It was shown in [2], that under Bennett’s white noise

assumption, the mean square (approximation) error (MSE)
satisfies

MSEPCM = E(‖x − x̃‖2) =
dσ2

A
=

d2σ2

N
, (11)

where the expectation E(||x − x̃||2) is defined by

E(||x − x̃||2) =

∫

Rd

||x − x̃||2dν(x),

which can be rewritten using Bennett’s white noise assumption
as

E(||x − x̃||2) =

∫

RN

d

N
||

N∑

n=1

ηnen||2dµN (η1, · · · , ηN ).

Since we are considering PCM quantization with stepsize
δ, and in view of (9), it is quite natural to assume that each
ηn is a uniform random variable on [− δ

2 , δ
2 ], and hence has

mean 0, and variance σ2 = δ2/12, [27]. In this case one has

MSEPCM =
dδ2

12A
=

d2δ2

12N
. (12)

Although (12) in Example II.5 represents an improvement
over (10) it is still unsatisfactory for the following reasons:

(a) The MSE bound (12) only gives information about the
average quantizer performance.

(b) As one increases the redundancy of the expansion, i.e.,
as the frame bound A increases, the MSE given in
(12) decreases only as 1/A, i.e., the redundancy of the
expansion is not utilized very efficiently.

(c) (12) is computed under assumptions that are not rigorous
and, at least in certain cases, not true. See [28] for an
extensive discussion and a partial deterministic analysis
of the quantizer error sequence {ηn}. In Example II.6,
we show an elementary setting where Bennett’s white
noise assumption does not hold for PCM quantization
of finite frame expansions.

Since a redundant frame has more elements than are neces-
sary to span the signal space, there will be interdependencies
between the frame elements, and hence between the frame
coefficients. It is intuitively reasonable to expect that this
redundancy and interdependency may violate the indepen-
dence part of Bennett’s white noise assumption. The following
example makes this intuition precise.

Example II.6 (Shortcomings of the noise assumption).
Consider the normalized tight frame for R2, with frame bound
A = N/2, given by

{en}N
n=1, en = (cos(2πn/N), sin(2πn/N),

where N > 2 is assumed to be even. Given x ∈ R2, and let
xn = 〈x, en〉 be the corresponding nth frame coefficient. It is
easy to see that since N is even

∀n, en = −en+N/2,

and hence
∀n, xn = −xn+N/2.

Next, note that for almost every x ∈ R2 (with respect to
Lebesgue measure) one has

∀n, xn /∈ δZ.

By the definition of the PCM scheme, this implies that for
almost every x ∈ R2 with ||x|| < 1 one has qn = −qn+N/2,
and hence ηn = −ηn+N/2. This means that the quantization
noise sequence {ηn} is not independent and that Bennett’s
white noise assumption is violated. Thus, the MSE predicted
by (12) will not be attained in this case. One can rectify the
situation by applying the white noise assumption to the frame
that is generated by deleting half of the points to ensure that
only one of en and en+N/2 is left in the resulting set.

In addition to the limitations of PCM mentioned above, it is
also well known that PCM has poor robustness properties in
the bandlimited setting, [6]. In view of these shortcomings of
PCM quantization, we seek an alternate quantization scheme
which is well suited to utilizing frame redundancy. We shall
show that the class of Sigma-Delta (Σ∆) schemes perform
exceedingly well when used to quantize redundant finite frame
expansions.

III. Σ∆ ALGORITHMS FOR FRAMES FOR Rd

Sigma-Delta (Σ∆) quantizers are widely implemented to
quantize oversampled bandlimited functions [29], [6]. Here,
we define the fundamental Σ∆ algorithm with the aim of using
it to quantize finite frame expansions.

Let K ∈ N and δ > 0. Given the midrise quantization
alphabet

Aδ
K = {(−K + 1/2)δ, (−K + 3/2)δ, . . . ,

(−1/2)δ, (1/2)δ, . . . , (K − 1/2)δ},

consisting of 2K elements, we define the 2K-level midrise
uniform scalar quantizer with stepsize δ by

Q(u) = arg minq∈Aδ
K
|u − q| (13)

Thus, Q(u) is the element of the alphabet which is closest to
u. If two elements of Aδ

K are equally close to u then let Q(u)
be the larger of these two elements, i.e., the one larger than u.
For simplicity, we only consider midrise quantizers, although
many of our results are valid more generally.

Definition III.1. Given K ∈ N, δ > 0, and the corresponding
midrise quantization alphabet and 2K-level midrise uniform
scalar quantizer with stepsize δ. Let {xn}N

n=1 ⊆ Rd, and let p
be a permutation of {1, 2, · · · , N}. The associated first order
Σ∆ quantizer is defined by the iteration

un = un−1 + xp(n) − qn, (14)
qn = Q(un−1 + xp(n)),

where u0 is a specified constant. The first order Σ∆ quantizer
produces the quantized sequence {qn}N

n=1, and an auxiliary
sequence {un}N

n=0 of state variables.

Thus, a first-order Σ∆ quantizer is a 2K-level first-order
Σ∆ quantizer with step size δ if it is defined by means of (14),
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where Q is defined by (13). We shall refer to the permutation
p as the quantization order.

The following proposition, cf., [6], shows that the first-
order Σ∆ quantizer is stable, i.e., the auxiliary sequence {un}
defined by (14) is uniformly bounded if the input sequence
{xn} is appropriately uniformly bounded.

Proposition III.2. Let K be a positive integer, let δ > 0, and
consider the Σ∆ system defined by (14) and (13). If |u0| ≤ δ/2
and

∀n = 1, · · · , N, |xn| ≤ (K − 1/2)δ,

then
∀n = 1, · · · , N, |un| ≤ δ/2.

Proof: Without loss of generality assume that p is the
identity permutation. The proof proceeds by induction. The
base case, |u0| ≤ δ/2, holds by assumption. Next, suppose
that |uj−1| ≤ δ/2. This implies that |uj−1 − xj | ≤ Kδ, and
hence, by (14) and the definition of Q,

|uj | = |uj−1 − xj − Q(uj−1 − xj)| ≤ δ/2.

A. Frame variation

Let F = {en}N
n=1 be a finite frame for Rd and let

x =

N∑

n=1

xnS−1en, xn = 〈x, en〉, (15)

be the corresponding frame expansion for some x ∈ Rd. Since
this frame expansion is a finite sum, the representation is
independent of the order of summation. In fact, recall that
by Theorem II.3, any frame expansion in a Hilbert space
converges unconditionally.

Although frame expansions do not depend on the ordering
of the frame, the Σ∆ scheme in Definition III.1 is iterative
in nature, and does depend strongly on the order in which
the frame coefficients are quantized. In particular, we shall
show that changing the order in which frame coefficients are
quantized can have a drastic effect on the performance of the
Σ∆ scheme. This, of course, stands in stark contrast to PCM
schemes which are order independent. The Σ∆ scheme (14)
takes advantage of the fact that there are “interdependencies”
between the frame elements in a redundant frame expansion.
This is a main underlying reason why Σ∆ schemes outperform
PCM schemes, which quantize frame coefficients without
considering any “interdependencies”.

We now introduce the notion of frame variation. This will
play an important role in our error estimates and directly
reflects the importance of carefully choosing the order in
which frame coefficients are quantized.

Definition III.3. Let F = {en}N
n=1 be a finite frame for Rd,

and let p be a permutation of {1, 2, . . . , N}. We define the
variation of the frame F with respect to p as

σ(F, p) :=

N−1∑

n=1

‖ep(n) − ep(n+1)‖. (16)

Roughly speaking, if a frame F has low variation with
respect to p, then the frame elements will not oscillate too

much in that ordering and there is more “interdependence”
between succesive frame elements.

B. Basic error estimates

We now derive error estimates for the Σ∆ scheme in
Definition III.1 for K ∈ N and δ > 0. Given a frame
F = {en}N

n=1 for Rd, a permutation p of {1, 2, · · · , N}, and
x ∈ Rd, we shall calculate how well the quantized expansion

x̃ =

N∑

n=1

qnS−1ep(n)

approximates the frame expansion

x =

N∑

n=1

xp(n)S
−1ep(n), xp(n) = 〈x, ep(n)〉.

Here, {qn}N
n=1 is the quantized sequence which is calculated

using Definition III.1 and the sequence of frame coefficients,
{xp(n)}N

n=1. We now state our first result on the approximation
error, ||x − x̃||. We shall use || · ||op to denote the operator
norm induced by the Euclidean norm, || · ||, for Rd.

Theorem III.4. Given the Σ∆ scheme of Definition III.1. Let
F = {en}N

n=1 be a finite normalized frame for Rd, let p be a
permutation of {1, 2, . . . , N}, let |u0| ≤ δ/2, and let x ∈ R

d

satisfy ||x|| ≤ (K − 1/2)δ. The approximation error ||x− x̃||
satisfies

||x − x̃|| ≤ ||S−1||op

(
σ(F, p)

δ

2
+ |uN | + |u0|

)
,

where S−1 is the inverse frame operator for F.

Proof:

x − x̃ =

N∑

n=1

(xp(n) − qn)S−1ep(n)

=

N∑

n=1

(un − un−1)S
−1ep(n)

=

N−1∑

n=1

unS−1(ep(n) − ep(n+1))

+ uNS−1ep(N) − u0S
−1ep(1). (17)

Since ||x|| ≤ (K − 1/2)δ it follows that

∀ 1 ≤ n ≤ N, |xn| = |〈x, en〉| ≤ (K − 1/2)δ.

Thus, by Proposition III.2,

||x − x̃|| ≤
N∑

n=1

δ

2
||S−1||op||ep(n) − ep(n+1)||

+ |uN | ||S−1||op + |u0| ||S−1||op

= ||S−1||op

(
σ(F, p)

δ

2
+ |u0| + |uN |

)
.

Theorem III.4 is stated for general normalized frames, but
since finite tight frames are especially desirable in applications,
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we shall restrict the remainder of our discussion to tight
frames. The utility of finite normalized tight frames is apparent
in the simple reconstruction formula (7). Note that general
finite normalized frames for Rd are elementary to construct.
In fact, any finite subset of Rd is a frame for its span. However,
the construction and characterization of finite normalized tight
frames is much more interesting due to the additional algebraic
constraints involved [26].

Corollary III.5. Given the Σ∆ scheme of Definition III.1. Let
F = {en}N

n=1 be a normalized tight frame for Rd with frame
bound A = N/d, let p be a permutation of {1, 2, . . . , N}, let
|u0| ≤ δ/2, and let x ∈ Rd satisfy ||x|| ≤ (K − 1/2)δ. The
approximation error ||x − x̃|| satisfies

||x − x̃|| ≤ d

N

(
σ(F, p)

δ

2
+ |uN | + |u0|

)
.

Proof: As discussed in Section II-A, a tight frame F =
{en}N

n=1 for R
d has frame bound A = N/d, and, by (4), and

Lemma II.4,

||S−1||op = || d

N
I ||op = d/N.

The result now follows from Theorem III.4.

Corollary III.6. Given the Σ∆ scheme of Definition III.1. Let
F = {en}N

n=1 be a normalized tight frame for Rd with frame
bound A = N/d, let p be a permutation of {1, 2, . . . , N}, let
|u0| ≤ δ/2, and let x ∈ Rd satisfy ||x|| ≤ (K − 1/2)δ. The
approximation error ||x − x̃|| satisfies

||x − x̃|| ≤ δd

2N
(σ(F, p) + 2) .

Proof: Apply Corollary III.5 and Proposition III.2.
Recall that the initial state u0 in (14) can be chosen

arbitrarily. It is therefore convenient to take u0 = 0, because
this will give a smaller constant in the approximation error
given by Theorem III.4. Likewise, the error constant can be
improved if one has more information about the final state
variable, |uN |. It is somewhat surprising that for zero sum
frames the value of |uN | is completely determined by whether
the frame has an even or odd number of elements.

Theorem III.7. Given the Σ∆ scheme of Definition III.1. Let
F = {en}N

n=1 be a normalized tight frame for Rd with frame
bound A = N/d, and assume that F satisfies the zero sum
condition

N∑

n=1

en = 0. (18)

Additionally, set u0 = 0 in (14). Then

|uN | =

{
0, if N even;
δ/2, if N odd.

(19)

Proof: Note that (14) implies

uN = u0 +

N∑

n=1

xn −
N∑

n=1

qn =

N∑

n=1

xn −
N∑

n=1

qn. (20)

Next, (18) implies

N∑

n=1

xn =

N∑

n=1

〈x, en〉 = 〈x,

N∑

n=1

en〉 = 0. (21)

By the definition of the midrise quantization alphabet Aδ
K each

qn is an odd integer multiple of δ/2.
If N is even it follows that

∑N
n=1 qn is an integer multiple

of δ. Thus, by (20) and (21), uN is an integer multiple of δ.
However, |uN | ≤ δ/2 by Proposition III.2, so that we have
uN = 0.

If N is odd it follows that
∑N

n=1 qn is an odd integer
multiple of δ/2. Thus, by (20) and (21), uN is an odd integer
multiple of δ/2. However, |uN | ≤ δ/2 by Proposition III.2,
so that we have |uN | = δ/2.

Corollary III.8. Given the Σ∆ scheme of Definition III.1. Let
F = {en}N

n=1 be a normalized tight frame for Rd with frame
bound A = N/d, and assume that F satisfies the zero sum
condition (18). Let p be a permutation of {1, · · · , N} and let
x ∈ Rd satisfy ||x|| ≤ (K − 1/2)δ. Additionally, set u0 = 0
in (14). Then the approximation error ||x − x̃|| satisfies

||x − x̃|| ≤
{

δd
2N σ(F, p), if N even;
δd
2N (σ(F, p) + 1) , if N odd.

(22)

Proof: Apply Corollary III.5, Theorem III.7, and Propo-
sition III.2.

Corollary III.8 shows that as a consequence of Theorem
III.7, one has smaller constants in the error estimate for ||x−
x̃|| when the frame size N is even. Theorem III.7 makes an
even bigger difference when deriving refined estimates as in
Section V, or when dealing with higher order Σ∆ schemes
[30].

IV. FAMILIES OF FRAMES WITH BOUNDED VARIATION

One way to obtain arbitrarily small approximation error,
||x− x̃||, using the estimates of the previous section is simply
to fix a frame and decrease the quantizer step size δ towards
zero, while letting K = d1/δe. By Corollary III.6, as δ goes
to 0, the approximation error goes to zero. However, this
approach is not always be desirable. For example, in analog-
to-digital (A/D) conversion of bandlimited signals, it can be
quite costly to build quantizers with very high resolution,
i.e. small δ and large K, e.g., [6]. Instead, many practical
applications involving A/D and D/A converters make use of
oversampling, i.e., redundant frames, and use low resolution
quantizers, e.g., [31]. To be able to adopt this type of approach
for the quantization of finite frame expansions, it is important
to be able to construct families of frames with uniformly
bounded frame variation.

Let us begin by making the observation that if F = {en}N
n=1

is a finite normalized frame and p is any permutation of
{1, 2, · · · , N} then σ(F, p) ≤ 2(N − 1). However, this bound
is too weak to be of much use since substituting it into an
error bound such as the even case of (22) only gives

||x − x̃|| ≤ δd(N − 1)

N
.
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Fig. 1. The frame coefficients of x = (1/π,
p

3/17) with respect to the
N th roots of unity are quantized using the first order Σ∆ scheme. This log-
log plot shows the approximation error ||x−ex|| as a function of N compared
with 5/N and 5/N1.25 .

In particular, this bound does not go to zero as N gets large,
i.e., as one chooses more redundant frames. On the other hand,
if one finds a family of frames and a sequence of permutations,
such that the resulting frame variations are uniformly bounded,
then one is able to obtain an approximation error of order 1/N .

Example IV.1 (Roots of unity). For N > 2, let RN =
{eN

n }N
n=1 be the N th roots of unity viewed as vectors in R2,

namely,

∀n = 1, · · · , N, eN
n = (cos(2πn/N), sin(2πn/N)).

It is well known that RN is a tight frame for R2 with frame
bound N/2, e.g., see [26]. In this example, we shall always
consider RN in its natural ordering {eN

n }N
n=1. Note that∑N

n=1 eN
n = 0.

Since ||en − en+1|| ≤ 2π/N, it follows that

∀N, σ(RN , p) ≤ 2π, (23)

where p is the identity permutation of {1, 2, · · · , N}.
Thus, the error estimate of Corollary III.8 gives

||x − x̃|| ≤
{

δ
N 2π, if N > 2 even;
δ
N (2π + 1), if N > 2 odd.

(24)

Figure 1 shows a log-log plot of the approximation error
||x− x̃N || as a function of N , when the N th roots of unity are
used to quantize the input x = (1/π,

√
3/17). The figure also

shows a log-log plot of 5/N and 5/N 1.25for comparison. Note
that the approximation error exhibits two very different types
of behavior. In particular, for odd N the approximation error
appears to behave like 1/N asymptotically, whereas for even
N the approximation error is much smaller. We shall explain
this phenomenon in Section V.

The most natural examples of normalized tight frames in
Rd, d > 2 are the harmonic frames, e.g., see [10], [25], [2].
These frames are constructed using rows of the Fourier matrix.

Example IV.2 (Harmonic frames). We shall show that
harmonic frames in their natural ordering have uniformly
bounded frame variation. We follow the notation of [25],
although the terminology “harmonic frame” is not specifically

used there. The definition of the harmonic frame Hd
N =

{ej}N−1
j=0 , N ≥ d, depends on whether the dimension d is

even or odd.
If d ≥ 2 is even let

ej =

√
2

d

[
cos

2πj

N
, sin

2πj

N
, cos

2π2j

N
, sin

2π2j

N
, cos

2π3j

N
,

sin
2π3j

N
, · · · , cos

2π d
2j

N
, sin

2π d
2 j

N

]

for j = 0, 1, · · · , N − 1.
If d > 1 is odd let

ej =

√
2

d

[
1√
2
, cos

2πj

N
, sin

2πj

N
, cos

2π2j

N
, sin

2π2j

N
,

cos
2π3j

N
, sin

2π3j

N
, · · · , cos

2π d−1
2 j

N
, sin

2π d−1
2 j

N

]

for j = 0, 1, · · · , N − 1.
It is shown in [25] that Hd

N , as defined above, is a
normalized tight frame for Rd. If d is even then Hd

N satisfies
the zero sum condition (18). If d is odd the frame is not zero
sum, and, in fact,

N−1∑

j=0

ej = (
N√
d
, 0, 0, · · · , 0) ∈ R

d.

The verification of the zero sum condition for d even follows
by noting that, for each k ∈ Z and not of the form k = mN ,
we have

N−1∑

j=0

cos
2πkj

N
= Re




N−1∑

j=0

(e2πik/N )j


 = 0.

and
N−1∑

j=0

sin
2πkj

N
= Im




N−1∑

j=0

(e2πik/N )j


 = 0.

Let us now estimate the frame variation for harmonic
frames. First, suppose d even, and let p be the identity
permutation. Calculating directly and using the mean value
theorem in the first inequality, we have

√
d

2
σ(Hd

N , p) =

√
d

2

N−2∑

j=0

||ej − ej+1||

=

N−2∑

j=0




d/2∑

k=1

(
cos

2πkj

N
− cos

2πk(j + 1)

N

)2

+

d/2∑

k=1

(
sin

2πkj

N
− sin

2πk(j + 1)

N

)2



1

2

≤
N−2∑

j=0


2

d/2∑

k=1

(
2πk

N

)2



1

2

≤ 2π
√

2




d/2∑

k=1

k2




1

2

= 2π
√

2

[
d(d/2 + 1)(d + 1)

12

] 1

2

≤ 2π

√
d

6
(d + 1).
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Fig. 2. The frame coefficients of x = (1/π, 1/50,
p

3/17, e−1) with
respect to the harmonic frame H4

N
are quantized using the first order Σ∆

scheme. This log-log plot shows the approximation error ||x−ex|| as a function
of N compared with 10/N and 10/N1.25 .

If d is odd then, proceeding as above, we have

√
d

2
σ(Hd

N , p) ≤ 2π
√

2




(d−1)/2∑

k=1

k2




1

2

≤ 2π

√
d

6
(d + 1).

Thus
σ(Hd

N , p) ≤ 2π(d + 1)√
3

, (25)

where p is the identity permutation, i.e., we consider the
natural ordering as in the definition of Hd

N .
We can now derive error estimates for Σ∆ quantization

of harmonic frames in their natural order. If we set u0 = 0
and assume that x ∈ Rd satisfies ||x|| ≤ (K − 1/2)δ, then
combining (25), Corollaries III.2, III.5, and III.8, and the fact
that Hd

N satisfies (18) if N is even gives

||x−x̃|| ≤





δd
2N

2π(d+1)√
3

, if d is even and N is even,
δd
2N

[
2π(d+1)√

3
+ 1
]
, otherwise.

Figure 2 shows a log-log plot of the approximation error
||x−x̃N || as a function of N , when the harmonic frame H4

N is
used to quantize the input x = (1/π, 1/50,

√
3/17, e−1). The

figure also shows a log-log plot of 10/N and 10/N 1.25for
comparison.

As discussed earlier, the Σ∆ algorithm is quite sensitive to
the ordering in which the frame coefficients are quantized.
In Examples IV.1 and IV.2, the natural frame order gave
uniformly bounded frame variation. Let us next consider an
example where a bad choice of frame ordering leads to poor
approximation error.

Example IV.3 (Order matters). Consider the normalized
tight frame for R2 which is given by the 7th roots of unity,
viz., R7 = {en}7

n=1, where en = (cos(2πn/7), sin(2πn/7)).
We randomly choose 10,000 points in the unit ball of R2. For
each of these 10,000 points we first quantize the corresponding
frame coefficients in their natural order using (14) with the
alphabet

A1/4
4 = {−7/8,−5/8,−3/8,−1/8, 1/8, 3/8, 5/8, 7/8},
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Fig. 3. Histogram of approximation error in Example IV.3 for the natural
ordering.
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Fig. 4. Histogram of approximation error in Example IV.3 for an ordering
giving higher variation.

and setting xn = 〈x, en〉. Figure 3 shows the histogram
of the corresponding approximation errors. Next, we quan-
tize the frame coefficients of the same 10,000 points,
only this time after reordering the frame coefficients as
x1, x4, x7, x3, x6, x2, x5. Figure 4 shows the histogram of the
corresponding approximation errors in this case.

Clearly, the average approximation error for the new or-
dering is significantly larger than the average approximation
error associated with the original ordering. This is intuitively
explained by the fact that the natural ordering has significantly
smaller frame variation than the other ordering. In particular,
let p1 be the identity permutation and let p2 be the permutation
corresponding the reordered frame coefficients used above. A
direct calculation shows that

σ(F, p1) ≈ 5.2066 and σ(F, p2) ≈ 11.6991.

In view of this example it is important to choose carefully
the order in which frame coefficients are quantized. In R2

there is always a simple good choice.

Theorem IV.4. Let FN = {en}N
n=1 be a normalized frame for

R2, where en = (cos(αn), sin(αn)) and 0 ≤ αn < 2π. If p
is a permutation of {1, 2, · · · , N} such that αp(n) ≤ αp(n+1)

for all n ∈ {1, 2, · · · , N − 1}, then σ(FN , p) ≤ 2π.

Proof: Is is easy to verify that

||ep(n) − ep(n+1)|| ≤ |αp(n) − αp(n+1)|.



9

By the choice of p, and since 0 ≤ αn < 2π, it follows that

σ(FN , p) =
N−1∑

n=1

||ep(n) − ep(n+1)|| ≤ 2π.

V. REFINED ESTIMATES AND LOWER BOUNDS

In Figure 1 of Example IV.1, we saw that the approximation
error appears to exhibit very different types of behavior
depending on whether N is even or odd. In the even case
the approximation error appears to decay better than the 1/N
estimate given by the results in Section III-B; in the odd case
it appears that the 1/N actually serves as a lower bound, as
well as an upper bound, for the approximation error. This
dichotomy goes beyond Corollary III.8, which only predicts
different constants in the even/odd approximations as opposed
to different orders of approximation. In this section we shall
explain this phenomenon.

Let {FN}∞N=d be a family of normalized tight frames for
R

d, with FN = {eN
n }N

n=1, so that FN has frame bound N/d.
If x ∈ Rd, then {xN

n }N
n=1 will denote the corresponding

sequence of frame coefficients with respect to FN , i.e., xN
n =

〈x, eN
n 〉. Let {qN

n }N
n=1 be the quantized sequence which is

obtained by running the Σ∆ scheme, (14), on the input
sequence {xN

n }N
n=1, and let {uN

n }N
n=0 be the associated state

sequence. Thus, if x ∈ Rd is expressed as a frame expansion
with respect to FN , and if this expansion is quantized by the
first order Σ∆ scheme, then the resulting quantized expansion
is

x̃N =
d

N

N∑

n=1

qN
n eN

n .

Let us begin by rewriting the approximation error in a
slightly more revealing form than in Section III-B. Starting
with (17), specifiying uN

0 = 0, and specializing to the tight
frame case where S−1 = d

N I , we have

x − x̃N =
d

N

(
N−1∑

n=1

uN
n (eN

n − eN
n+1) + uN

NeN
N

)

=
d

N

(
N−2∑

n=1

vN
n (fN

n − fN
n+1) + vN

N−1f
N
N−1 + uN

NeN
N

)
,

(26)

where we have defined

fN
n = eN

n − eN
n+1, vN

n =
n∑

j=1

uN
j , and vN

0 = 0. (27)

When working with the approximation error written as (26),
the main step towards finding improved upper error bounds, as
well as lower bounds, for ||x− x̃||, is to find a good estimate
for |vn|.

Let BΩ be the class of Ω-bandlimited functions consisting
of all functions in L∞(R) whose Fourier transforms (as
distributions) are supported in [−Ω, Ω]. We shall work with
the Fourier transform which is formally defined by f̂(γ) =∫

f(t)e−2πitγdt. By the Paley-Wiener theorem, elements of
BΩ are restrictions of entire functions to the real line.

Definition V.1. Let f ∈ BΩ and let {zj}n∗

j=1 be the finite set
of zeros of f ′ contained in [0, 1]. We say that f ∈ MΩ if
f ′ ∈ L∞(R), and if

∀j = 1, · · · , n∗, f ′′(zj) 6= 0.

For simplicity and to avoid having to keep track of too
many different constants, we shall use the notation A . B
to mean that there exists an absolute constant C > 0 such
that A ≤ CB. The following theorem relies on the uniform
distribution techniques utilized by Sinan Güntürk in [12]. We
briefly collect the necessary background on discrepancy and
uniform distribution in Appendix I.

Theorem V.2. Let {FN}∞N=d be a family of normalized tight
frames for Rd, with FN = {eN

n }N
n=1. Suppose x ∈ Rd satisfies

||x|| ≤ (K−1/2)δ, and let {xN
n }N

n=1 be the sequence of frame
coefficients of x with respect to FN . If, for some Ω > 0, there
exists h ∈ MΩ such that

∀N and 1 ≤ n ≤ N, xN
n = h(n/N),

and if N is sufficiently large, then

|vN
n | . δ

( n

N1/4
+ N3/4 log N

)
. δN3/4 log N. (28)

The implicit constants are independent of N and δ, but they
do depend on x and hence h. The value of what constitutes a
sufficiently large N depends on δ.

Proof: Let uN
n be the state variable of the Σ∆ scheme

and define ũN
n = uN

n /δ. By the definition of vN
n (see (27)),

and by applying Koksma’s inequality (see Appendix I), one
has

|vN
j | = δ

∣∣∣∣∣

j∑

n=1

ũN
n

∣∣∣∣∣ = jδ

∣∣∣∣∣
1

j

j∑

n=1

ũN
n −

∫ 1/2

−1/2

y dy

∣∣∣∣∣

≤ jδ Var(x) Disc({ũN
n }j

n=1), (29)

where Disc(·) denotes the discrepancy of a sequence as
defined in Appendix I. Therefore, we need to estimate DN

j =

Disc({ũN
n }j

n=1). Using the Erdös-Turán inequality (see Ap-
pendix I),

∀K, DN
j ≤ 1

K
+

1

j

K∑

k=1

1

k

∣∣∣∣∣

j∑

n=1

e2πikeuN
n

∣∣∣∣∣ , (30)

we see that it suffices for us to estimate
∣∣∣
∑j

n=1 e2πikeuN
n

∣∣∣ .
By Proposition 1 in [12], for each N there exists an analytic

function XN ∈ BΩ such that

uN
n = XN (n) modulo [−δ/2, δ/2], (31)

and
|X ′

N (t) − h(t/N)| . 1/N. (32)

Bernstein’s inequality gives

|X ′′
N (t) − 1

N
h′(t/N)| . 1/N2. (33)

By hypothesis there exists h ∈ MΩ such that xN
n =

h(n/N). Let {zj}n∗

n=1 be the set of zeros of h in [0, 1], and
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let 0 < α < 1 be a fixed constant to be specified later. Define
the intervals Ij and Jj by

∀j = 1, · · · , n∗, Ij = [Nzj − Nα, Nzj + Nα],

∀j = 1, · · · , n∗ − 1, Jj = [Nzj + Nα, Nzj+1 − Nα],

and

J0 = [1, Nz1 − Nα] and Jn∗ = [Nzn∗ + Nα, N ].

In the case where either 0 or 1 is a zero of h′, one no longer
needs the corresponding endpoint interval, Ji, but needs to
modify the corresponding interval Ij to have 0 or 1 as its
appropriate endpoint. Note that if N is sufficiently large then

J0 ∪ I1 ∪ J1 ∪ · · · ∪ Inz ∪ Jnz = [1, N ].

It follows from the properties of h ∈ MΩ that if N is
sufficiently large then

∀n ∈ N ∩ Jj ,
1

N1−α
=

Nα

N
. |h′(n/N)|.

Thus, by (33) we have that

∀n ∈ N ∩ Jj ,
k

δN2−α
. |k

δ
X ′′

N (n)|. (34)

Also, since h ∈ MΩ ⊆ L∞(R), and by (32), we obtain

∀n ∈ N ∩ Jj , |k
δ
X ′

N (n)| .
k

δ
. (35)

Using (34), (35), Theorem 2.7 of [32], and since 0 < δ < 1,
we have that for 1 ≤ k

∣∣∣∣∣∣

∑

n∈N∩Jj

e2πikeuN
n

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

n∈N∩Jj

e2πi(k/δ)XN (n)

∣∣∣∣∣∣

. (2k/δ + 2)

(
δ1/2N1−α

2

k1/2
+ 1

)

.
k1/2N1−α

2

δ1/2
+

k

δ
.

Also, we have the trivial estimate
∣∣∣∣∣∣

∑

n∈N∩Ij

e2πikeuN
n

∣∣∣∣∣∣
≤ 2Nα.

Thus,
∣∣∣∣∣

j∑

n=1

e2πikeuN
n

∣∣∣∣∣ . Nα +
k1/2N1−α

2

δ1/2
+

k

δ
.

Set α = 3/4 and K = N1/4. By (30) we have that if N is
sufficiently large compared to δ then

DN
j ≤ 1

K
+

Nα log(K)

j
+

K1/2N1−α
2

δ1/2j
+

K

δj

.
1

N1/4
+

N3/4 log(N)

j
+

N3/4

δ1/2j
+

N1/4

δj

.
1

N1/4
+

N3/4 log(N)

j
.

Thus by (29) we have

|vN
n | ≤ δn

N1/4
+ δN3/4 log N . δN3/4 log N,

and the proof is complete.
Combining Theorem V.2 and (26) gives the following

improved error estimate. Although this estimate guarantees
approximation on the order of log N

N5/4
for even N , it is important

to emphasize that the implicit constants depend on x. For
comparison, note that Corollary III.8 only bounds the error
by the order of 1

N , but has explicit constants independent of
x.

Corollary V.3. Let {FN}∞N=d be a family of normalized tight
frames for Rd, for which each FN = {eN

n }N
n=1 satisfies the

zero sum condition (18). Let x ∈ Rd satisfy ||x|| ≤ (K−1/2)δ,
let {xN

n }N
n=1 be the frame coefficients of x with respect to FN ,

and suppose there exists h ∈ MΩ, Ω > 0, such that

∀N and 1 ≤ n ≤ N, xN
n = h(n/N).

Additionally, suppose that fN
n = eN

n − eN
n+1 satisfies

∀N, n = 1, · · · , N, ||fN
n || .

1

N
and ||fN

n −fN
n+1|| .

1

N2
,

and set uN
0 = 0 in (14).

If N is even and sufficiently large we have

||x − x̃N || .
δ log N

N5/4

If N is odd and sufficiently large we have

δ

N
. ||x − x̃N || ≤ δd

2N
(σ(FN , pN ) + 1).

The implicit constants are independent of δ and N , but do
depend on x, and hence h.

Proof: By Theorem V.2,
∣∣∣∣∣

∣∣∣∣∣
2

N

(
N−2∑

n=1

vN
n (fN

n − fN
n+1) + vN

N−1f
N
N−1

)∣∣∣∣∣

∣∣∣∣∣ .
δ log N

N5/4
.

(36)
Thus, by Theorem III.7, (36), and (26), N being even implies

||x − x̃N || .
δ log N

N5/4
.

If N is odd, then by Theorem III.7, (26), and (36) we have

δ

N
=

2 |uN
N | ||eN

N ||
N

. ||x − x̃N || + δ log N

N5/4
.

Combining this with (22) completes the proof.
Applying Corollary V.3 to the quantization of frame expan-

sions given by the roots of unity explains the different error
behavior for even and odd N seen in Figure 1.

Example V.4 (Refined estimates for RN ). Let RN =
{eN

n }N
n=1 be as in Example IV.1, i.e., RN is the normalized

tight frame for R2 given by the N th roots of unity. Suppose x ∈
R2, 0 < ||x|| ≤ (K − 1/2)δ, and that N is sufficiently large
with respect to δ. The frame coefficients of x = (a, b) ∈ R2

with respect to RN are given by {xN
n }N

n=1 = {h(n/N)}N
n=1,

where h(t) = a cos(2πt) + b sin(2πt).
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It is straighforward to show that fN
n = eN

n − eN
n+1 satisfies

||fN
n || ≤ 2π

N
and ||fN

n − fN
n+1|| ≤

(2π)2

N2
,

and that h ∈ M1. Therefore, by Corollary V.3 and (23), if N
is even then

||x − x̃|| .
δ log N

N5/4
,

and if N is odd then

δ

N
. ||x − x̃|| ≤ δ(2π + 1)

N
.

The implicit constants are independent of δ and N , but do
depend on x.

It is sometimes also possible to apply Corollary V.3 to
harmonic frames.

Example V.5 (Refined estimates for Hd
N ). Let the dimension

d be even, and let Hd
N = {eN

n }N
n=1 be as in Example

IV.2, i.e., Hd
N is an harmonic frame for Rd. Suppose x ∈

Rd, 0 < ||x|| ≤ (K − 1/2)δ, and that N is sufficiently
large with respect to δ. The frame coefficients of x =
(a1, b1, · · · , ad/2, bd/2) ∈ Rd with respect to Hd

N are given
by {xN

n }N
n=1 = {h(n/N)}N

n=1, where

h(t) =

√
2

d




d/2∑

j=1

aj cos(2πjt) +

d/2∑

j=1

bj sin(2πjt)


 .

Figure 2 in Example IV.2 shows the approximation error
when the point x = (1/π, 1/50,

√
3/17, e−1) ∈ R4 is rep-

resented with the harmonic frames {H4
N}∞N=4 and quantized

using the Σ∆ scheme. For this choice of x it is straightforward
to verify that h ∈ Md/2. A direct estimate also shows that
fN

n = eN
n − eN

n+1 satisfies

||fN
n || .

1

N
and ||fN

n − fN
n+1|| .

1

N2
.

Therefore, by Corollary V.3 and (23), if N is even then

||x − x̃|| .
δ log N

N5/4
,

and if N is odd then

δ

N
. ||x − x̃|| ≤ δd

2N

(
10π√

3
+ 1

)
.

The implicit constants are independent of δ and N , but do
depend on x.

VI. COMPARISON OF Σ∆ WITH PCM

In this section we shall compare the mean squared error
(MSE) given by Σ∆ quantization of finite frame expansions
with that given by PCM schemes. We shall show that the Σ∆
scheme gives better MSE estimates than PCM quantization
when dealing with sufficiently redundant frames. Throughout
this section, let FN = {eN

n }N
n=1 be a family of normalized

tight frames for Rd, and let

x =
d

N

N∑

n=1

xN
n eN

n and x̃N =
d

N

N∑

n=1

qN
n eN

n

be corresponding frame expansions and quantized frame ex-
pansions, where xN

n = 〈x, eN
n 〉 are the frame coefficients of

x ∈ Rd with respect to FN , and where qN
n are quantized

versions of xN
n .

In Example II.5, we showed that if one uses the PCM
scheme (8) to produce the quantized frame expansion x̃N , then
under Bennett’s white noise assumption the PCM scheme has
mean squared error

MSEPCM =
d2δ2

12N
. (37)

However, as illustrated in Example II.6, this estimate is
not rigorous since Bennett’s white noise assumption is not
mathematically justified and may in fact fail dramatically.

If one uses Σ∆ quantization to produce the quantized frame
expansion x̃N , then one has the error estimate

||x − x̃N || ≤ δd

2N
(σ(F, p) + 2) (38)

given by Corollary III.5. Here p is a permutation of
{1, · · · , N} which denotes the order in which the Σ∆ scheme
is run. This immediately yields the following MSE estimate
for the Σ∆ scheme.

Theorem VI.1. Given the Σ∆ scheme of Definition III.1, let
F = {en}N

n=1 be a normalized tight frame for Rd, and let p be
a permutation of {1, 2, · · · , N}. For each x ∈ Rd satisfying
||x|| ≤ (K−1/2)δ, x̃ shall denote the corresponding quantized
output of the Σ∆ scheme. Let B ⊆ {x ∈ Rd : ||x|| ≤ (K −
1/2)δ} and define the mean square error of the Σ∆ scheme
over B by

MSEΣ∆ =

∫

B

||x − x̃||2 dµ(x),

where µ is any probability measure on B. Then

MSEΣ∆ ≤ δ2d2

4N2
(σ(F, p) + 2)2.

Proof: Square (38) and integrate.
One may analogously derive MSE bounds from any of the

error estimates in Section III-B; we shall examine this in the
subsequent example. The above estimate is completely deter-
ministic; namely, it does not depend on statistical assumptions
such as the analysis for PCM using Bennett’s white noise
assumption.

In Section IV, we saw that it is possible to choose families
of frames, FN = {eN

n }N
n=1, for Rd, and permutations p = pN ,

such that the resulting frame variation σ(FN , pN ) is uniformly
bounded. Whenever this is the case, Theorem VI.1 yields the
MSE bound MSEΣ∆ . 1/N2, which is better than the PCM
bound (37) by one order of approximation. For example, if one
quantizes harmonic frame expansions in their natural order,
then, by (25), Theorem VI.1 gives MSEΣ∆ . 1/N2. Thus,
for the quantization of harmonic frame expansions one may
summarize the difference between Σ∆ and PCM as

MSEΣ∆ . 1/N2 and 1/N . MSEPCM . 1/N.

This says that Σ∆ schemes utilize redundancy better than
PCM.
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Let us remark that for the class of consistent reconstruction
schemes considered in [2], Goyal, Vetterli, and Nguyen bound
the MSE from below by b/A2, where b is some constant and
A = N/d is the redundancy of the frame. Thus, the MSE
estimate derived in Theorem VI.1 for the Σ∆ scheme achieves
this same optimal MSE order.

Returning to classical PCM (with linear reconstruction), it
is important to note that although MSEΣ∆ . 1/N2 is much
better than MSEPCM . 1/N for large N , it is still possible
to have MSEPCM ≤ MSEΣ∆ if N is small, i.e., if the frame
has low redundancy. For example, if the frame being quantized
is an orthonormal basis, then PCM schemes certainly offer
better MSE than Σ∆ since in this case there is an isometry
between the frame coefficients and the signal they represent.
Nonetheless, for sufficiently redundant frames Σ∆ schemes
provide better MSE than PCM.

Example VI.2 (Normalized frames for R2). In view of
Theorem IV.4 it is easy to obtain uniform bounds for the frame
variation of frames F for R2. In particular, one can always
find a permutation p such that σ(F, p) ≤ 2π.

A simple comparison of the MSE error bounds for PCM and
Σ∆ discussed above shows that the MSE corresponding to
first-order Σ∆ quantizers is less than the MSE corresponding
to PCM algorithms for normalized tight frames for R

2 in the
following cases when the redundancy A satisfies the specified
inequalities:

• A > 1.5(2π)2 ≈ 59 if the normalized tight frame for R2

has even length, is zero sum, is ordered as in Theorem
IV.4, and we set u0 = 0, see Corollary III.8,

• A > 1.5(2π + 1)2 ≈ 80 for any normalized tight frame
for R2, as long as the frame elements are ordered as
described in Theorem IV.4, and u0 is chosen to be 0, see
Corollary III.5,

• A > 1.5(2π + 2)2 ≈ 103 for any normalized tight frame
for R2, as long as the frame elements are ordered as
described in Theorem IV.4, see Corollary III.6;

Figure 5 shows the MSE achieved by 2K-level PCM algo-
rithms and 2K-level first-order Σ∆ quantizers with step size
δ = 1/K for several values of K for normalized tight frames
for R2 obtained by the N th roots of unity. The plots suggest
that if the frame bound is larger than approximately 10, the
first-order Σ∆ quantizer outperforms PCM.

Example VI.3 (7th Roots of Unity). Let x = (1/3, 1/2) ∈
R2, and let R7 = {eN}7

N=1 be the normalized tight frame for
R2 given by

en = (cos(2πn/7), sin(2πn/7)), n = 1, · · · , 7.

The point x has the frame expansion

x =
2

7

7∑

n=1

xnen, xn = 〈x, en〉.

One may compute that

(x1, x2, x3, x4, x5, x6,x7) ≈ (0.5987, 0.4133,−0.0834,

− 0.5173,−0.5616,−0.1831, 0.3333).
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Fig. 5. Comparison of the MSE for 2K-level PCM algorithms and 2K-level
first-order Σ∆ quantizers with step size δ = 1/K. Frame expansions of 100
randomly selected points in R

2 for frames obtained by the N th roots of unity
were quantized. In the figure legend PCM and SD correspond to the MSE for
PCM and the MSE for first-order Σ∆ obtained experimentally, respectively.
In the legend, the bound on the MSE for PCM, computed with white noise
assumption, is denoted by WNA. Finally, SDWN in the legend stands for the
MSE bound for Σ∆ that we would obtain if the approximation error was
uniformly distributed between 0 and the upper bound in the odd case of (24).

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
PCM

xΣ∆

Fig. 6. The elements of Γ from Example VI.3 are denoted by solid dots,
and the point x = (1/3, 1/2) is denoted by ’×’. Note that x /∈ Γ. ’XΣ∆’
is the quantized point in Γ obtained using 1st order Σ∆ quantization, and
’XPCM ’ is the quantized point in Γ obtained by PCM quantization.

If we consider the 1-bit alphabet A2
1 = {−1, 1} then the

quantization problem is to replace x by an element of

Γ = {2

7

7∑

n=1

qnen : qn ∈ A2
1}.

Figure 6 shows the elements of Γ denoted by solid dots, and
shows the point x denoted by an ’×’. Note that x /∈ Γ.

The 1st order Σ∆ scheme with 2-level alphabet A2
1 and

natural ordering p quantizes x by xΣ∆ ≈ (.5854, 5571) ∈ Γ.
This corresponds to replacing (x1, x2, x3, x4, x5, x6, x7) by

(q1, q2, q3, q4, q5, q6, q7) = (1, 1,−1,−1,−1, 1,−1).

The 2-level PCM scheme quantizes x by xPCM ≈
(.8006, 1.0039) ∈ Γ. This corresponds to replacing
(x1, x2, x3, x4, x5, x6, x7) by

(q1, q2, q3, q4, q5, q6, q7) = (1, 1,−1,−1,−1,−1, 1).

The points xΣ∆ and xPCM are shown in Figure 6 and it
is visually clear that ||x − xΣ∆|| < ||x − xPCM ||.
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The sets Γ corresponding to more general frames and
alphabets than in Example VI.3 possess many interesting
properties. This is a direction of ongoing work of the authors
together with Yang Wang.

VII. CONCLUSION

We have introduced the K-level Σ∆ scheme with stepsize
δ as a technique for quantizing finite frame expansions for Rd.
In Section III, we have proven that if F is a normalized tight
frame for Rd of cardinality N , and x ∈ Rd, then the K-level
Σ∆ scheme with stepsize δ has approximation error

||x − x̃|| ≤ δd

2N
(σ(F, p) + 2),

where the frame variation σ(F, p) depends only on the frame
F and the order p in which frame coefficients are quantized.
As a corollary, for harmonic frames Hd

N = {en}N
n=1 for Rd

this gives the approximation error estimate

||x − x̃|| ≤ δd

2N
(2π(d + 1) + 1).

In Section V we showed that there are certain cases where the
above error bounds can be improved to

||x − x̃|| . 1/N
5

4 ,

where the implicit constant depends on x. Section VI compares
mean square error (MSE) for Σ∆ schemes and PCM schemes.
A main consequence of our approximation error estimates is
that

MSEΣ∆ . 1/N2 whereas 1/N . MSEPCM ,

when linear reconstruction is used, see (38) and (37). This
shows that first order Σ∆ schemes outperform the standard
PCM scheme if the frame being quantized is sufficiently
redundant. We have also shown that Σ∆ quantization with
linear reconstruction achieves the same order 1/N 2 MSE as
PCM with consistent reconstruction.

Our error estimates for first order Σ∆ schemes make it
reasonable to hope that second order Σ∆ schemes can perform
even better. This is, in fact, the case, but the analysis of
second order schemes becomes much more complicated and
is considered separately in [30].

APPENDIX I
DISCREPANCY AND UNIFORM DISTRIBUTION

Let {un}N
n=1 ⊆ [−1/2, 1/2), where [−1/2, 1/2) is identi-

fied with the torus T. The discrepancy of {un}N
n=1 is defined

by

Disc({un}N
n=1) = sup

I⊂T

∣∣∣∣
#({un}N

n=1 ∩ I)

N
− |I |

∣∣∣∣ ,

where the sup is taken over all subarcs I of T.
The Erdös-Turan inequality allows one to estimate discrep-

ancy in terms of exponential sums:

∀K, Disc({un}j
n=1) ≤

1

K
+

1

j

K∑

k=1

1

k

∣∣∣∣∣

j∑

n=1

e2πikun

∣∣∣∣∣ .

Koksma’s inequality states that for any function f :
[−1/2, 1/2) → R of bounded variation,
∣∣∣∣∣
1

N

N∑

n=1

f(un) −
∫ 1/2

−1/2

f(t)dt

∣∣∣∣∣ ≤ Var(f) Disc({un}N
n=1).
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[30] J. Benedetto, A. Powell, and Ö. Yılmaz, “Second order sigma-delta
(Σ∆) quantization of finite frame expansions,” Preprint, 2004.

[31] E. Janssen and D. Reefman, “Super-Audio CD: an introduction,” IEEE
Signal Processing Magazine, vol. 20, no. 4, pp. 83–90, July 2003.

[32] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences.
New York: Wiley-Interscience, 1974.


