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ABSTRACT

Sigma-Delta (Σ∆) schemes are shown to be an effective approach for quantizing finite frame expansions. Basic
error estimates show that first order Σ∆ schemes can achieve quantization error of order 1/N , where N is the
frame size. Under certain technical assumptions, improved quantization error estimates of order (logN)/N 1.25

are obtained. For the second order Σ∆ scheme with linear quantization rule, error estimates of order 1/N 2

can be achieved in certain circumstances. Such estimates rely critically on being able to construct sufficiently
small invariant sets for the scheme. New experimental results indicate a connection between the orbits of state
variables in Σ∆ schemes and the structure of constant input invariant sets.

Keywords: Finite frames, Sigma-Delta (Σ∆) quantization, stability, quantization error.

1. INTRODUCTION

Given a signal x of interest, a first step towards a digital representation is to obtain an atomic decomposition for
x. One expands x with respect to a set {en}n∈Λ of vectors to obtain the discrete representation

x =
∑

n∈Λ

cnen, (1)

where the cn are real or complex numbers, and the index set Λ is finite or countably infinite. Such an expansion
is redundant if the choice of cn in (1) is not unique. The discrete decomposition (1) is not digital since the
coefficients cn may take on a continuum of values. Quantization is the intrinsically lossy and nonlinear process
of reducing the continuous range of the coefficients to a finite set. Given a finite set A of numbers, called a
quantization alphabet, quantization approximates the decomposition (1) by a digital decomposition

x̃ =
∑

n∈Λ

qnen,

where qn ∈ A.

There are two thematically different approaches to practical quantization, fine quantization and coarse quan-
tization. In fine quantization one approximates the individual coefficients cn in (1) with high precision. In
coarse quantization, one approximates each cn with less precision, for example by imposing cn ∈ {−1, 1} in the
(extreme) 1-bit case, but compensates for this by exploiting the redundancy present in (1).

We shall discuss the mathematical theory of quantization for the particular class of atomic decompositions
given by finite frames for R

d, with one area of focus on rigorous approximation error estimates and another
on stability theorems. Many existing methods require nonrigorous statistical assumptions, and still give only
relatively poor approximations. Our results greatly improve on this.
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2. FINITE FRAMES

A set {en}N
n=1 ⊆ R

d of vectors is a finite frame for R
d with frame constants 0 < A ≤ B < ∞ if

∀x ∈ R
d, A||x||2 ≤

N∑

n=1

|〈x, en〉|2 ≤ B||x||2. (2)

Here || · || is the d-dimensional Euclidean norm. A frame is unit norm if each ||en|| = 1, and it is tight if the
frame constants are equal, i.e., A = B. Although frames can be defined in separable Hilbert spaces we shall only
consider finite frames for R

d here.

If {en}N
n=1 is frame for R

d then there exists a dual frame {ẽn}N
n=1 for R

d which gives the canonical frame
decompositions

∀x ∈ R
d, x =

N∑

n=1

〈x, en〉ẽn =

N∑

n=1

〈x, ẽn〉en. (3)

Moreover, if {en}N
n=1 is a tight frame with frame constant A, then the dual frame is { 1

Aen}N
n=1, and the frame

expansions in (3) give

∀x ∈ R
d, x =

1

A

N∑

n=1

xnen, xn = 〈x, en〉. (4)

For unit norm tight frames for R
d, the frame constant A is solely determined by the size N of the frame and the

dimension d. In this case, one can show1–4 that A = N/d, which directly reflects the frame’s redundancy.

It is straightforward to construct generic finite frames; in fact, any finite set of vectors is a frame for its
span. However, useful frames demand a high degree of geometric structure. This is analogous to the L2(Rd)
setting where structured systems such as wavelet and Gabor frames have set the bar for implementability and
performance. Therefore, the problem of building structured finite frames has emerged as an important and
extremely active area.

There are many constructions of unit norm tight finite frames. A simple example in R
2 is given by

FN = {(cos(2πn/N), sin(2πn/N))}N
n=1, (5)

for any fixed N > 2. This corresponds to the Nth roots of unity. Vertices of the platonic solids1 provide
examples in R

3. The classical examples in R
d are harmonic frames.2, 4 Harmonic frames are built using discrete

Fourier matrices, and can be made arbitrarily redundant. More advanced examples include Grassmanian frames5

for wireless communication and multiple description coding, geometrically uniform (GU) frames,6 ellipsoidal
frames,7 and unions of orthonormal bases for code division multiple access (CDMA) systems.8 There are frames
which especially provide robustness with respect to erasures,9,10 there are approaches which are rooted in group
theory,11 and others which are closely linked with sphere and line packing problems.5

3. QUANTIZATION OF FINITE FRAME EXPANSIONS

3.1. The quantization problem

Let us begin by stating the general quantization problem for unit norm tight finite frame expansions. If K is a
positive integer and δ > 0, then the 2K level midrise quantization alphabet with step size δ is the finite set of
numbers

Aδ
K = {−(K − 1/2)δ,−(K − 3/2)δ, · · · ,−δ/2, δ/2, · · · , (K − 1/2)δ}.

Given x ∈ R
d, a unit norm tight finite frame {en}N

n=1for R
d, and the corresponding frame expansion (4), design

low complexity algorithms to find a quantized frame expansion

x̃ =
d

N

N∑

n=1

qnen, qn ∈ Aδ
K (6)

such that the approximation error ||x − x̃|| is small.

The reconstruction (6) from the quantized coefficients qn is called linear reconstruction.



3.2. Background on quantization of finite frames

The scalar quantizer is a basic component of quantization algorithms for finite frame expansions. Given the
quantization alphabet Aδ

K , the associated scalar quantizer is the function Q : R → Aδ
K defined by

Q(x) = arg mina∈Aδ

K

|x − a|. (7)

In other words, Q quantizes real numbers by rounding them to the nearest element of the quantization alphabet.

The classical and most common approach to quantizing the finite frame expansion (3) is first to quantize
each frame coefficient 〈x, en〉 by Q(〈x, en〉). This step, often referred to as pulse code modulation (PCM), is then
followed by linear reconstruction

x̃ =
d

N

N∑

n=1

qnen, where qn = Q(〈x, en〉). (8)

This approach, while simple, gives highly non-optimal estimates for the approximation error ||x − x̃|| when
the frame has even moderate amounts of redundancy. The basic deterministic estimate for this approach is
||x − x̃|| ≤ dδ/2, and it does not utilize any of the frame’s redundancy. Practical analysis usually makes
nonrigorous probabilistic assumptions on quantization noise2 and leads to the mean square error (MSE) estimate

MSE = E(||x − x̃||2) =
d2δ2

N
.

Here, E(·) denotes expectation with respect to the associated probabilistic assumptions.2

Other existing approaches to finite frame quantization improve the quantization error by using more advanced
reconstruction strategies. Given the frame expansion (3), such schemes still encode the frame coefficients using
PCM, but do not require the linear reconstruction rule (8). Consistent reconstruction is one especially important
class of nonlinear reconstruction which can be achieved in different ways.2, 12 For example, projection onto
convex sets (POCS) and linear programming were used to this end.2, 13, 14 PCM with consistent reconstruction2

outperforms PCM with linear reconstruction and achieves an improved MSE of order 1/N 2. A drawback of
consistent reconstruction is the higher computational complexity associated with it.

A differently motivated approach15, 16 proceeds by producing equivalent vector quantizers (EVQ) with peri-
odic structure. While this approach allows for simple reconstruction, it is primarily suited for low to moderate
dimensions, and for frames with low redundancy. There is also a different method based on predictive quantiza-
tion.17 This noise shaping approach is related to our work, and was shown to be effective for subband coding
applications.

3.3. First order Σ∆ quantization

In18, 19 the authors investigated the use of first order Sigma-Delta (Σ∆) schemes for quantizing finite frame
expansions. In contrast to PCM, Σ∆ schemes are iterative algorithms and thus require one to specify an order
in which frame coefficients are quantized. Let p be a permutation of {1, · · · , N} which denotes the quantization
ordering, let Q be the scalar quantizer associated to the alphabet Aδ

K , and let {xn}N
n=1 be a sequence of frame

coefficients corresponding to some x ∈ R
d and a frame F = {en}N

n=1.

Definition 3.1. The first order Σ∆ scheme with ordering p and alphabet Aδ
K is defined by the iteration:

un = un−1 + xp(n) − qn, (9)

qn = Q(un−1 + xp(n)),

for n = 1, · · · , N , where u0 = 0.

The un are internal state variables of the scheme, and the qn are the quantized coefficients from which one
reconstructs x̃ by the linear reconstruction

x̃ =
d

N

N∑

n=1

qnep(n).



The choice of the permutation p should depend solely on the frame being used, and not on the specific signal
x being quantized. Roughly speaking, a good choice of quantization ordering p allows one to use the redundancy
of the frame, i.e., interdependencies between the frame vectors, to iteratively compensate for the errors incurred
when each frame coefficient xn is replaced by some qn ∈ Aδ

K . We define the notion of frame variation to quantify
the role of the frame and permutation p in the Σ∆ algorithm.

Definition 3.2. Let F = {en}N
n=1 be a unit-norm tight frame for R

d and let p be a permutation of {1, 2, · · · , N}.
The frame variation of F with respect to p is defined by

σ(F, p) =

N−1∑

n=1

||ep(n) − ep(n+1)||.

The basic error estimate for first order Σ∆ quantization of finite frame expansions may now be stated as
follows.18, 19

Theorem 3.3. Consider the first order Σ∆ scheme with ordering p and alphabet Aδ
K . Let F = {en}N

n=1 be a
unit-norm tight frame for R

d and let x ∈ R
d satisfy ||x|| < (K − 1/2)δ. If x̃ is the quantized output of the first

order Σ∆ scheme then

||x − x̃|| ≤ δd

2N
(σ(F, p) + 1). (10)

For certain infinite families of frames and associated permutations it is possible to obtain uniform bounds on
the frame variation independent of the frame size. For example, if pN is the identity permutation of {1, · · · , N}
and if FN is the Nth roots of unity frame, as in (5), then18

σ(FN , p) ≤ 2π.

Likewise, we have shown18 that for a fixed dimension d the harmonic frames Hd
N are an infinite family of

frames for which the frame variation has a relatively small uniform bound indepedent of N for simple choices
of permutations pN . For such families of frames, (10) implies that the approximation error ||x − x̃|| of the Σ∆
scheme (9) is at most of order 1/N .

The Σ∆ error estimates can be improved beyond (10). We have proven18 that under certain technical
assumptions the Σ∆ scheme satisfies the refined bound

||x − x̃|| ≤ Cx
logN

N5/4
, (11)

but with the constant Cx depending on x.

The improved estimate (11) illustrates some of the difficulties in the finite frame setting, since results for

Σ∆ quantization of bandlimited signals20 lead one to expect error of order (logN)/N
4

3 . Refined estimates in
the bandlimited setting are valid away from points where the signal has a vanishing derivative. The non-local
nature of estimates in the finite frame setting causes technical problems when the sequence of frame coefficients
behaves like a function with points of vanishing derivative, as N → ∞. The specific difficulties arise when we
use stationary phase methods to estimate certain exponential sums associated with the Σ∆ scheme.18

Example 3.4. Let FN be the N th roots of unity frame for R
2, as in (5), and let x = (.157, 1/

√
π). Let x̃N be

the quantized output of the first order Σ∆ algorithm with alphabet A2
1 = {−1, 1}, when the N th roots of unity

frame is used. Figure 1 shows a log-log plot of the approximation error ||x − x̃N || as a function of N .

3.4. Second order Σ∆ quantization

Although (10) gives an error estimate whose utilization of redundancy is of order 1/N , it is natural to seek even
better utilization of the frame redundancy. Higher order schemes make this possible. Work on using higher order
Σ∆ schemes to quantize finite frame expansions was initiated in.21
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Figure 1. The frame coefficients of x = (.157, 1/
√

π) with respect to the Nth roots of unity tight frame are quantized
using the first order Σ∆ scheme (9) with quantization alphabet A2

1 = {−1, 1}. The figure shows a log-log plot of the
approximation error ||x − ex|| as a function of the frame size N , compared with 5/N and 5/N 1.25 .

Let {xn}N
n=1 be a sequence of frame coefficients and let p be a permutation of {1, 2, · · · , N}. We shall consider

the particular 1-bit second order Σ∆ scheme21–23 defined by the iteration:

un = un−1 + xp(n) − qn,

vn = vn−1 + un, (12)

qn =
δ

2
sign(un−1 +

vn−1

2
),

for n = 1, · · · , N , where u0 = v0 = 0.

The following theorem21 is a representative error estimate for the second order Σ∆ scheme (12) in the setting
of finite frames.

Theorem 3.5. Let FN = {en}N
n=1 be the N th roots of unity frame for R

2, and let p be the identity permutation
of {1, 2, · · · , N}. Suppose that x ∈ R

2, ||x|| ≤ δ
2α, where 0 < α is a sufficiently small fixed constant. Let {qn}N

n=1

be the quantized bits produced by (12), and suppose that the input to the scheme is given by the frame coefficients
{xp(n)}N

n=1 of x. Then if N is even, we have

‖x − x̃‖ ≤ C
dδ

N2
, (13)

and if N is odd, we have

C1
dδ

N
≤ ||x − x̃|| ≤ C2

dδ

N
. (14)

One surprising point of Theorem 3.5 is that Σ∆ quantization behaves quite differently when used to quantize
finite frame expansions than in the original setting of quantizing sampling expansions. In particular, when
a stable second order Σ∆ scheme is used to quantize sampling expansions one has the approximation error
estimate24

||f − f̃ ||L∞(R) ≤
C

λ2
,

where λ is the sampling rate. Theorem 3.5 shows that analagous approximation error estimates are generally
not true in the setting of finite frames. In particular, for N odd the approximation error is at best of order 1/N
as N tends to infinity, see (14). A key issue is that the finite nature of the problem for finite frame expansions
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Figure 2. The frame coefficients of x = (1/
√

37, 1/100) with respect to the Nth roots of unity tight frame are quantized
using the second order Σ∆ scheme (12). The figure shows a log-log plot of the approximation error ||x− ex|| as a function
of the frame size N , compared with 5/N and 5/N 2.

gives rise to non-zero boundary terms in certain situations, and that these boundary terms may negatively affect
error estimates.

An important component in the proof of Theorem 3.5 is to prove that the scheme (12) is stable. In other
words, one must show that there exists 0 < α and a bounded set S ⊂ R

2 such

∀n = 1, . . . , N, |xp(n)| ≤ α =⇒ (un, vn) ∈ S.

Stability can be studied by rewriting (12) in the form of the following piecewise affine map:

(
un

vn

)
= Txn

(un−1, vn−1) ≡
(

1 0
1 1

) (
un−1

vn−1

)
+

(
xn − sign(un−1 + .5vn−1)
xn − sign(un−1 + .5vn−1)

)
.

The following theorem21 shows that the second order Σ∆ scheme (12) is stable.

Theorem 3.6. There exists 0 < α and S ⊂ (−2, 2) × R such that if |xn| ≤ α for all n, and if un, vn are the
state variables of the second order linear Σ∆ scheme then

∀n, (un, vn) ∈ S.

In fact,
|x| < α =⇒ Tx(S) ⊆ S.

Although the scheme (12) was previously known to be stable,22, 23 Theorem 3.6 contains an important
improvement because it shows that the invariant set S can be chosen to be sufficiently small, i.e., bounded inside
(−2, 2) × R. The proof of Theorem 3.5 depends heavily on this fact.

Example 3.7. Let FN be the N th roots of unity frame for R
2, as in (5), and let x = (1/

√
37, .01). Let x̃N be

the quantized output of second order Σ∆ scheme (12) when the N th roots of unity frame is used. Figure 2 shows
a log-log plot of the approximation error ||x − x̃N || as a function of the frame size N .

Example 3.8. Theorem 3.6 shows that for any sequence of sufficiently small input coefficients, xn, the state
variables of the second order Σ∆ scheme (12) stay bounded inside the set S from Theorem 3.6. As such, the
stability theorem assumes no structure on the xn, merely smallness. However, in our setting the coefficients have



Figure 3. The orbit of the state variables (un, vn) in (12) using x = (1/3π, 1/100) and frame coefficients xn given by the
1,000,000th roots of unity tight frame.

Figure 4. The union of the invariant sets Γy for −||x|| ≤ y ≤ ||x||, where x is as in Example 3.8.

the additional property of being frame coefficients xn = 〈x, en〉. In practice, this additional structure can lead to
invariant sets which are smaller than those constructed by Theorem 3.6.

For example, Figure 3 shows the orbit of the state variables (un, vn) in (12), using x = (1/3π, 1/100) and the
frame coefficients xn determined by the 1,000,000th roots of unity tight frame for R

2. For perspective, the orbit
is shown inside of one of the invariant sets obtained in22 (not the smaller set21 of Theorem 3.6). Note that the
orbit appears to be contained in a set whose width is noticeably smaller than (−2, 2) × R.

It has been shown25 that for each fixed x there exists an invariant set Γx so that Tx(Γx) = Γx and such that
Γx tiles R

2 by 2Z × 2Z. A proof of this phenomenon for general, stable, arbitrary order Σ∆ rules was recently
obtained in.26 In Figure 4 we plot the union of all the constant input invariant sets Γy for −||x|| ≤ y ≤ ||x||,
where x = (1/3π, 1/100) is as above. Observe that Figures 3 and 4 appear to be very similar.

Example 3.8 leads us pose the following problem.

Problem 3.9. Mathematically explain the observations in Example 3.8. That is, prove a link between 1) orbits
of the state variables (un, vn) in (12) for “nicely” varying input sequences xn, and 2) unions of constant invariant
sets Γy for (12).
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