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Underdetermined Anechoic Blind Source Separation
via ℓq-Basis-Pursuit withq < 1

Rayan Saab,̈Ozgür Yılmaz, Martin J. McKeown, Rafeef Abugharbieh

Abstract—In this paper, we address the problem of under-
determined Blind Source Separation (BSS) of anechoic speech
mixtures. We propose a demixing algorithm that exploits the
sparsity of certain time-frequency expansions of speech signals.
Our algorithm merges ℓq-basis-pursuit with ideas based on the
degenerate unmixing estimation technique (DUET) [1]. There are
two main novel components to our approach: (1) Our algorithm
makes use ofall available mixtures in the anechoic scenario
where both attenuations and arrival delays between sensorsare
considered, without imposing any structure on the microphone
positions. (2) We illustrate experimentally that the separation
performance is improved when one useslq-basis-pursuit with
q < 1 compared to the q = 1 case. Moreover, we provide
a probabilistic interpretation of the proposed algorithm that
explains why a choice of0.1 ≤ q ≤ 0.4 is appropriate in the case
of speech. Experimental results on both simulated and real data
demonstrate significant gains in separation performance when
compared to other state-of-the-art BSS algorithms reported in
the literature. A preliminary version of this work can be found
in [2].

Index Terms—blind source separation, BSS, sparse signal
representation, DUET, time-frequency representations, Gabor
expansions, underdetermined signal un-mixing, over-complete
representations, basis pursuit

I. I NTRODUCTION

Blind source separation (BSS) is the term used to describe
the process of extracting some underlying original source
signals from a number of observable mixture signals, where
the mixing model is either unknown or the knowledge about
the mixing process is limited. Numerous methods for solv-
ing the BSS problem in various contexts and under various
assumptions and conditions were proposed in the literature.
Early approaches concentrated on tackling even-determined
and over-determined demixing. Independent component anal-
ysis (ICA), first presented by Jutten and Herault [3] [4], and
later developed in an information maximization framework
by Bell and Sejnowski [5] pioneered those early approaches.
Other early papers on source separation include, for example,
[6] and [7]. For an extensive overview of ICA see [8].

ICA extractsn sources fromn recorded mixtures under
the crucial assumption that the underlying source signals are
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independent. Lewicki et al. [9] and Lee et al. [10] generalized
this technique to the underdetermined instantaneous BSS case,
where the number of available recorded mixtures are less than
the underlying sources, by proposing a method for learning
the over-complete basis using a probabilistic model of the
observed data. This technique, however, is still constrained
to the instantaneous mixing model of time-domain signals.
Other methods were proposed that cater to anechoic demixing,
where both signal attenuations and arrival delays between
sensors are considered. Anemuller [11] used a complex ICA
technique to extract an equal number of sources from mixtures
in various separate spectral bands to solve the BSS problem for
electro-encephalographic (EEG) data. This approach, however,
is complicated by the need to either identify whether any
sources extracted from different spectral bands correspond
to one another and therefore solve a scaling and permuta-
tion problem, or to assume that the underlying sources are
spectrally disjoint, i.e. confined to localized spectral bands.
Other BSS approaches based on source sparsity assumptions
in some transform domain were recently proposed ( [12],
[13], [14]) and have come to be known as ’sparse methods’.
The assumption of these methods is that the sources have a
sparse representation in some given basis. These approaches
typically employ an instantaneous mixing model to solve the
BSS problem in the underdetermined case by adoptingl1-
minimization approaches that maximize sparsity. Vielva etal.
[15] considered the case of underdetermined instantaneous
BSS where source densities are parameterized by a sparsity
factor, and presented a maximum a posteriori method for
separation, and [16] focused on the estimation of the mixing
matrix for underdetermined BSS under the assumption of
sparsity. Yılmaz and Rickard [1], see also [17], developed
a practical algorithm for underdetermined anechoic mixing
scenarios called the degenerate unmixing estimation technique
(DUET), which exploits sparsity in the short-time Fourier
transform (STFT) domain, and uses masking to extract sev-
eral sources from two mixtures. This approach is, however,
restricted to using two mixtures only. Bofill [18] deals with
the anechoic underdetermined scenario as well and estimates
the attenuation coefficients by using a scatter plot technique
and the delays by maximizing a kernel function. To extract the
sources, [18] solves a complex constrainedl1-minimization
problem via second order cone programming. This algorithm,
like DUET, uses only two of the available mixtures. More
recently, Melia and Rickard [19] presented a technique which
extends DUET and is able to utilize multiple microphone
readings obtained from a uniform linear array of sensors. This
allows the use of all available mixtures at the expense of
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imposing structure on the sensor array.
A comprehensive survey of sparse and non-sparse methods

in source separation can be found in [20].
In this paper, we employ a two-step demixing approach for

BSS problems for the general case of anechoic mixing in the
underdetermined case. Such a two step approach was adopted
in, e.g., [12], [1] and [14] and formalized by Theis and Lang
[21]. The two step approach is comprised of blind recovery
of the mixing model followed by recovery of the sources. The
novel aspects of our approach can be summarized as follows:

• We generate feature vectors that incorporate both atten-
uation and delay parameters for a large, in principle
arbitrary, number of mixtures in the underdetermined BSS
case. Thus, unlike DUET, our algorithm makes use of all
available mixtures, both in the mixing model recovery
and sources extraction stages. Moreover, unlike [19], we
do not need to impose a pre-determined structure on the
sensor array.

• We compare the performance of source extraction al-
gorithms based onℓq minimization andℓq-basis-pursuit
for values0 ≤ q ≤ 1 in STFT domain, and illustrate
that the best separation performance is obtained for
0.1 ≤ q ≤ 0.4.

• Generalizing the approach of [22] to the complex-valued
case, we provide an interpretation based on the empirical
probability distribution of speech in the STFT domain,
which justifies the use ofℓq minimization with 0.1 ≤
q ≤ 0.4.

• Clearlyℓq-basis-pursuit, where0 ≤ q < 1 is a combinato-
rial problem. On the other hand, the size of the problems
in BSS of speech signals is typically small. In the
experiments we conducted, we observed that solvingℓq-
basis-pursuit combinatorially and solvingℓ1-basis-pursuit
via convex programming spend comparable computation
time. Thus, our approach is computationally tractable.

II. M IXING MODEL

In the anechoic mixing model, one hasn sources
s1(t), . . . , sn(t) andm mixturesx1(t), . . . , xm(t) such that

xi(t) =

n
∑

j=1

aijsj(t − δij), i = 1, 2, . . . , m (1)

whereaij andδij are scalar attenuation coefficients and time
delays, respectively, associated with the path from thejth

source to theith receiver. Without loss of generality one can
setδ1j = 0 and scale the source functionssj such that

m
∑

i=1

|aij |2 = 1 (2)

for j = 1, . . . , n. Throughout the paper, we assumen > m, i.e.
the number of the sources to be separated exceeds the number
of available mixtures, and thus the mixing isunderdetermined.

The short time Fourier transform (STFT) of a functions
with respect to a fixedwindow functionW is defined as:

FW [s](τ, ω) :=
1√
2π

∫ ∞

−∞

W (t − τ)sj(t)e
−iωtdt (3)

which will henceforth be referred to aŝs(τ, ω). Practically,

FW [sj(· − δ)](τ, ω) = exp(−iωδ)FW [sj ](τ − δ, ω)

≈ exp(−iωδ)FW [sj ](τ, ω). (4)

is a realistic assumption as long as the window functionW
is chosen appropriately. For a detailed discussion on this,see
[23].

Now given x1, x2, . . . , xm, the problem to be solved is
basically one of estimatings1, . . . , sn in the general case
where n ≥ m and n is unknown . Taking the STFT of
x1,. . . ,xm with an appropriate window functionW and using
(4), the mixing model (1) reduces to

x̂(τ, ω) = A(ω)ŝ(τ, ω), (5)

where
x̂ = [x̂1 . . . x̂m]T , ŝ = [ŝ1 . . . ŝn]T , (6)

and

A(ω) =











a11 . . . a1n

a21e
−iωδ21 . . . a2ne−iωδ2n

...
...

...
am1e

−iωδm1 . . . amne−iωδmn











. (7)

Note that via (2) the column vectors ofA have unit norms.
The equivalent discrete counterpart is henceforth used to

replace the continuous STFT, i.e. the samples of the STFT of
s are evaluated on a lattice in the time-frequency plane given
by

ŝj [k, l] = ŝj(kτ0, lω0) (8)

where τ0 and ω0 are the time-frequency lattice parameters.
The equivalence is nontrivial and only true if the family
{eilω0tW (t − kτ0) : k, l ∈ Z} constitutes aGabor frame
for the signal space of interest. For this, one needs an appro-
priately chosen window functionW with sufficiently smallτ0

andω0. Extensive discussions on Gabor frames can be found,
e.g., in [24], [25]. Note that, in the discrete framework, the
mixing model can be written as

x̂[k, l] = A(lω0)ŝ[k, l]. (9)

with x̂, ŝ as in (6), andA as in (7). ŝ[k, l] is the Gabor or
STFT coefficient ofs at the time-frequency (T-F) point[k, l].

In this paper, we shall use the STFT as the preferred T-F rep-
resentation. Some of the reasons for this choice are as follows:
(i) STFT is linear (unlike, e.g., Wigner-Ville disributions), (ii)
STFT converts delays in the time domain to phase shifts in
the T-F domain (unlike, e.g., wavelet transforms), (iii) STFT is
easy to implement and invert, and (iv) STFT of speech signals
are sparse (more so then wavelet transforms [26]), as we shall
discuss in section III-A. Note we need the properties (i) and(ii)
to write (1) as a matrix equation. Property (ii) is also critical
for our blind mixing model recovery algorithm, presented
in Section III. Property (iii) is important for computational
efficiency and speed. Finally, property (iv) facilitates both the
blind mixing model recovery algorithm of Section III and the
source extraction algorithm of Section IV.
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III. B LIND M IXING MODEL RECOVERY

A. STFT Sparsity in Speech Signals

In order to estimate the mixing parameters of our model,
we shall utilize the observation that time-frequency representa-
tions of speech signals are sparse, and thus only a few Gabor
coefficients capture most of the signal power, cf., [1], [20],
[27]. This has been empirically verified in [1]. Moreover [26]
investigates sparsity of speech in the STFT domain as well as
in the wavelet domain, with the conclusion that the STFT pro-
vides slightly higher sparsity with the proper window choice.
Nevertheless, in this paper we present additional experiments
to further demonstrate sparsity of speech in the STFT domain.

Fifty speech sources from the TIMIT data base, each
consisting of 50,000 samples sampled at 16 kHz are used for
this experiment. The speech signals are transformed into the
STFT domain using Hamming windows of three different sizes
(32 ms, 64 ms, and 128 ms), with an overlap factor of 50%.
Figure 1 shows the average cumulative power of the sorted
STFT coefficients along with the average cumulative power
of both the time domain sources and their Fourier (DFT)
coefficients. Table I shows the percentage of coefficients
needed to represent90%, 95% and 98% of the total signal
power using the STFT (with varying window sizes), the time
domain signal, and the Fourier transformed signals. The results
indicate that the STFT with a 64ms window-size demonstrates
superior performance in terms of sparsity, capturing 98% ofthe
total signal power with ca 9% of the coefficients only. Figures
2a and 2b further illustrate the sparsity of speech signals in the
STFT domain by showing the normalized histograms of the
sample magnitudes as well as the magnitudes of the Gabor
coefficients, respectively. Figure 2 again illustrates that the
STFT transform domain exhibits a much sparser speech signal
representation, where the magnitudes of most of the STFT
coefficients are very close to zero.

TABLE I
PERCENTAGE OFCOEFFICIENTSNEEDED TO REPRESENTVARIOUS

PERCENTAGES OF THETOTAL SIGNAL POWER

Percentage Percentage of Points Needed
of the STFT: STFT: STFT: Fourier Time

Total Power 32ms 64ms 128ms Domain Domain

90.000 2.6781 2.2656 2.6999 16.954 14.098
95.000 5.0167 4.5710 5.5212 24.604 23.756
98.000 9.4100 9.1439 11.032 34.560 38.970

B. Feature Vector Extraction and Mixing Parameter Estima-
tion

Motivated by the sparsity of the STFT coefficients of speech
signals, we shall represent our mixturesx1, . . . , xm in the T-
F domain via (9), and propose an algorithm to estimate the
matrix A(lω0) for every l. To that end, we first construct a
2m−1 dimensional feature space where the firstm coordinates
correspond to the normalized attenuations of the mixtures
x1, . . . , xm while the remainingm − 1 dimensions are the
delays ofx2, . . . , xm relative tox1. More precisely, let̂x be
as in (6). First, at each point[k, l] on the T-F lattice, we define
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Fig. 1. Average cumulative power of the time domain signals,frequency
(Fourier) domain signals and STFT of speech for window sizesof 32ms,
64ms and 128ms. The STFT with 32ms and 64ms window length exhibit
a sparser representation of the data (more power is concentrated in fewer
coefficients) compared to the original time domain representation and the
frequency domain representation.

the normalized attenuation vector

x̂at[k, l] :=
1

‖x̂[k, l]‖
[

|x̂1| . . . |x̂m|
]

[k, l]. (10)

Here‖ · ‖ denotes the Euclidean norm. Note that the resulting
x̂at[k, l] correspond to points on the unit sphere ofRm. N ext,
we calculate the complex phases−lω0∆̃i1[k, l] of mixtures
x̂i, j = 2, . . . , m relative to the mixturêx1 at each T-F point
[k, l], as in [1]. This yields

∆̃i1[k, l] := − 1

lω0
∠

x̂i[k, l]

x̂1[k, l]
. (11)

Finally, we append them-dimensional feature vector̂xat,
defined as in (10), to obtain the2m − 1 dimensional feature
vectorF[k, l] given by

F[k, l]

:=
h ˛

˛

˛

x̂1[k,l]
‖x̂[k,l]‖

˛

˛

˛
· · ·

˛

˛

˛

x̂m[k,l]
‖x̂[k,l]‖

˛

˛

˛
· · · ∆̃21[k, l] · · · ∆̃m1[k, l]

i

.

(12)

Note that if only one source, saysJ , is active at a certain
T-F point [k, l], i.e., ŝJ [k, l] 6= 0 and ŝj [k, l] = 0 for j 6= J ,
the feature vector will then reduce to

F[k, l] = FJ

:=
ˆ

a1J · · · amJ · · · δ2J · · · δmJ

˜

(13)

where we used the fact that the columns of the mixing matrix
A are normalized. Furthermore, we assume that the attenuation
coefficients arepositive real numbers. In this caseFJ does
not depend on[k, l], rather it is completely determined by the
mixing parameters in theJ th column of the mixing matrix,
given in (7). Moreover, the converse is also true, i.e., given
FJ , one can extract the mixing parameters. Indeed, the first
m coordinates ofFJ yield a1J , . . . , amJ . On the other hand,
δ1J = 0 and the rest of the delay parametersδ2J , . . . , δmJ are
directly given by the lastm−1 components ofFJ . Therefore,
if the sources have disjoint T-F representations, i.e. if atany
T-F point only one source has a non-zero STFT coefficient
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Fig. 2. Normalized histograms of (a) time-domain sample magnitudes of 50 speech signals, and (b) STFT coefficient magnitudes of the same 50 sources
(with a window length of 64ms and 50% overlap). Note that the STFT coefficients provide a significantly more sparse representation. In both (a) and (b), the
values have been normalized to the range [0 1]

at the most, then the feature vectorF[k, l], corresponding to
any T-F point[k, l] at which at least one source is active, will
be in the set{F1, . . . ,Fn}. Once this set is obtained, one can
compute the mixing parameters using (13) as described above.

In practice, it is not realistic to expect that the sources
have disjoint T-F representations. However, as discussed in
Section III-A as well as in [1], speech signals have sparse
Gabor expansions. Therefore, it is highly likely that there
will be an abundance of T-F points at which one source
is dominant. In other words, there will be several points in
the T-F plane where one source has a “high contribution”,
i.e., a relatively large STFT coefficient, while other sources
have near-zero contributions. (See Assumption 4 of Section
III-C for a more detailed discussion about this observation.)
Thus, in the feature space, pointsF[k, l] will tend to cluster
aroundFj , j = 1, . . . , n. Based on this, after constructing a
feature vectorF[k, l] at every T-F point where the mixtures
|x̂j | are not smaller than a threshold, we perform K-means
clustering to obtain the cluster centers. Other authors also
use K-means [28], as well as various different techniques
for clustering-based methods in various BSS problems. For
example [29] uses a Fuzzy C-means approach, while [28]
detects attenuations by locating horizontal lines using an
elaborate technique based on a relaxed sparsity assumption. At
this point, it is important to note that we donot claim that K-
means is an optimal method for detecting the attenuations and
delays. We simply propose K-means as a generic method that
can be used to estimate the mixing parameters as the proposed
feature vectors tend to cluster and the cluster centers identify
the mixing parameters.

The cluster centers, obtained as discussed above, yield esti-
matesãij and δ̃ij of the mixing parametersaij andδij which
are computed again using (13). At this point we assumed that
n, the number of sources, isknowna priori. This issue will be
revisited in Assumption 3 of Section III-C where the effects
of incorrect estimation of the number of sources is further

discussed.
The proposedParameter Estimation Algorithm can be

summarized as follows:
1) Compute the mixture vector̂x[k, l], as in (6) at every

T-F point [k, l].
2) At every T-F point [k, l], compute the corresponding

feature vectorF[k, l], as in (12).
3) Perform some clustering algorithm (e.g. K-means) to

find then cluster centers in the feature space. The cluster
centers will yield preliminary estimates̄aij and δ̄ij of
the mixing parametersaij andδij , respectively, via (13).

4) Normalize the attenuation coefficients to obtain thefinal
attenuation parameter estimatesãij , i.e.

ãij := āij/(
m

∑

i=1

ā2
ij)

1/2.

The final delay parameter estimatesare δ̃ij := δ̄ij .
Note that the algorithm proposed above simply extends clus-
tering based approaches for the estimation of the mixing
parameters to accommodate them×n anechoic mixing model.

C. Method Assumptions and Limitations

The parameter estimation algorithm described above will
yield a meaningful estimate of the mixing parameters only if
certain assumptions hold.

Assumption 1: Due to the periodicity of the complex
exponential and to avoid phase indeterminacy, we assume that

|ωδij | < π (14)

for all i, j and everyω. This is equivalent to assuming that

|δmax| < π/ωmax (15)

whereδmax is the largest delay in the system andωmax, is
the maximum frequency component present in the sources.
If ωmax = ωs/2, where ωs is the sampling frequency,
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then the algorithm will yield accurate estimates of the delay
parametersδij as long as each of these delays is not larger
than one sample. This entails that the spacing between any
two microphones should be limited tod < 2πc/ωs, wherec
is the speed of sound, see [1]. Note that one does not need to
know the actual spacing between the microphones- only that
it is within the bound.

Assumption 2:We assume that all the attenuation parame-
tersaij are positive. This is again due to the problem of phase
indeterminacy. More precisely, the equality

ae−iωδ = −ae−i(ωδ+(2k+1)π) = −ae−iω(δ+(2k+1)π/ω) (16)

for everyk ∈ Z leads totwo possible attenuation coefficients
(and infinitely many delay parameters corresponding to each
attenuation coefficient) for every entry in the feature vectors
given by (13). To avoid this problem, we assume that delays
are limited to one sample at most, i.e.,Assumption 1 holds, and
that attenuation parameters are positive. Note that Assumption
2 holds for anechoic audio mixtures.

Assumption 3:We assume that the number of sourcesn is
known prior to running the clustering algorithm. In practice,
this is rarely the case. However, our experiments indicate that
the proposed algorithm is robust with respect to changes in
the number of assumed sources, particularly if the number of
sources isoverestimated. Figure 3 shows a three dimensional
view of the feature vectors obtained using the correct (real)
parameter values as well as those obtained using the extracted
cluster centers by applying the described parameter estimation
algorithm onm = 3 simulated mixtures ofn = 5 sources.
In this example, the “user” overestimated the number of
sources and the algorithm thus extractedn̂ = 6 sources.
However, it is clear that five of the extracted cluster centers
can be used to estimate the correct mixing parameters. The
sixth center, on the other hand, produces a “bogus” column
in the mixing matrix. Because of the sparsity of the STFT
expansions of speech signals, according to our experiments
(see section VI), this does not seem to cause any serious
problems with demixing. For an extensive study of the effect
of “overestimating” the number of sources on the separation
performance see [14].

Assumption 4:We assume that

(4.1) there is an abundance of T-F points at which only
one source is active, i.e., only one source has a large
coefficient, and

(4.2) at any T-F point, no more thanm (the number of
mixtures) sources are active.

A similar, yet stronger, assumption was introduced and thor-
oughly investigated in [1]. The so-called W-disjoint orthogo-
nality of [1] is equivalent to the (4.1) and a stronger version
of (4.2) obtained by replacingm above with 1. In [1], the
authors provide mathematical measures that can be used to
quantify the extent to which the W-disjoint orthogonality
assumption is satisfied by speech signals, and present results
from experiments conducted on a large number of mixtures.
They conclude, for example, that speech signals are96.3%
“disjoint” in mixtures of 2 sources, and64% “disjoint” in
mixtures of 10 sources. These observations in [1] show that

our assumptions (4.1) and (4.2) are satisfied for speech signals
to an even greater extent as (4.1) and (4.2) are weaker versions
of the W-disjoint orthogonality assumption.

Note that in Section IV-D, we investigate the same BSS
problem in a probabilistic setting. In this case, we assume
that at each T-F point, the magnitudes of the STFT of speech
signals areindependent, identically distributed (i.i.d.), with
a distribution that isconcentrated at the origin. Roughly
speaking, such an assumption is the probabilistic version of
(4.1) and (4.2) in that it ensures that (4.1) and (4.2) are satisfied
with high probability.

At this point we note that there are two different “sparsity”
notions that are of concern:

1) Sparsity of a particular source signal in the transform
domain.

2) The number of sources simultaneously active at a given
T-F point.

Both in the deterministic and the probabilistic settings, we
use the first notion only as a means to arrive at the second;
the methods proposed in this paper are all arrived at via the
second sparsity notion. In the deterministic setting, sparsity of
each individual source is used only heuristically to explain
why assumptions (4.1) and (4.2) are observed to hold. In
the probabilistic setting, discussed in IV-D, both notionsare
interconnected under the assumption that the sources are i.i.d.
in the T-F domain.

Fig. 3. 3-D view of real (crosses) and estimated (circles) parameters as
recovered from the K-means clustering stage. The algorithmwas run on 3
simulated mixtures of 5 sources (m=3, n=5), with the user solving for 6
sources. Note the proximity of the real to the estimated parameters. Also note
the estimated source parameter that does not correspond to any real source.
Displayed are the 3-dimensional normalized attenuation parameters. The delay
parameters have not been included.

IV. SOURCE EXTRACTION

This section describes the method proposed for extracting
the original sources based on the estimated parameters ob-



6

tained as in the previous section.
First we construct the estimated mixing matrix̃A[l] as

Ã[l] =













ã11e
−ilω0δ̃11 . . . ã1ne−ilω0δ̃1n

ã21e
−ilω0δ̃21 . . . ã2ne−ilω0δ̃2n

...
...

...
ãm1e

−ilω0 δ̃m1 . . . ãmne−ilω0 δ̃mn













. (17)

Here,ãij are the estimated attenuation parameters andδ̃ij are
the estimated delay parameters, computed as discussed earlier.
Note that each column of̃A[l] is a unit vector inCm.

The goal now is to compute “good” estimatesse
1, s

e
2, ..., s

e
n

of the original sourcess1, s2, ..., sn. These estimates must
satisfy

Ã[l]̂se[k, l] = x̂[k, l], (18)

where ŝ
e = [ŝe

1, ...ŝ
e
n]T is the vector of source estimates in

the T-F domain. At each T-F point[k, l], (18) providesm
equations (corresponding to them available mixtures) with
n > m unknowns(ŝe

1, ...ŝ
e
n). Assuming that this system of

equations is consistent, it has infinitely many solutions. To
choose a reasonable estimate among these solutions, we shall
exploit the sparsity of the source vector in the T-F domain, in
the sense of assumptions (4.1) and (4.2).

A. Sparsity andℓq Minimization

At this stage, we wish to find the “sparsest”ŝ
e that solves

(18) at each T-F point. This problem can be formally stated
as

min
ŝe

‖ŝe‖sparse subject to Ãŝ
e = x̂, (19)

where‖u‖sparsedenotes some measure of sparsity of a vector
u.

Given a vectoru = (u1, . . . , un) ∈ Rn, one measure of its
sparsity is simply the number of the non-zero components
of u, commonly denoted by‖u‖0. Replacing‖u‖sparse in
(19) with ‖u‖0, one gets the so-calledP0 problem, e.g. [30].
SolvingP0 is, in general, combinatorial with the solution being
very sensitive to noise. More importantly, the sparsity of the
Gabor coefficients of speech signals essentially suggests that
most of the coefficients are very small, though not identically
zero. In this case,P0 fails miserably. Alternatively, one can
consider

‖u‖q := (
∑

i

|ui|q)1/q

where0 < q ≤ 1 as a measure of sparsity. Here, smallerq
signifies increased importance of the sparsity ofu, e.g. [31].

Motivated by this, we propose to compute the vector of
source estimateŝse by solving thePq problem at each T-F
point [k, l], if the mixing matrix is real. The Pq problem is
defined by replacing‖u‖sparsein (19) with ‖u‖q to obtain the
following optimization problem

Pq : min
ŝe

‖ŝe‖q subject to Ãŝ
e = x̂. (20)

Note that this approach, withq = 1, was proposed before,
e.g., [12], [13], [14]. It is a standard result that if̃A is real,

P1 is equivalent toℓ1-basis-pursuit (L1BP), given by

L1BP: min
ŝe

‖ŝe‖1 subject to Ãŝ
e = x̂ and ‖ŝe‖0 ≤ m.

(21)
In Theorem 1, below, we prove that such an equivalence holds
for any 0 < q < 1 as well, providedÃ andx are real. More
precisely, in this case the solution ofPq is identical to the
solution of theℓq-basis-pursuit (LQBP) problem, given by

LQBP: min
ŝe

‖ŝe‖q subject to Ãŝ
e = x̂ and ‖ŝe‖0 ≤ m.

(22)
Note that to solve the LQBP problem, one needs to find the

“best” basis for the column space of̃A that minimizes theℓq

norm of the solution vector.
In the next section, we shall investigate solution strategies

for Pq and LQBP, and discuss how to handle the case when
the matrixÃ is complex.

B. SolvingPq and ℓq-basis-pursuit

The optimization problemPq is not convex for0 < q < 1,
thus computationally challenging. Under certain conditions on
the mixing matrixA and on the sparsity ofx, it can be shown
that a near minimizer can be obtained by solving the convex
P1 problem [30], [32], [33], which ifA and x are real, can
be reformulated as a linear program. This is, in fact, one
of the main motivations of theℓ1-based approaches in the
literature. On the other hand, we do not want to impose any a
priori conditions on the mixing matrixA (consequently on the
estimated mixing matrixÃ). In fact, the experimental results
presented in Section VI indicate that the mixing matrices that
correspond to anechoic mixing scenarios do not satisfy these
a priori conditions, and therefore, we cannot approximate the
solution ofPq by the solution ofP1. Without such conditions,
only local optimization algorithms for solvingPq are available
in the literature, e.g., [33]. Below, we prove that thePq

problem with0 < q < 1 can be solved in combinatorial time
whenever the mixing matrixA is real.

Theorem 1:Let A = [a1|a2| . . . |an] be anm × n matrix
with n > m, Aij ∈ R, and suppose thatA is full rank. For
0 < q < 1, the Pq problem

min
s

‖s‖q subject to As = x

where x ∈ Rn, has a solutions∗ = (s∗1, ...s
∗
n) which

has k ≤ m non-zero components. Moreover, if the non-
zero components ofs∗ are s∗i(j), j = 1, . . . , k, then the
corresponding column vectors{ai(j) : j = 1, . . . , k} of A
are linearly independent.
The proof of this theorem is provided in the Appendix.

Given an m × n real mixing matrix A with m < n,
Theorem 1 shows that the solution of the correspondingPq

problem will have at mostm non-zero entries, and therefore
will automatically satisfy the additional constraint of LQBP
(compare (20) and (22)). Thus, if the matrixA is real, the
solution of LQBP and the solution of thePq problem are
identical. As such, by solving LQBP, i.e., by finding all the
subsets of the set of columns ofA that form a basis and
choosing the one that offers a solution with the minimumℓq-
norm, we can solve thePq problem. In other words,Pq is
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computationally tractable whenever the mixing matrixA and
x are real, and can be solved via the following straight-forward
combinatorial LQBP algorithm.

LQBP Algorithm: Let A be the set of allm×m invertible
sub-matrices ofA (A is non-empty asA is full rank). The
solution of ℓq-basis-pursuit (and thus, by Theorem 1, the
solution ofPq in the real valued case) is given by the solution
of

min ‖B−1
xB‖q where B ∈ A. (23)

Here, forB = [ai(1)| · · · |ai(m)], xB := [xi(1) · · ·xi(m)]. Note
that #A ≤

(

n
m

)

, thus (23) is a combinatorial problem.
Theorem 1 does not hold when the matrixA is complex-

valued; a counter example and discussion can be found in
[34]. Note, however, that the goal of finding the solution with
the smallestℓq (quasi-) norm is to impose sparsity. Thus if
the statement of the above theorem does not hold, i.e., the
l0 “norm” of the minimizer ofPq is larger than the rank of
A, then one would not, in fact, wish to use that solution. For
this reason, in the case of anechoic mixtures, thus complexA,
we propose to extract the sources using theℓq-basis-pursuit
approach, i.e., by finding the best basis composed by a subset
of columns ofA that minimizes theℓq norm of the solution
vector. Theorem 1 shows that this is equivalent to solving the
Pq problem in the real-valued case.

C. The Separation Algorithm

Based on the discussion above, the proposedseparation
algorithm can be summarized as follows. At each T-F point
[k, l]:

1) Construct the estimated mixing matrix̃A[l] as in (17).
2) Find the estimated source vectorŝ

e[k, l] by solving the
ℓq-basis-pursuit problem withA = Ã[l] as described
above for some0 < q < 1 (as demonstrated in Section
VI, a choice of0.1 ≤ q ≤ 0.4 is appropriate).

3) After repeating steps 1 and 2 for all T-F points, recon-
struct se(t), the time domain estimate of the sources
from the estimated Gabor coefficients.

Remark. In the literature the main focus has been to useP1 or
ℓ1-basis-pursuit for solving the source extraction problem,e.g.,
[12], [13], [14], [20]. The main motivation for this as discussed
above, is thatℓ1-basis-pursuit can be formulated as a convex
program, and thus is preferable from a computational point of
view. Therefore, the attempt to considerℓq-basis-pursuit with
0 < q < 1 might sound counter-intuitive at first. However,
in the case of BSS of speech signals, the size of eachℓq-
basis-pursuit problem to be solved is quite small (A is an
m × n matrix wherem is the number of microphones and
n is the number speakers). Thus the combinatorial algorithm
proposed above is in fact of comparable complexity with a
convex program. A similar observation was also made in [34].
See section V for a more detailed discussion.

D. Probabilistic Interpretation

This section provides an interpretation of the presented
source separation algorithm from a Bayesian point of view
by generalizing the approach of Delgado et al. [22] to the

complex-valued case. Recall that at a given T-F point the
algorithm attempts to extractn sources fromm mixtures with
m < n using an estimatẽA of the mixing matrixA. In other
words, one needs to find T-F estimates of the sources so that
(18) is satisfied. Since the system of equations defined by (18)
is underdetermined, it has an infinite number of solutions. If
we now assume that the STFT coefficient magnitudes of the
sources at all T-F points are i.i.d. random variables and allthe
coefficient phases are i.i.d random variables that are indepen-
dent from the magnitudes, we can adopt the Bayesian approach
and choose the solution that is given by the corresponding
maximum a posteriori estimator. That is, at each T-F point
[k, l] the extracted source vectorŝ

e[k, l] must satisfy

ŝ
e[k, l] = arg max

ŝe[k,l]
P (̂se[k, l]|Ã, x̂[k, l])

= arg max
ŝe[k,l]

P (x̂[k, l]|Ã, ŝe[k, l])P (̂se[k, l])

= arg max
ŝe[k,l]

P (̂se[k, l]) (24)

= arg max
ŝe[k,l]

P (|̂se[k, l]|, ∠ŝ
e[k, l]) (25)

= arg max
ŝe[k,l]

P (|̂se[k, l]|)P (∠ŝ
e[k, l]) (26)

Note that in the third equality we use the fact that
Ã[l]̂se[k, l] = x̂[k, l]. Now, assuming that

P (|ŝi
e[k, l]|) =

µ1/ppe−µ|ŝi
e[k,l]|p

Γ (p−1)
(27)

i.e., that the magnitudes of the sources are independent and
identically distributed following a Box-Tiao distribution [35]
(equivalently, a generalized Gaussian distribution) for some
µ > 0 andp < 1, and that

P (∠ŝi
e[k, l]) =

1

2π
, (28)

i.e., that the phases are uniformly distributed, we obtain

ŝ
e[k, l] = arg max

ŝe[k,l]
e−

P

n
i=1

|ŝe[k,l]|p

= arg min
ŝe[k,l]

n
∑

i=1

|ŝe
i [k, l]|p.

Reintroducing the constraint set by (18), the problem then
becomes

min
ŝe[k,l]

‖ŝe[k, l]‖p, subject toÃŝ
e[k, l] = x̂[k, l],

which is identical to thePq problem defined as in (20) with
q = p. In other words, by solvingPq of Section IV-A with
q ∈ (0, 1], we intrinsically compute the maximum a posteriori
(MAP) estimate if the magnitudes of the sources in the T-F
domain were distributed according to the Box-Tiao distribution
with p = q, and if the phases were uniformly distributed.
Thus, one would expect to obtain best separation results using
Pq (or LQBP) if the underlying sources are in fact Box-Tiao
distributed with parameterp = q. Although we do not claim
that this family of distributions provide the best model forthe
STFT-magnitudes of speech signals, we expect that, among the
family of algorithms given byPq (or ℓq-basis-pursuit) withq ∈
(0, 1], the best separation will be observed for the value ofq
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Fig. 4. The empirically calculated probability density function of the phase
of speech STFT coefficients. One can see that the phases are uniformly
distributed between−π andπ.

that optimizes the fit between the empirical distribution ofthe
magnitudes of the STFT of speech signals and the distributions
given by (27)

We computed the STFTs of 300 three-second-long speech
signals from the TIMIT database (sampled at 16kHz) using a
window length of 1024 and an overlap of 50%. We calculated
the empirical probability density of the phases, plotted in
Figure 4, which clearly shows the validity of the assumptionof
a uniform distribution. We then used the Nelder-Mead simplex
search algorithm [36] to find the maximum likelihood estimate
of the value ofp, for the magnitudes in each case. This yields
estimates forp with sample mean0.2737 andsample standard
deviation 0.0313. Note that, as expected, this matches with
the results presented in Section VI, where best separation
performance is obtained with0.1 ≤ q ≤ 0.4.

The fact that we obtain a small sample standard deviation
further indicates that the value ofq that provides the best
fit is appropriate for speech signals in the STFT domain,
with a window size of approximately64ms. Note that there
is no guarantee that such a choice would be optimal for
each individual speech signal. If for example, we had prior
knowledge that the signals we are dealing with are not very
sparse, then a larger value ofq would be justified. On the
other hand, since we are dealing withblind source separation,
our goal is to work with a fixed valueq that is suited to the
signals at hand. The above discussion suggests thatq ≈ 0.27
is a good choice. Finally, we note that the question of how to
incorporate additional information, such as some sources being
sparser than others, remains an interesting open problem.

E. Interference Suppression and Distortion Reduction

The algorithm proposed in Section IV-C separatesn sources
from m mixtures. The task is accomplished by extracting at
mostm sources at each T-F point that minimize viaℓq-basis-
pursuit, as discussed above. The following assumptions are
required to ensure an accurate recovery of the sources:

i. No more thanm sources are active at that T-F point.
ii. The columns of the mixing matrix were accurately

extracted in the mixing model recovery stage.
iii. The mixing matrix is full rank.
iv. The noise affecting the mixtures is negligible.

If these assumptions hold, then the decomposition of the
mixtures into their source contributions will be successful.
We shall not address here the problem of having more than
m active sources at certain T-F points as this would violate
our basic sparsity assumption and render the use ofℓq-basis-
pursuit inappropriate. A more important issue is that of the
mixing model recovery stage not yielding the perfect columns
in the mixing matrix, as this would negatively affect the source
estimates. Under the sparsity assumption, it is also very likely
for the number of active sources to be less thanm at many
T-F points. In that case, errors in the estimation of the mixing
directions, and possible existence of noise might lead to false
assignments of some contributions to sources that are in fact
silent. These contributions, which the algorithm would record
as source activity, could be due to projections of contributions
from other sources or due to noise.

To avert these problems, we introduce a power ratio pa-
rameterρ, where0 < ρ < 1, which the user may adjust
based on the noise level or expected difficulty of separation.
Accordingly, after resolving the contribution of each source
via ℓq-basis-pursuit, we inspect each source’s contribution to
the total power (of all sources at that T-F point). We then
preserve ther highest sources where1 < r < m, which
contribute, collectively, to at least100ρ% of the total power
and set the rest to zero. The motivation behind this is that
if a source is inactive, noise will still project on the source’s
direction giving a contribution, albeit a small one, hence the
need to introduce the parameterρ to get rid of these unwanted
small contributions. To summarize:
Interference Suppression Algorithm: At each T-F point
[k, l]:

1) Sort the source coefficient estimates in decreasing order.
2) Preserve the first (highest)k sources that contribute to

at least100ρ% of the total power.
3) Set the remaining estimates to zero.

See Section VI for implementation of this algorithm with
various values ofρ.

V. COMPUTATIONAL COMPLEXITY

In order to get an idea about the computational complexity
of the proposedℓq-basis-pursuit algorithm, we conducted a se-
ries of tests comparing the proposed technique to second order
cone programming (SOCP) [37], an interior point method used
to solvel1 minimization problems in the complex domain. We
utilized the SeDuMi package [38] as a numerical solver for
the SOCP problem. Note that a SOCP approach can only be
utilized for theP1 problem and not for the generalPq problem
with q < 1.

The experiments involved varying the number of mixtures
m from 2 to 5 and the number of sourcesn from m to 15.
The results reported in Figure 7 clearly indicate that givena
number of sources (n < 12) and a relatively small number
of mixtures (m ≤ 5), LQBP outperforms SOCP in terms
of computational speed. A similar conclusion was previously
reported in [34] where a combinatorial approach was proposed
for theP1 problem in the complex domain. One could see from
the figure that the computational complexity of SOCP is high



9

(a) Original Source Spectrogram (b) Mixture 1 Spectrogram (c) Extracted Source Spectrogram

Fig. 5. The spectrogram of (a) one of the original sources, (b) one of the mixtures, and (c) the corresponding extracted sources from 4 mixtures of 5
underlying sources when the user estimates the existence of6 sources.
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Fig. 6. The (a) original sources, (b)mixtures, and (c) extracted sources from 4 mixtures of 5 underlying sources when theuser estimates the existence of 6
sources.

initially but grows very slowly with the number of sources
and mixtures. On the other hand, LQBP has a much lower
complexity for a small number of mixtures and sources, but
that complexity tends to grow quickly asm and n increase.
Thus, for the range ofm andn that we are dealing with in this
paper, the combinatorial approach is computationally tractable
and more favorable than SOCP.

Another advantage of the combinatorial approach as indi-
cated by [34] is in the reusability of results. In other words,
given a certain frequency, all the matrix inversions need only
be done once and the results can be stored and used as needed.
On the other hand, the SOCP algorithm needs to be rerun
for every single T-F point. This observation was not used to
generate the results reported in Figure 7 where the matrix
inversions were repeated for LQBP.

VI. EXPERIMENTS AND RESULTS

The performance of the proposed algorithm is evaluated in
this section using experiments with both simulated and real
mixtures. To assess the quality of the separation, the perfor-
mance measures suggested in [39] are used, namely the Source
to Artifact Ratio (SAR), the Source to Interference Ratio (SIR)
and the Source to Distortion Ratio (SDR). SAR measures the

distortion due to algorithmic or numerical artifacts such as
”forced zeros” in the STFT. SIR measures the interference
due to sources other than the one being extracted and that have
residual components in the extracted source. SDR, on the other
hand, is a measure of all types of distortion, whether artifacts,
interference or noise. In [39] it was observed that informal
listening tests correlated well with the nature of the perceived
distortion as quantified by the SIR and SAR measures. Our
own informal listening tests confirm this observation.

In order to thoroughly test the proposed methods we con-
ducted experiments under a variety of conditions and we report
the results here. First, we highlight the importance of using all
the available mixtures by demixing 5 sources while decreasing
the number of mixtures used from 5 to 2. Next, we test the
algorithm in a difficult scenario where we have 10 sources
and 5 mixtures and show that it performs favorably. We then
present average results of a large number of experiments
conducted using a model of an anechoic room and compare
our results, obtained for various values ofq, whereq < 1, with
those of DUET, both in cases where we have two mixtures, as
well as in cases when more than two mixtures are available.
Finally, we present the results of our algorithm when applied
to a real world echoic mixing scenario with 2 mixtures and
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Fig. 7. Average time (log scale) taken to solve LQBP (dashed line) andP1 via SOCP (solid line) as a function of the number of sources, with varying
number of available mixtures.

show that it performs well here also.

A. Simulated Mixtures With Random Mixing Parameters

The algorithm is first tested on simulated mixtures of 5
sources, 2 of which are speech and 3 are music. The 5 mixtures
are generated as delayed and attenuated versions of the sources
with the mixing parameters as shown in Table II

TABLE II
RANDOM MIXING PARAMETERS USED TO SIMULATE MIXTURES WITH5

SOURCES.

s1 s2 s3 s4 s5

a1i 0.61 0.71 0.73 0.82 0.87
a2i 0.94 0.65 0.83 0.99 0.72
a3i 0.85 0.76 0.72 0.93 0.60
a4i 0.80 0.76 0.56 0.64 0.92
a5i 0.68 0.79 0.71 0.67 0.65
δ2i 0.01 −0.62 0.08 0.72 0.80
δ3i 0.42 −0.61 −0.70 0.71 0.64
δ4i −0.14 0.36 0.40 0.19 0.29
δ5i −0.39 −0.39 −0.24 −0.01 0.64

Figure 5 shows the T-F decomposition of one of the sources,
one of the mixtures, and the corresponding extracted source,
when using 4 mixtures for separation and settingq to 0.3.
Figure 6 shows all the original sources, mixtures, and extracted
sources when using 4 mixtures to perform the separation.
Tables III, IV and V show the demixing performance based
on the SIR, SAR, and SDR, respectively. All results were
obtained by running the algorithm with the user parameters
n̂ = 6 and ρ = 0.8 and by settingq = 0.3. Each column
in these tables indicates the performance before demixing
as well as when using either 5, 4, 3, or 2 of the available

mixtures for demixing; the last column reports the results
obtained when using DUET. Table III shows a mean gain in
SIR of 19dB when demixing 5 sources from just 3 mixtures.
The mean gain reaches over 32dB when utilizing all five
available mixtures, which highlights the importance of using
the available mixtures. Similarly, Table V which reports the
SDRs of the extracted sources shows a gain ranging from
2dB to over 14dB when using 2 to 5 mixtures respectively.
Interestingly, the SAR degrades upon separation when using
less than 5 mixtures. This may be attributed to the fact
that our algorithm is non-linear in nature, and acts on the
STFT transform of the mixtures, extracting the sources in that
domain. This may introduce numerical artifacts, such as forced
zeros or non-smooth transitions in the STFT of the sources,
which are then reflected by the SAR values reported. Note that
when comparing the results of SDR, SIR and SAR obtained
by applying the proposed algorithm on 2 mixtures only vs. the
results obtained by applying DUET, the presented algorithm
outperforms, on average, DUET in all criteria (last 2 columns
of Tables III,IV, and V). Finally, Figure 8, shows the SDR,
SIR and SAR resulting from separation using 5, 4, 3 or 2
mixtures, for values ofq, 0 ≤ q ≤ 1, in steps of 0.1.

To test the performance of the algorithm when the number
of sources is large, we next used it on 5 mixtures of 10
sources, using random delays and attenuations with the same
5 sources used in the previous experiment augmented with
5 more speech sources. The results are shown in Figure 9.
The average gains in SIR, SAR and SDR of approximately
18.8, 4.9 and 12.3 dB, respectively, confirm that the proposed
algorithm performs remarkably well even in such a scenario
where there is a much higher number of sources than mixtures.
In fact, all but the very last extracted source are recovered
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Fig. 8. Average SDR, SIR and SAR (over the five sources) obtained from demixing various number ofsimulated anechoic mixtures of 5 sources as a
function ofq with a preserved power parameter of 0.8. The horizontal linerepresents the results obtained using DUET. Across all results, the user estimates
the existence of 6 sources.

TABLE III
DEMIXING PERFORMANCE EXAMPLE WITH THE RANDOM MIXING PARAMETERS OFTABLE II ON MIXTURES OF5 SOURCES, ρ = 0.8, n̂ = 6: SIR

Source SIR (dB) SIR (dB) SIR (dB) SIR (dB) SIR (dB) SIR (dB)
before demixing after demixing after demixing after demixing after demixing DUET with 2 mixtures

with 5 mixtures with 4 mixtures with 3 mixtures with 2 mixtures

s1 −4.46 30.23 23.38 18.09 19.61 21.76
s2 −4.86 34.30 21.20 15.84 14.40 12.94
s3 −5.46 19.05 19.63 22.51 10.34 6.99
s4 −4.06 40.90 26.25 22.28 16.15 10.33
s5 −3.59 39.92 26.22 20.53 16.96 14.85

mean −4.49 32.88 23.33 19.85 15.49 13.37

TABLE IV
DEMIXING PERFORMANCE EXAMPLE WITH THE RANDOM MIXING PARAMETERS OFTABLE II ON MIXTURES OF5 SOURCES, ρ = 0.8, n̂ = 6: SAR

Source SAR(dB) SAR (dB) SAR (dB) SAR (dB) SAR (dB) SAR (dB)
before demixing after demixing after demixing after demixing after demixing DUET with 2 mixtures

with 5 mixtures with 4 mixtures with 3 mixtures with 2 mixtures

s1 12.40 13.51 11.89 6.20 5.44 5.15
s2 13.64 15.48 11.38 7.74 2.76 1.50
s3 13.64 11.80 7.79 4.69 −0.62 −0.59
s4 10.16 14.89 8.30 3.63 2.05 1.98
s5 17.86 15.62 9.58 7.01 4.30 4.12

mean 13.54 14.26 9.79 5.85 2.79 2.43

successfully and the speakers’ sentences could be discerned
without difficulty. It is worth noting that there is an improve-
ment even in the SAR values. A possible explanation for this
observation is that, due to the high number of sources, the
number of points in the T-F plane that the algorithm sets to
zero is reduced thus reducing artifacts in the extracted sources.

B. Simulated Mixtures, Anechoic Room Mixing Parameters

In addition to the experiments with simulated data described
in the previous section, additional experiments where the
mixing parameters were derived from an anechoic room model
[40] were conducted. The model simulates multi-microphone
multi-source scenarios in an anechoic room. Tests for extract-
ing 3, 4, and 5 sources from 2 or 3 mixtures were each
conducted and repeated 60 times with various anechoic room
mixing parameters and sources. The results were compared to
those obtained using DUET and are illustrated in Figures 10,
11, and 12 as functions ofq, as well as in Table VII. Note that
the reported results indicate that the best performance occurs

when using0.1 ≤ q ≤ 0.4, which agrees with the probabilistic
interpretation and results provided in section IV-D. Note that
the case of demixing 3 mixtures of 3 sources with the user
estimating 3 sources, is an even-determined scenario; therefore
all q values will yield the same results.

C. Real Mixtures

Next, to provide an example on real mixtures, we test the
algorithm using the mixtures posted on [41], which have 2
sources and 2 microphones. The microphones are placed 35cm
apart, and the sources are placed60o degrees to the left of
the microphones and 2m on the mid-perpendicular of the
microphones respectively [41], [42]. Table VIII shows that
the proposed algorithm outperforms that of [42] for which
the audio separation results can be found at [41].

VII. C ONCLUSION AND FUTURE WORK

In this paper, we presented a novel blind source separation
algorithm for theunderdetermined anechoiccase which is ca-
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TABLE V
DEMIXING PERFORMANCE EXAMPLE WITH THE RANDOM MIXING PARAMETERS OFTABLE II ON MIXTURES OF5 SOURCES, ρ = 0.8, n̂ = 6: SDR

Source SDR(dB) SDR (dB) SDR (dB) SDR (dB) SDR (dB) SDR (dB)
before demixing after demixing after demixing after demixing after demixing DUET with 2 mixtures

with 5 mixtures with 4 mixtures with 3 mixtures with 2 mixtures

s1 −4.79 13.41 11.58 5.86 5.23 5.01
s2 −5.10 15.43 10.92 7.02 2.32 0.61
s3 −5.70 11.01 7.47 4.59 −1.31 −4.14
s4 −4.61 14.88 8.22 3.54 1.78 0.00
s5 −3.69 15.60 9.48 6.78 3.99 3.79

mean −4.78 14.07 9.53 5.56 2.40 1.06

TABLE VI
DEMIXING PERFORMANCE EXAMPLE WITH5 MIXTURES OF 10 SOURCES(RANDOM MIXING PARAMETERS), ρ = 0.8, n̂ = 12

SIR (dB) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean

before −7.46 −6.55 −5.34 −10.43 −5.96 −6.30 −3.78 −10.15 −9.48 −4.31 −6.98
after 24.12 13.04 25.65 16.34 18.68 20.24 20.47 21.94 18.98 18.80 19.83
gain 31.58 19.59 30.99 26.78 24.64 26.54 24.24 32.09 28.46 23.12 26.80

SAR (dB) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean

before 2.63 4.08 2.63 4.08 3.27 −4.14 −0.89 −0.89 −3.16 −3.16 0.446
after 1.72 5.03 2.79 3.76 8.69 6.69 9.24 7.03 6.51 1.87 5.33
gain −0.91 0.946 0.163 −0.327 5.42 10.8 10.1 7.92 9.67 5.03 4.89

SDR(dB) s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 mean

before −7.46 −6.84 −5.65 −10.43 −6.77 −6.60 −4.59 −10.15 −10.40 −5.43 −7.43
after 7.67 4.48 0.91 3.05 6.20 3.06 9.06 9.24 5.47 4.47 5.36
gain 15.12 11.32 6.55 13.48 12.97 9.66 13.66 19.40 15.87 9.90 12.79
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Fig. 9. Average SDR, SIR and SAR over the 10 sources obtained from demixing 5 mixtures as a function of theq. The user estimates the existence of 12
sources.
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Fig. 10. AverageSDR, SIR and SAR (over 5 sources in 60 experiments) obtained from demixing 3 mixtures when the user estimates the existence of 6
sources. Results are plotted as a function of theq for varying preserved power parameter. The horizontal linerepresents the results obtained using DUET.
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Fig. 11. AverageSDR, SIR and SAR (over 4 sources in 60 experiments) obtained from demixing 3 mixtures when the user estimates the existence of 5
sources. Results are plotted as a function ofq for varying preserved power parameter. The horizontal linerepresents results obtained using DUET.
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Fig. 12. AverageSDR, SIR and SAR (over 3 sources in 60 experiments) obtained from demixing 2 mixtures when the user estimates the existence of 3
sources. Results are plotted as a function ofq for varying preserved power parameter. The horizontal linerepresents the results obtained using DUET.

TABLE VII
AVERAGE DEMIXING PERFORMANCE(60 VARIOUS EXPERIMENTS) WITH 3 ANECHOIC SIMULATED MIXTURES OF3 SOURCES, n̂ = 3

ρ = 1 ρ = 0.8 ρ = 0.6 DUET

SIR (dB) 21.713 29.861 34.495 19.688
SAR (dB) 11.051 10.171 9.4898 8.4862
SDR (dB) 9.6528 9.2686 8.7186 6.3667

pable of usingall available mixtures in the anechoic scenario,
where both attenuations as well as arrival delays between
sensors are considered. The proposed technique improves
the separation performance by incorporatingℓq-basis-pursuit
with q < 1. In the first stage, certain feature vectors are
extracted that are in turn used to extract the parameters of
the mixing model via, for example, a clustering approach.
This blind mixing model recovery stageis followed by a
blind source extraction stage, which is based onℓq-basis-
pursuit, where the demixing is performed separately at every
significant T-F point because the mixing matrix is frequency
dependent. Further enhancement of the discussed algorithm
was also proposed which was based on preservation of certain
percentages of the signal power in order to reduce the effects
of noise and clustering errors. We also provided a standard
probabilistic interpretation of the proposed algorithm and

showed that among a class of distributions parametrized by
p, the distribution of the STFT of speech is best fit using
p ≈ 0.27. Solving theℓq minimization problem corresponds to
assuming an underlying source distribution withp = q, which
agrees with the observation that the separation performance is
best when using0.1 ≤ q ≤ 0.4.

Experimental results were presented for both simulated
as well as real mixtures in anechoic underdetermined en-
vironments. The results demonstrated the robustness of the
presented algorithm touser-set parametersand to thelack
of a priori knowledgeof the actual number of sources. The
algorithm performance was measured based on the SDR, SIR
and SAR. Results consistently demonstrated the method’s
superior performance with respect to all criteria. The use
of the preserved power ratio parameter enabled the user to
balance the type of distortions to incur ranging from artifacts
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TABLE VIII
DEMIXING PERFORMANCE(IN DB) WITH 2 REAL MIXTURES OF 2 SOURCES, ρ = 0.7, n̂ = 2

SIR [42] SIR (our algorithm) SAR [42] SAR (our algorithm) SDR [42] SDR (our algorithm)

s1 26.232 40.7632 4.5363 7.4011 4.4967 7.3987
s2 55.410 43.4322 5.6433 10.4101 5.6433 10.4077

mean 40.821 42.0977 5.0898 8.9056 5.0700 8.9032

and interference. The optimal choice of this parameter, and
its relationship to the estimated number of sources used for
demixing and the actual number of sources remains a topic
for further research.

In this paper, we have not explicitly considered noise as a
part of our mixing model. By virtue of the STFT, a denoising
stage via hard thresholding in the spirit of [43] is already
incorporated to our algorithm after the actual separation stage
during interference suppression, as discussed in Section IV-E.
On the other hand, one could include a similar thresholding
stage prior to the separation, or even explicitly model for
the noise when formulating the optimization problem. This
latter approach would lead to a difficult optimization problem,
however, that can currently be solved by using computationally
expensive methods that are guaranteed to provide only local
minima as solutions, cf., [33]. As a natural extension of
this work, we plan to investigate the anechoic blind source
separation problem in the presence of noise.
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APPENDIX

PROOF OFTHEOREM 1

For the sake of completeness, let us first restate Theorem 1.
Theorem 1:Let A = [a1|a2| . . . |an] be anm × n matrix

with n > m, Aij ∈ R, and suppose thatA is full rank. For
0 < q < 1, the Pq problem

min
s

‖s‖q subject to As = x

where x ∈ Rn, has a solutions∗ = (s∗1, ...s
∗
n) which

has k ≤ m non-zero components. Moreover, if the non-
zero components ofs∗ are s∗i(j), j = 1, . . . , k, then the
corresponding column vectors{ai(j) : j = 1, . . . , k} of A
are linearly independent.
We shall use the following lemma to prove this theorem.

Lemma 1:Let s = [s1 . . . sn]T ∈ Rn be such thatAs = x,
whereA andx are as above. Suppose the column vectors of
A in {aj : j ∈ supps} are linearly dependent. Then there
existss

∗ with the following properties:

i. As
∗ = x,

ii. ‖s∗‖q ≤ ‖s‖q, and
iii. #supps

∗ ≤ #supps− 1,

where supps := {j : sj 6= 0}, and#U denotes the cardinality
of a setU .

Proof: For simplicity, setΛ := supps. Then the vectors
in {aj : j ∈ Λ} are linearly dependent, i.e., there existcj ,
not all zero, such that

∑

j∈Λ cjaj = 0. Define now the vector
c by settingc(j) = cj if j ∈ Λ andc(j) = 0 otherwise. Note
that suppc 6= ∅ and suppc ⊆ Λ. Then, we have

Asλ = x, ∀ λ ∈ R,

wheresλ := s+λc. Next, we shall show thats∗ = sλ∗ where
λ∗ is the solution of

min
λ

‖sλ‖q

satisfies#supp s
∗ ≤ #supp s − 1, which will complete

the proof of the lemma. To that end, consider the equivalent
minimization problem

min
λ

‖sλ‖q
q.

We want to minimize

f(λ) := ‖sλ‖q
q =

∑

j∈Λ

η(sj + λcj),

whereη(u) := |u|q. Noting thatη′′(u) < 0 for u 6= 0, and
lim|u|→∞ η(u) = ∞, we observe that

i. lim
|λ|→∞

f(λ) = ∞, and

ii. f ′′(λ) < 0 for λ /∈ {λj : λj = −sj/cj, j ∈ suppc}
(recall that#suppc ≥ 1).

Thus, the global minimum off must be at one of its critical
pointsλj , j ∈ suppc, wheref is not differentiable; say it is
at λj∗ . Then, after settings∗ = sλj∗

, we have

i. As
∗ = x,

ii. ‖s∗‖q ≤ ‖s‖q, and
iii. supp s

∗ ⊆ supp s \ {j∗} which implies#supp s
∗ ≤

#supps− 1.

Proof of Theorem 1: Let A, s, and x be as in the
statement of Theorem 1. AsA is full rank andn > m, the
equationAs = x has infinitely many solutions. Suppose now
that s∗ is the solution of thePq problem. Then, by Lemma
1, the column vectors{aj : j ∈ supp s

∗} are necessarily
linearly independent, and as a consequence#supps

∗ ≤ m.
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