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via ¢?-Basis-Pursuit withy < 1
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Abstract—In this paper, we address the problem of under-
determined Blind Source Separation (BSS) of anechoic speec
mixtures. We propose a demixing algorithm that exploits the
sparsity of certain time-frequency expansions of speechgials.
Our algorithm merges ¢?-basis-pursuit with ideas based on the
degenerate unmixing estimation technique (DUET) [1]. Thee are
two main novel components to our approach: (1) Our algorithm
makes use ofall available mixtures in the anechoic scenario
where both attenuations and arrival delays between sensorare
considered, without imposing any structure on the microphone
positions. (2) We illustrate experimentally that the sepaation
performance is improved when one useg?-basis-pursuit with
g < 1 compared to the ¢ 1 case. Moreover, we provide
a probabilistic interpretation of the proposed algorithm that
explains why a choice of0.1 < ¢ < 0.4 is appropriate in the case
of speech. Experimental results on both simulated and real ata
demonstrate significant gains in separation performance wén
compared to other state-of-the-art BSS algorithms reportd in
the literature. A preliminary version of this work can be found
in [2].

Index Terms—blind source separation, BSS, sparse signal
representation, DUET, time-frequency representations, @bor
expansions, underdetermined signal un-mixing, over-conipte
representations, basis pursuit

I. INTRODUCTION

independent. Lewicki et al. [9] and Lee et al. [10] generiz
this technique to the underdetermined instantaneous BSS ca
where the number of available recorded mixtures are less tha
the underlying sources, by proposing a method for learning
the over-complete basis using a probabilistic model of the
observed data. This technique, however, is still conséichin

to the instantaneous mixing model of time-domain signals.
Other methods were proposed that cater to anechoic demixing
where both signal attenuations and arrival delays between
sensors are considered. Anemuller [11] used a complex ICA
technique to extract an equal number of sources from migture
in various separate spectral bands to solve the BSS problem f
electro-encephalographic (EEG) data. This approach, e

is complicated by the need to either identify whether any
sources extracted from different spectral bands correspon
to one another and therefore solve a scaling and permuta-
tion problem, or to assume that the underlying sources are
spectrally disjoint, i.e. confined to localized spectrahtba
Other BSS approaches based on source sparsity assumptions
in some transform domain were recently proposed ( [12],
[13], [14]) and have come to be known as 'sparse methods’.
The assumption of these methods is that the sources have a
sparse representation in some given basis. These appsoache

Blind source separation (BSS) is the term used to descritypically employ an instantaneous mixing model to solve the

the process of extracting some underlying original sour@&SS problem in the underdetermined case by adopting
signals from a number of observable mixture signals, whemginimization approaches that maximize sparsity. Vielvalet
the mixing model is either unknown or the knowledge aboiit5] considered the case of underdetermined instantaneous
the mixing process is limited. Numerous methods for soNBSS where source densities are parameterized by a sparsity
ing the BSS problem in various contexts and under varioéector, and presented a maximum a posteriori method for
assumptions and conditions were proposed in the literatuseparation, and [16] focused on the estimation of the mixing
Early approaches concentrated on tackling even-detetmimmatrix for underdetermined BSS under the assumption of
and over-determined demixing. Independent component arsparsity. Yilmaz and Rickard [1], see also [17], developed
ysis (ICA), first presented by Jutten and Herault [3] [4], and practical algorithm for underdetermined anechoic mixing
later developed in an information maximization frameworkcenarios called the degenerate unmixing estimation tggan
by Bell and Sejnowski [5] pioneered those early approach¢BDUET), which exploits sparsity in the short-time Fourier
Other early papers on source separation include, for ex@amptansform (STFT) domain, and uses masking to extract sev-
[6] and [7]. For an extensive overview of ICA see [8]. eral sources from two mixtures. This approach is, however,
ICA extractsn sources fromn recorded mixtures under restricted to using two mixtures only. Bofill [18] deals with
the crucial assumption that the underlying source signas ahe anechoic underdetermined scenario as well and esimate
the attenuation coefficients by using a scatter plot teckiq
and the delays by maximizing a kernel function. To extraet th
sources, [18] solves a complex constrairiéeminimization
problem via second order cone programming. This algorithm,
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like DUET, uses only two of the available mixtures. More
recently, Melia and Rickard [19] presented a technique lhic
extends DUET and is able to utilize multiple microphone
readings obtained from a uniform linear array of sensorgs Th
allows the use of all available mixtures at the expense of



imposing structure on the sensor array. which will henceforth be referred to a§7,w). Practically,

A comprehensive survey of sparse and non-sparse methods - _ -
in source separation can be found in [20]. F%[si(- = 9)l(r,w) = exp(—iwd)F" [s;])(1 — 0,w)

In this paper, we employ a two-step demixing approach for ~  exp(—iwd)FWV[s;](T,w). (4)
BSS problems for the general case of anechoic mixing in the o ] )
underdetermined case. Such a two step approach was ado}ited| ealistic assumption as long as the window functin
in, e.g., [12], [1] and [14] and formalized by Theis and Lan?s chosen appropriately. For a detailed discussion on $ieis,
[21]. The two step approach is comprised of blind recove ) )
of the mixing model followed by recovery of the sources. The NOW given z1,z,...,zy, the problem to be solved is

novel aspects of our approach can be summarized as folloR@Sically one of estimating,...,s, in the general case

o We generate feature vectors that incorporate both atté’\rﬁr—]ere K Z. m and n is ynknqwn ' Taklng the STFT of
.. &m With an appropriate window functio” and using

uation and delay parameters for a large, in principlél” I
arbitrary, number of mixtures in the underdetermined B ). the mixing model (1) reduces to

case. Thus, unlike DUET, our algorithm makes use of all x(r,w) = AW)s(r,w), (5)
available mixtures, both in the mixing model recovery

and sources extraction stages. Moreover, unlike [19], wehere

do not need to impose a pre-determined structure on the x=[&1... j;m]T7 §=1[5... gn]T7 (6)
sensor array.

« We compare the performance of source extraction @nd
gorithms based ori? minimization and/?-basis-pursuit a1l o1
for values0 < ¢ < 1 in STFT domain, and illustrate Ay et gy e~ w02n
that the best separation performance is obtained for Alw) = . . ) . (7)
0.1<q<0.4. L : L

« Generalizing the approach of [22] to the complex-valued e 0 Ampe” 0mn

case, we provide an interpretation based on the empiriq\%
probability distribution of speech in the STFT domain
which justifies the use of? minimization with 0.1 <
q <0.4.

o Clearly/¢?-basis-pursuit, whereé < ¢ < 1is a combinato- b
rial problem. On the other hand, the size of the problemg
in BSS of speech signals is typically small. In the

experiments we conducted, we observed that solRg \\here r, and w, are the time-frequency lattice parameters.
basis-pursuit combinatorially and solvilgrbasis-pursuit the equivalence is nontrivial and only true if the family
via convex programming spend comparable computathguwotw(t —kro) : k.l € Z) constitutes aGabor frame
time. Thus, our approach is computationally tractable. o the signal space of interest. For this, one needs an appro
priately chosen window functiod” with sufficiently smallr,

te that via (2) the column vectors df have unit norms.

' The equivalent discrete counterpart is henceforth used to
replace the continuous STFT, i.e. the samples of the STFT of
s are evaluated on a lattice in the time-frequency plane given

8jlk, 1] = 8;(k7o, lwo) (8)

Il. MIXING MODEL andw. Extensive discussions on Gabor frames can be found,
In the anechoic mixing model, one has sources €.g., in [24], [25]. Note that, in the discrete frameworke th
51(t), ..., sn(t) andm mixtureszy(t),...,x,,(t) such that mixing model can be written as
x;i(t) = Zaiij(t —0;5), i=1,2,...,m (1) X[k, 1) = A(lwo)sk, 1] ©)
j=1 with %,§ as in (6), andA as in (7).5[k,!] is the Gabor or

wherea;; andé;; are scalar attenuation coefficients and tim&TFT coefficient ofs at the time-frequency (T-F) poirik;, [].
delays, respectively, associated with the path from ffte  Inthis paper, we shall use the STFT as the preferred T-F rep-
source to theé™ receiver. Without loss of generality one carfesentation. Some of the reasons for this choice are asviallo

setd;; = 0 and scale the source functioss such that (i) STFT is linear (unlike, e.g., Wigner-Ville disributis, (ii)
m STFT converts delays in the time domain to phase shifts in
Z lagi|? =1 @) the T-F domain (unlike, e.g., wavelet transforms), (iii))/ STis
= easy to implement and invert, and (iv) STFT of speech signals
forj =1 n. Throughout the paper, we assume m, i.e are sparse (more so then wavelet transforms [26]), as wé shal

rﬁi}scuss in section IlI-A. Note we need the properties (i) @nd
Write (1) as a matrix equation. Property (ii) is also cati
for our blind mixing model recovery algorithm, presented
in Section Ill. Property (iii) is important for computatiah
efficiency and speed. Finally, property (iv) facilitatestbthe
blind mixing model recovery algorithm of Section 11l and the
source extraction algorithm of Section IV.

the number of the sources to be separated exceeds the nu

of available mixtures, and thus the mixinguederdetermined
The short time Fourier transform (STFT) of a functien

with respect to a fixedvindow functioni?’ is defined as:

FW[s)(r,w) = \/%/_OO Wt —7)s;(t)etdt (3)
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A. STFT Sparsity in Speech Signals

In order to estimate the mixing parameters of our mode 99t
we shall utilize the observation that time-frequency reprea-
tions of speech signals are sparse, and thus only a few Ga
coefficients capture most of the signal power, cf., [1], [20
[27]. This has been empirically verified in [1]. Moreover [26
investigates sparsity of speech in the STFT domain as well
in the wavelet domain, with the conclusion that the STFT pr L
vides slightly higher sparsity with the proper window cheic o6k
Nevertheless, in this paper we present additional expertisne
to further demonstrate sparsity of speech in the STFT doma

Fifty speech sources from the TIMIT data base, eac
consisting of 50,000 samples sampled at 16 kHz are used
this experiment. The speech signals are transformed irgo th ) ) o
STFT domain using Hamming windows of e diferentsizdf, I, G73e S, 2 Lo Lot i
(32 ms, 64 ms, and 128 ms), with an overlap factor of 50%u4ms and 128ms. The STFT with 32ms and 64ms window lengthbiexhi
Figure 1 shows the average cumulative power of the sorte@parser representation of the data (more power is contetin fewer
STFT coefficients along with the average cumulative powégzﬁ'gfgsgO‘;?;?np?;‘:e;%rfpa%o%”g'”a' time domain repretiem and the
of both the time domain sources and their Fourier (DFT) '
coefficients. Table | shows the percentage of coefficients
needed to represe%, 95% and98% of the total signal the normalized attenuation vector
power using the STFT (with varying window sizes), the time 1 A .
domain signal, and the Fourier transformed signals. Thetses Xatlk, 1] := %0 [ el o 2wl ][R0, (10)
indicate that the STFT with a 64ms window-size demonstrates ’ ) )
superior performance in terms of sparsity, capturing 98%hef I:|ere|| -] denotes the Eu.clldean norm._Note that the resulting
total signal power with ca 9% of the coefficients only. FigureXat ¥, ] correspond to points on the unit sphereRof. N ext,
2a and 2b further illustrate the sparsity of speech sigmaisg W€ calculate the complex phaseswoAii [k, ] of mixtures
STFT domain by showing the normalized histograms of tHg: J = 2;---,m relative to the mixtures; at each T-F point
sample magnitudes as well as the magnitudes of the Galor), @s in [1]. This yields
coefficients, respectively. Figure 2 again illustratest ttee ~ 1 2k,
STFT transform domain exhibits a much sparser speech signal Airlk,l] := ——2

le jl[k},l]
representation, where the magnitudes of most of the STI|::T . .
. inally, we append then-dimensional feature vectogy,
coefficients are very close to zero.

defined as in (10), to obtain thsn — 1 dimensional feature
vectorF[k, (] given by

97.5r

Percentage of the Power

STFT: 32ms window
— — — STFT: 64ms window N
STFT: 128ms window

— - — - Time domain signal B
Frequency domain signal

40 60 80 100
Percentage of Points

(11)

TABLE |
PERCENTAGE OFCOEFFICIENTSNEEDED TOREPRESENTVARIOUS F[k, ]
PERCENTAGES OF THETOTAL SIGNAL POWER &1 [k,1] Soliesl] Aok I ATkl

Percentage Percentage of Points Needed o [ R T N N [ E LU [T R alkl] - mak, ] } ’

of the STFT. | STFT. | STFT. | Fourier [ Time (12)
Total Power | 32ms 64ms 128ms | Domain | Domain . . . .

Note that if only one source, say;, is active at a certain

90.000 2.6781 | 2.2656 | 2.6999 16.954 14.098 T-F point [k,l], ie. §J[/€,l] # 0 and §j [k,l] -0 fOI’j ;’é J,

95.000 50167 ) 4.5710 | 5.5212 | 24.604 | 23.756 the feature vector will then reduce to

98.000 9.4100 | 9.1439 | 11.032 34.560 38.970

Flk,l = F,
= [ a1y . AmJ . 62(7 e 5m] ] (13)

. - . where we used the fact that the columns of the mixing matrix

E.S' Feature Vector Extraction and Mixing Parameter ESt'maA are normalized. Furthermore, we assume that the attenuatio
tion coefficients arepositive real numbers. In this casE; does

Motivated by the sparsity of the STFT coefficients of speeciot depend orik, I], rather it is completely determined by the
signals, we shall represent our mixtutes ..., z,, in the T- mixing parameters in thgth column of the mixing matrix,
F domain via (9), and propose an algorithm to estimate tiggzen in (7). Moreover, the converse is also true, i.e., lgive
matrix A(lw) for everyl. To that end, we first construct aF ;, one can extract the mixing parameters. Indeed, the first
2m—1 dimensional feature space where the finrstoordinates m coordinates off; yield ay;, ..., a,,s. On the other hand,
correspond to the normalized attenuations of the mixturés; = 0 and the rest of the delay parametéss, . .., d,,; are
x1,..., T, While the remainingm — 1 dimensions are the directly given by the lastn — 1 components of' ;. Therefore,
delays ofzs, ..., z,, relative tox;. More precisely, lek be if the sources have disjoint T-F representations, i.e. iarat
as in (6). First, at each poift, ] on the T-F lattice, we define T-F point only one source has a non-zero STFT coefficient
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Fig. 2. Normalized histograms of (a) time-domain sample mitages of 50 speech signals, and (b) STFT coefficient madest of the same 50 sources
(with a window length of 64ms and 50% overlap). Note that tA€&B coefficients provide a significantly more sparse repreg®n. In both (a) and (b), the
values have been normalized to the range [0 1]

at the most, then the feature vec®Ik, (], corresponding to discussed.

any T-F point[k, ] at which at least one source is active, will The proposedParameter Estimation Algorithm can be

be in the sefFy,...,F,}. Once this set is obtained, one casummarized as follows:

compute the mixing parameters using (13) as described abovel) Compute the mixture vectat[k, ], as in (6) at every

In practice, it isnot realistic to expect that the sources  T-F point[k,].

have disjoint T-F representations. However, as discussed i 2) At every T-F point[k,[], compute the corresponding

Section IlI-A as well as in [1], speech signals have sparse feature vectoiF'[k,[], as in (12).

Gabor expansions. Therefore, it is highly likely that there 3) Perform some clustering algorithm (e.g. K-means) to

will be an abundance of T-F points at which one source find then cluster centers in the feature space. The cluster

is dominant. In other words, there will be several points in  centers will yield preliminary estimates; andj;; of

the T-F plane where one source has a “high contribution”,  the mixing parameters;; andd;;, respectively, via (13).

i.e., a relatively large STFT coefficient, while other sagc 4) Normalize the attenuation coefficients to obtainfihel

have near-zero contributions. (See Assumption 4 of Section attenuation parameter estimatés;, i.e.

[1I-C for a more detailed discussion about this observajion m

Thus, in the feature space, poirfi$k, /] will tend to cluster aij = aij/(z az;)'?.

aroundF;,j = 1,...,n. Based on this, after constructing a i=1

feature vectorF[k, ] at every T-F point where the mixtures

|#;| are not smaller than a threshold, we perform K-mearp\f hat the algorith d ab ol ds clus-

clustering to obtain the cluster centers. Other authors also_tet at the algorithm proposed a ove simply exten S Clus
ring based approaches for the estimation of the mixing

use K-means [28], as well as various different techniquées tors t date th hoic mixi del
for clustering-based methods in various BSS problems. pRFrameters to accommodate thécn anéchoic mixing mode.

example [29] uses a Fuzzy C-means approach, while [28]

detects attenuations by locating horizontal lines using &n Method Assumptions and Limitations

elaborate technique based on a relaxed sparsity assumfition The parameter estimation algorithm described above will
this point, it is important to note that we dmwt claim that K- yield a meaningful estimate of the mixing parameters only if
means is an optimal method for detecting the attenuatiods agertain assumptions hold.

delays. We simply propose K-means as a generic method that\ssumption 1: Due to the periodicity of the complex
can be used to estimate the mixing parameters as the propasgsbnential and to avoid phase indeterminacy, we assurhe tha
feature vectors tend to cluster and the cluster centergifgden

the mixing parameters. jwig| < (14)

The cluster centers, obtained as discussed above, yiéld der all i, j and everyw. This is equivalent to assuming that
matesa;; andd;; of the mixing parameters;; andd;; which 16mae| < 70/ (15)
are computed again using (13). At this point we assumed that e e
n, the number of sources, kisiowna priori. This issue will be whereé, ., is the largest delay in the system awg,,., is
revisited in Assumption 3 of Section 1lI-C where the effectthe maximum frequency component present in the sources.
of incorrect estimation of the number of sources is furthéf w,,.. = ws/2, where w, is the sampling frequency,

The final delay parameter estimatese ,; := d;;.



then the algorithm will yield accurate estimates of the ylelaour assumptions (4.1) and (4.2) are satisfied for speechlsign
parameters);; as long as each of these delays is not largéw an even greater extent as (4.1) and (4.2) are weaker usrsio
than one sampleThis entails that the spacing between angf the W-disjoint orthogonality assumption.
two microphones should be limited t < 27¢/w,, wherec Note that in Section IV-D, we investigate the same BSS
is the speed of sound, see [1]. Note that one does not neegtablem in a probabilistic setting. In this case, we assume
know the actual spacing between the microphones- only thhat at each T-F point, the magnitudes of the STFT of speech
it is within the bound. signals areindependentidentically distributed (i.i.d.), with
Assumption 2:We assume that all the attenuation parameé- distribution that isconcentrated at the originRoughly
tersa;; are positive. This is again due to the problem of phasgeaking, such an assumption is the probabilistic versfon o
indeterminacy. More precisely, the equality (4.1) and (4.2) in that it ensures that (4.1) and (4.2) arsfged
with high probability.
At this point we note that there are two different “sparsity”

. . .. notions that are of concern:
for everyk € Z leads totwo possible attenuation coefficients ; . . .
1) Sparsity of a particular source signal in the transform

(and infinitely many delay parameters corresponding to each

ae—iw6 _ _ae—i(w6+(2k+l)ﬂ') _ _ae—iw(5+(2k+1)7r/w) (16)

. - . domain.
attenuation coefficient) for every entry in the feature vest 2) The number of sources simultaneously active at a given
given by (13). To avoid this problem, we assume that delays T-F point y 9

are limited to one sample at most, i.Assumption 1 holdsnd
that attenuation parameters are positive. Note that Assamp
2 holds for anechoic audio mixtures.

Assumption 3:We assume that the number of soureess
known prior to running the clustering algorithm. In praetic

Both in the deterministic and the probabilistic settingg w

use the first notion only as a means to arrive at the second;

the methods proposed in this paper are all arrived at via the

second sparsity notion. In the deterministic setting, Spaof

this is rarely the case. However, our experiments indidzaé t\i’z];h ;Zgﬁvrf;?gnssoﬁrf) 'anijse(i g)nzr:e;;;s:ﬁ,aelg tt(()) r?():ﬂalln

the proposed algorithm is robust with respect to changes o iy . e . :
brop 9 b 9 the probabilistic setting, discussed in I1V-D, both notiare

the number of assumed sources, particularly if the number.n erconnected under the assumption that the sources dre i
sources iverestimatedFigure 3 shows a three dimensional u umpti u el

view of the feature vectors obtained using the correct Xreérll the T-F domain.
parameter values as well as those obtained using the eedract
cluster centers by applying the described parameter estima
algorithm onm = 3 simulated mixtures ofi = 5 sources.
In this example, the “user” overestimated the number of
sources and the algorithm thus extracted= 6 sources. 0
However, it is clear that five of the extracted cluster center 84
can be used to estimate the correct mixing parameters. The o2
sixth center, on the other hand, produces a “bogus” column o
in the mixing matrix. Because of the sparsity of the STFT 4,
expansions of speech signals, according to our experiment ,
(see section VI), this does not seem to cause any seriou:
problems with demixing. For an extensive study of the effect
of “overestimating” the number of sources on the separation
performance see [14].
Assumption 4:We assume that

(4.1) there is an abundance of T-F points at which only
one source is active, i.e., only one source has a large
coefficient, and

(4.2) at any T-F point, no more tham (the number of
mixtures) sources are active.

A Sim”a.-r' yet. strong_er, assumption was intro_dgcgd and'th%g. 3.  3-D view of real (crosses) and estimated (circlesrpeters as

oughly investigated in [1]. The so-called W-disjoint orgfte recovered from the K-means clustering stage. The algoritem run on 3

nality of [1] is equivalent to the (4.1) and a stronger vensiosimulated mixtures of 5 sources (m=3, n=5), with the usevisglfor 6
f btained b laci b ith h sources. Note the proximity of the real to the estimatedrpaters. Also note

of (4.2) o ta_'ne y rep a(_:'nm above with 1. In [1], the e estimated source parameter that does not corresporny treal source.

authors provide mathematical measures that can be useditplayed are the 3-dimensional normalized attenuatioarpaters. The delay

quantify the extent to which the W-disjoint orthogonalityparameters have not been included.

assumption is satisfied by speech signals, and presentsresul

from experiments conducted on a large humber of mixtures.

They conclude, for example, that speech signals %8% IV. SOURCEEXTRACTION

“disjoint” in mixtures of 2 sources, and4% “disjoint” in This section describes the method proposed for extracting

mixtures of 10 sources. These observations in [1] show thhe original sources based on the estimated parameters ob-

=




tained as in the previous section. P, is equivalent to/*-basis-pursuit (L1BP), given by

First we construct the estimated mixing matr{] as L1BP: min[§: subject to A — % and 1810 < m.
5e

dlleiilw[)gu Ce leneiilw[)gl" (21)
~ d21e_ilwog2l dQne—ilwogzn In Theorem 1, below, we prove that such an equivalence holds
All] = . . . . (17) forany0 < ¢q < 1 as well, provided4d andx are real. More

precisely, in this case the solution &f, is identical to the
solution of the/?-basis-pursuit (LQBP) problem, given by

7ilu.)o Sml 7ilu.)o gmn

am1€ Amn€

Here,d;; are the estimated attenuation parametersigndre LQBP: min|3°[lq subject to A8° =% and [|3°(o < m.

the estimated delay parameters, computed as discusse.ear! (22)

Note that each column od[l] is a unit vector inC™. Note that to solve the LQBP problem, one needs to find the
The goal now is to compute “good” estimates s, ..., s  “best” basis for the column space df that minimizes the’?

of the original sourcess, s, ...,s,. These estimates mustnorm of the solution vector.

satisfy In the next section, we shall investigate solution stra&egi

All)g® [k, 1] = %[k, 1], (18) for P, and LOBP, and discuss how to handle the case when
the matrix A is complex.
wheres® = [35,...5¢]T is the vector of source estimates in

the T-_F domain. At eqch T-F poir{ﬂf,.l], (18) .providesm B. SolvingP, and ?-basis-pursuit
equations (corresponding to the available mixtures) with L _

n > m unknowns(s¢, ...5%). Assuming that this system of 1€ optimization problenty is not convex for) < ¢ < 1,
equations is consistent, it has infinitely many solutions. TUS computationally challenging. Under certain condion
choose a reasonable estimate among these solutions, ve §H5|m|xmg ma.trl.xA and on the sparsny of, it can be shown
exploit the sparsity of the source vector in the T-F domain, fhat a near minimizer can be obtained by solving the convex

the sense of assumptions (4.1) and (4.2). P, problem [30], [32], [33], which ifA andx are real, can
be reformulated as a linear program. This is, in fact, one

_ o of the main motivations of the'-based approaches in the
A. Sparsity and?? Minimization literature. On the other hand, we do not want to impose any a

At this stage, we wish to find the “sparsesf that solves Priori conditions on the mixing matrixi (consequently on the

(18) at each T-F point. This problem can be formally state?ptimated mixing matrixd). In fact, the experimental results
as presented in Section VI indicate that the mixing matrices th

(19) correspond to anechoic mixing scenarios do not satisfyethes
a priori conditions, and therefore, we cannot approximiage t
where |[u||sparsedenotes some measure of sparsity of a vect§plution of %, by the solution off’;. Without such conditions,
- only local optimization algorithms for solving, are available
Given a vectom = (ui, ..., u,) € R", one measure of its in the Iiterature, e.g., [33]. Below, we prove that_ ttﬂg
sparsity is simply the number of the non-zero componerREoblem with0 < ¢ <1 can be solved in combinatorial time
of u, commonly denoted by|ullo. Replacing |lu|sparsein Whe€Never the mixing matrix is real. _
(19) with ||ul|o, one gets the so-calleB, problem, e.g. [30]. _Theorem LiLet A = [a|az|...|a,] be anm x n matrix
Solving P, is, in general, combinatorial with the solution beingVith » > m, Ai; € R, and suppose that is full rank. For
very sensitive to noise. More importantly, the sparsityfeé t U < ¢ < 1, the P, problem
Gabor coefficients of speech signals essentially suggleats t min|[|s||, subject to As = x
most of the coefficients are very small, though not idenical s
zero. In this caseP, fails miserably. Alternatively, one canwhere x € R™, has a solutions* = (s},...s}) which
consider has £ < m non-zero components. Moreover, if the non-
Jully := (Z|u1‘|q)1/q Zero compgnents o&* are s;f(j), j = 1,...,k, then the
P corresponding column vectoks, ;) : j = 1,...,k} of A
are linearly independent.
The proof of this theorem is provided in the Appendix.
Given anm x n real mixing matrix A with m < n,
heorem 1 shows that the solution of the correspondig
problem will have at mostn non-zero entries, and therefore
will automatically satisfy the additional constraint of B
(compare (20) and (22)). Thus, if the matrik is real, the
solution of LOBP and the solution of th&, problem are
P,: min|°|q subjectto Ag® = %. (20) identical. As such, by solving LQBP, i.e., by finding all the
5 subsets of the set of columns of that form a basis and
Note that this approach, with = 1, was proposed before,choosing the one that offers a solution with the miniméfn
e.g., [12], [13], [14]. It is a standard result thatAf is real, norm, we can solve thé>, problem. In other wordsp, is

min [|8¢||sparse  SUDjECt tO AS°® = %,
Se

where(0 < ¢ < 1 as a measure of sparsity. Here, smatjer
signifies increased importance of the sparsityupke.g. [31].

Motivated by this, we propose to compute the vector olf
source estimate8® by solving the P, problem at each T-F
point [k, ], if the mixing matrix is real The P, problem is
defined by replacingul|sparsein (19) with ||ul|, to obtain the
following optimization problem



computationally tractable whenever the mixing matdxand complex-valued case. Recall that at a given T-F point the
x are real, and can be solved via the following straight-fedvaalgorithm attempts to extraet sources fromm mixtures with
combinatorial LQBP algorithm. m < n using an estimatel of the mixing matrixA. In other

LQBP Algorithm: Let A be the set of alln x m invertible words, one needs to find T-F estimates of the sources so that
sub-matrices ofdA (A is non-empty asd is full rank). The (18) is satisfied. Since the system of equations defined by (18
solution of ¢¢-basis-pursuit (and thus, by Theorem 1, thes underdetermined, it has an infinite number of solutiofs. |
solution of P, in the real valued case) is given by the solutiowe now assume that the STFT coefficient magnitudes of the
of sources at all T-F points are i.i.d. random variables anthall

min || B~ 'xp||, where B € A. (23) coefficient phases are i.i.d random variables that are iegep

dent from the magnitudes, we can adopt the Bayesian approach
and choose the solution that is given by the corresponding
maximum a posteriori estimator. That is, at each T-F point

[lls:hl] the extracted source vectd?[k, ] must satisfy

Here, forB = [ai(1)| s |ai(m)], XpB = [xz(l) - 'Ii(m)]- Note

that #.A4 < (Z) thus (23) is a combinatorial problem.
Theorem 1 does not hold when the matrixis complex-

valued; a counter example and discussion can be found

[34]. Note, however, that the goal of finding the solutiontwit  3°[k,1] = arg max P(8°[k,l]|4, %[k, 1])

the smallest? (quasi-) norm is to impose sparsity. Thus if se[k ] ~

the statement of the above theorem does not hold, i.e., the = arg max P(X[k,[]|A, 8%k, 1)) P(8°[k, I])

1° “norm” of the minimizer of P, is larger than the rank of seid o

A, then one would not, in fact, wish to use that solution. For e ST[%)I(] PE°lk, 1) (24)
this reason, in the case of anechoic mixtures, thus compjex = arg max P(|8°[k,1]|, Z8°[k, 1)) (25)
we propose to extract the sources using thdasis-pursuit gelk.]

approach, i.e., by finding the best basis composed by a subset = argmax P(|8°[k, 1]]) P(£8%[k,1]) (26)

of columns ofA that minimizes the/? norm of the solution
vector. Theorem 1 shows that this is equivalent to solvirgg tfNote that in the third equality we use the fact that

P, problem in the real-valued case. All]8®[k, 1] = %[k, 1]. Now, assuming that
e Ml/ppe_ﬂlgie[kal”p
C. The Separation Algorithm P(|5:°[k,1]]) = D) (27)

Based on the discussion above, the proposegaration _i.e., that the magnitudes of the sources are independent and

algorithm can be summarized as follows. At each T-F IOO"H:ientically distributed following a Box-Tiao distributio[35]

[k, 1]: . o - ) (equivalently, a generalized Gaussian distribution) fome
1) Construct the estimated mixing matr¥l] as in (17). 1> 0andp < 1, and that

2) Find the estimated source vec#sik, /] by solving the ]

¢9-basis-pursuit problem witid = A[l] as described P(£5°[k,1]) = =—, (28)

above for somé < ¢ < 1 (as demonstrated in Section 2

VI, a choice of0.1 < ¢ < 0.4 is appropriate). i.e., that the phases are uniformly distributed, we obtain
3) After repeating steps 1 and 2 for all T-F points, recon- e _ B N ) [

struct s°(¢), the time domain estimate of the sources k1) = argg[%e 1

from the estimated Gabor coefficients.

Remark. In the literature the main focus has been to is®r
¢*-basis-pursuit for solving the source extraction problerg,,
[12], [13], [14], [20]. The main motivation for this as disssed Reintroducing the constraint set by (18), the problem then
above, is that;-basis-pursuit can be formulated as a convéxecomes

program, and thus is preferable from a computational pdint o . e . <o .

view. Therefore, the attempt to considgrbasis-pursuit with s b 18°[%, &]llp, subject toAs®[k, I = %[k, 1],

0 < ¢ < 1 might sound counter-intuitive at first. However, . . . . ) _ .
in the case of BSS of speech signals, the size of egeh which is identical to theP, prob_lem defined as in (20) Wlth
basis-pursuit problem to be solved is quite small ig an ¢ — P+ In other words, by solving’ of Section IV-A with
m X n matrix wherem is the number of microphones and! € (0,1], we |ntr|.n3|cally °°”."°“te the maximum a postenorl
n is the number speakers). Thus the combinatorial algorith(MAP? esuma;g t'f.bthf gnagmtlédestoi;heBsoqrr_cesd[nm:an T-F
proposed above is in fact of comparable complexity with %(_)mam were distnbuted according fo the box-11ao dis

I . . ith p = ¢, and if the phases were uniformly distributed.
convex program. A similar observation was also made in [S#huspone (\]Nould expect'g) obtain best separatign resulig Usi
See section V for a more detailed discussion. ’

P, (or LQBP) if the underlying sources are in fact Box-Tiao
o _ distributed with parametes = ¢. Although we do not claim
D. Probabilistic Interpretation that this family of distributions provide the best model foe
This section provides an interpretation of the present&IFT-magnitudes of speech signals, we expect that, ameng th
source separation algorithm from a Bayesian point of viefamily of algorithms given by?, (or ¢9-basis-pursuit) witly €
by generalizing the approach of Delgado et al. [22] to th@, 1], the best separation will be observed for the valug of

arg min ; |85 [, 1P



If these assumptions hold, then the decomposition of the
mixtures into their source contributions will be succeksfu
015921 M | We shall not address here the problem of having more than
m active sources at certain T-F points as this would violate
our basic sparsity assumption and render the us&-bfasis-
pursuit inappropriate. A more important issue is that of the
mixing model recovery stage not yielding the perfect colsmn
in the mixing matrix, as this would negatively affect the smu
estimates. Under the sparsity assumption, it is also vkepli
for the number of active sources to be less tharat many
‘ T-F points. In that case, errors in the estimation of the ngxi
-3.1416 Phose 3.1416 directions, and possible existence of noise might lead Isefa
assignments of some contributions to sources that are tn fac
Fig. 4. The empirically calculated probability density étion of the phase silent. These contributions, which the algorithm wouldoret
of speech STFT coefficients. One can see that the phases doemly 55 source activity, could be due to projections of contiitnst
distributed betweer-7 and . .
from other sources or due to noise.

h - he fit b h irical distributiortha To avert these problems, we introduce a power ratio pa-
that optimizes the fit between the empirical distributiort rameter p,where0 < p < 1, which the user may adjust

magpnitudes of the STFT of speech signals and the diStr.'m;'tiooased on the noise level or expected difficulty of separation

given by (27) Accordingly, after resolving the contribution of each smaur

. We computed the STFTs of 300 three-second-long Spegﬁﬁ (1-basis-pursuit, we inspect each source’s contribution to
signals from the TIMIT database (sampled at 16kHz) Using,A. ttal power (of all sources at that T-F point). We then
window length of 1024 and an overlap of 50%. We calculat eserve ther highest sources where < r < m, which
the empirical probability density of the phases, plotted i ontribute, collectively, to at leadtd0p% of the totél power

Figure 4, which clgarly shows the validity of the assumppon and set the rest to zero. The motivation behind this is that
a uniform distribution. We then used the Nelder-Mead simpler - < rce is inactive, noise will still project on the soeiec

search algorithm [36] to find the maximum likelihood esti(snatOIireCtiOn giving a contribution, albeit a small one, henie t

of the value ofp, for the magnitudes in each case. This yieldﬁeed to introduce the paramek,eto get rid of these [ananted

estimates fop with sample mean.2737 andsample standard mall contributions. To summarize-:

deviation 0.0313. Note that, as expected, this matches with, .t o Suppression Algorithm: At each T-F point

the results presented in Section VI, where best separaul%nl].

performance is obtained withh1 < ¢ < 0.4. T
The fact that we obtain a small sample standard deviation

further indicates that the value af that provides the best

fit is appropriate for speech signals in the STFT domain, at IeasthOp% ‘?f the t(_)tal POWET.

with a window size of approximatel§dms. Note that there ) Set the remaining estimates to zero.

iSs no guarantee that such a choice would be optima| f§ee Section VI for implementation of this algorithm with

each individual speech signal. If for example, we had pri¢@rious values op.

knowledge that the signals we are dealing with are not very

sparse, then a larger value gfwould be justified. On the V. COMPUTATIONAL COMPLEXITY

other hand, since we are dealing wiilind source separation,

our goal is to work with a fixed value that is suited to the

signals at hand. The above discussion suggests;that.27

is a good choice. Finally, we note that the question of how

incorporate additional information, such as some soureggb

sparser than others, remains an interesting open problem.

1) Sort the source coefficient estimates in decreasing .order
2) Preserve the first (highest) sources that contribute to

In order to get an idea about the computational complexity
of the proposed?-basis-pursuit algorithm, we conducted a se-
ries of tests comparing the proposed technique to secoredt ord

ne programming (SOCP) [37], an interior point method used
to solvel; minimization problems in the complex domain. We
utilized the SeDuMi package [38] as a numerical solver for
) ) ) ) the SOCP problem. Note that a SOCP approach can only be
E. Interference Suppression and Distortion Reduction utilized for the P, problem and not for the generg} problem

The algorithm proposed in Section IV-C separatesources with ¢ < 1.
from m mixtures. The task is accomplished by extracting at The experiments involved varying the number of mixtures
mostm sources at each T-F point that minimize viabasis- 1, from 2 to 5 and the number of sourcesfrom m to 15.
pursuit, as discussed above. The following assumptions dtige results reported in Figure 7 clearly indicate that giaen
required to ensure an accurate recovery of the sources: number of sourcesn( < 12) and a relatively small number

i. No more thanm sources are active at that T-F point. of mixtures (» < 5), LQBP outperforms SOCP in terms

ii. The columns of the mixing matrix were accuratelyof computational speed. A similar conclusion was previpusl

extracted in the mixing model recovery stage. reported in [34] where a combinatorial approach was pragose

iii. The mixing matrix is full rank. for the P, problem in the complex domain. One could see from

iv. The noise affecting the mixtures is negligible. the figure that the computational complexity of SOCP is high
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Fig. 5. The spectrogram of (a) one of the original sourcey,ofte of the mixtures, and (c) the corresponding extractadces from 4 mixtures of 5
underlying sources when the user estimates the existen6esoftirces.
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(a) Original Sources
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(b) Mixtures

mﬁ l i
o

(c) Extracted Sources

Fig. 6. The (a) original sources, (b)mixtures, and (c) etad sources from 4 mixtures of 5 underlying sources wherusiee estimates the existence of 6
sources.

initially but grows very slowly with the number of sourcedistortion due to algorithmic or numerical artifacts such a
and mixtures. On the other hand, LQBP has a much low#dorced zeros” in the STFT. SIR measures the interference
complexity for a small number of mixtures and sources, bdue to sources other than the one being extracted and that hav
that complexity tends to grow quickly as andn increase. residual components in the extracted source. SDR, on tleg oth
Thus, for the range afi andn that we are dealing with in this hand, is a measure of all types of distortion, whether atifa
paper, the combinatorial approach is computationallytétsle interference or noise. In [39] it was observed that informal
and more favorable than SOCP. listening tests correlated well with the nature of the pisaxt
Another advantage of the combinatorial approach as indiistortion as quantified by the SIR and SAR measures. Our
cated by [34] is in the reusability of results. In other wqrdown informal listening tests confirm this observation.
glven a certain frequency, all the matrix inversions neely on In, order to thoroughly test the proposed methods we con-
e done once and the results can be stored and used as needed. . : .
ucted experiments under a variety of conditions and wertepo

On the other hand, the SOCP algorithm needs to be rer{ & results here. First, we highlight the importance of gisih

for every single T-F point. This observation was not used 8 : : L ; .
. e available mixtures by demixing 5 sources while decregsi
generate the results reported in Figure 7 where the mat{hx

: . e number of mixtures used from 5 to 2. Next, we test the
inversions were repeated for LQBP. : i e _
algorithm in a difficult scenario where we have 10 sources

and 5 mixtures and show that it performs favorably. We then
present average results of a large number of experiments

The performance of the proposed algorithm is evaluated éonducted using a model of an anechoic room and compare
this section using experiments with both simulated and realr results, obtained for various valuesgofvhereq < 1, with
mixtures. To assess the quality of the separation, the perfthose of DUET, both in cases where we have two mixtures, as
mance measures suggested in [39] are used, namely the Sowelé as in cases when more than two mixtures are available.
to Artifact Ratio (SAR), the Source to Interference RatitR)5 Finally, we present the results of our algorithm when applie
and the Source to Distortion Ratio (SDR). SAR measures tteea real world echoic mixing scenario with 2 mixtures and

VI. EXPERIMENTS AND RESULTS
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mixtures for demixing; the last column reports the results
obtained when using DUET. Table Il shows a mean gain in
SIR of 19dB when demixing 5 sources from just 3 mixtures.
The mean gain reaches over 32dB when utilizing all five

The algorithm is first tested on simulated mixtures of Bvailable mixtures, which highlights the importance ofngsi
sources, 2 of which are speech and 3 are music. The 5 mixtuies available mixtures. Similarly, Table V which reporte th
are generated as delayed and attenuated versions of tiesowDRs of the extracted sources shows a gain ranging from
with the mixing parameters as shown in Table II

RANDOM MIXING PARAMETERS USED TO SIMULATE MIXTURES WITH5

TABLE Il

Figure 5 shows the T-F decomposition of one of the sourcél

2dB to over 14dB when using 2 to 5 mixtures respectively.
Interestingly, the SAR degrades upon separation when using
less than 5 mixtures. This may be attributed to the fact
that our algorithm is non-linear in nature, and acts on the

SOURCES

51 5 53 ) P STFT transform of the mixtures, extracting the sources &t th
a1 | 0.61 0.71 0.73 0.82 | 0.87 domain. This may introduce numerical artifacts, such asefr
az | 0.94 0.65 0.83 0.99 | 0.72 zeros or non-smooth transitions in the STFT of the sources,
asi | 0.85 | 076 | 072 | 0.93 | 0.60 which are then reflected by the SAR values reported. Note that
Z: 8'2(8) 8';8 8:?? 8'2}; 8:2? when comparing the results of SDR, SIR and SAR obtained
5 00T =062 T 008 | 072 [ 080 by applying the proposed algorithm on 2 mixtures only vs. the
53 | 042 | —0.61 | —0.70 | 0.71 | 0.64 results obtained by applying DUET, the presented algorithm
84 | —0.14 | 0.36 0.40 0.19 | 0.29 outperforms, on average, DUET in all criteria (last 2 colemn
dsi | =039 | —0.39 | —0.24 | —0.01 | 0.64 of Tables III,IV, and V). Finally, Figure 8, shows the SDR,

SIR and SAR resulting from separation using 5, 4, 3 or 2
ixtures, for values ofy, 0 < ¢ < 1, in steps of 0.1.

one of the mixtures, and the corresponding extracted spurceTo test the performance of the algorithm when the number
when using 4 mixtures for separation and settingo 0.3. of sources is large, we next used it on 5 mixtures of 10
Figure 6 shows all the original sources, mixtures, and etéth sources, using random delays and attenuations with the same
sources when using 4 mixtures to perform the separatidn.sources used in the previous experiment augmented with
Tables IlI, IV and V show the demixing performance basesl more speech sources. The results are shown in Figure 9.
on the SIR, SAR, and SDR, respectively. All results wer€he average gains in SIR, SAR and SDR of approximately
obtained by running the algorithm with the user parametet8.8, 4.9 and 12.3 dB, respectively, confirm that the progose
n = 6 andp = 0.8 and by settingg = 0.3. Each column algorithm performs remarkably well even in such a scenario
in these tables indicates the performance before demiximpere there is a much higher number of sources than mixtures.
as well as when using either 5, 4, 3, or 2 of the availabla fact, all but the very last extracted source are recovered



-10

Average SDR for estimated sources (n=5,p=0.8)
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Fig. 8. Average SDR, SﬁFg and SAR (over the five sources) obthinom demixing various number aimulated anechoic mixtures of 5 sources as a
function ofq with a preserved power parameter of 0.8. The horizontal ig@esents the results obtained using DUET. Across allltgesthe user estimates
the existence of 6 sources.

TABLE Il
DEMIXING PERFORMANCE EXAMPLE WITH THE RANDOM MIXING PARAMETERS OFTABLE |l ON MIXTURES OF5 SOURCESp = 0.8, 7 = 6: SIR
Source SIR (dB) SIR (dB) SIR (dB) SIR (dB) SIR (dB) SIR (dB)
before demixing| after demixing | after demixing | after demixing | after demixing | DUET with 2 mixtures
with 5 mixtures | with 4 mixtures | with 3 mixtures | with 2 mixtures
S1 —4.46 30.23 23.38 18.09 19.61 21.76
S2 —4.86 34.30 21.20 15.84 14.40 12.94
S3 —5.46 19.05 19.63 22.51 10.34 6.99
S4 —4.06 40.90 26.25 22.28 16.15 10.33
S5 —3.59 39.92 26.22 20.53 16.96 14.85
mean —4.49 32.88 23.33 19.85 15.49 13.37
TABLE IV
DEMIXING PERFORMANCE EXAMPLE WITH THE RANDOM MIXING PARAMETERS OFTABLE Il ON MIXTURES OF5 SOURCESp = 0.8, n = 6: SAR
Source SAR(dB) SAR (dB) SAR (dB) SAR (dB) SAR (dB) SAR (dB)
before demixing| after demixing | after demixing | after demixing | after demixing | DUET with 2 mixtures
with 5 mixtures | with 4 mixtures | with 3 mixtures | with 2 mixtures
S1 12.40 13.51 11.89 6.20 5.44 5.15
S2 13.64 15.48 11.38 7.74 2.76 1.50
S3 13.64 11.80 7.79 4.69 —0.62 —0.59
S4 10.16 14.89 8.30 3.63 2.05 1.98
S5 17.86 15.62 9.58 7.01 4.30 4.12
mean 13.54 14.26 9.79 5.85 2.79 2.43

successfully and the speakers’ sentences could be discenwben using).1 < ¢ < 0.4, which agrees with the probabilistic
without difficulty. It is worth noting that there is an imprev interpretation and results provided in section IV-D. Ndiatt
ment even in the SAR values. A possible explanation for thike case of demixing 3 mixtures of 3 sources with the user
observation is that, due to the high number of sources, thstimating 3 sources, is an even-determined scenari@&ftirer
number of points in the T-F plane that the algorithm sets @il ¢ values will yield the same results.
zero is reduced thus reducing artifacts in the extractettesu

C. Real Mixtures
B. Simulated MiXtUreS, Anechoic Room M|X|ng Parameters Next, to provide an examp|e on real mixtures, we test the

In addition to the experiments with simulated data desdrib@lgorithm using the mixtures posted on [41], which have 2
in the previous section, additional experiments where tlseurces and 2 microphones. The microphones are placed 35cm
mixing parameters were derived from an anechoic room modwgiart, and the sources are plad#lt degrees to the left of
[40] were conducted. The model simulates multi-microphoribe microphones and 2m on the mid-perpendicular of the
multi-source scenarios in an anechoic room. Tests for extramicrophones respectively [41], [42]. Table VIII shows that
ing 3, 4, and 5 sources from 2 or 3 mixtures were eadhe proposed algorithm outperforms that of [42] for which
conducted and repeated 60 times with various anechoic rothre audio separation results can be found at [41].
mixing parameters and sources. The results were compared to
those obtained using DUET and are illustrated in Figures 10, VII. CONCLUSION AND FUTURE WORK
11, and 12 as functions qf as well as in Table VII. Note that In this paper, we presented a novel blind source separation
the reported results indicate that the best performancersccalgorithm for theunderdetermined anechodase which is ca-
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TABLE V
DEMIXING PERFORMANCE EXAMPLE WITH THE RANDOM MIXING PARAMETERS OFTABLE || ON MIXTURES OF5 SOURCESp = 0.8, n = 6: SDR
Source SDR(dB) SDR (dB) SDR (dB) SDR (dB) SDR (dB) SDR (dB)
before demixing| after demixing | after demixing | after demixing | after demixing | DUET with 2 mixtures
with 5 mixtures | with 4 mixtures | with 3 mixtures | with 2 mixtures
S1 —4.79 13.41 11.58 5.86 5.23 5.01
S2 —5.10 15.43 10.92 7.02 2.32 0.61
S3 —5.70 11.01 7.47 4.59 —1.31 —4.14
S4 —4.61 14.88 8.22 3.54 1.78 0.00
S5 —3.69 15.60 9.48 6.78 3.99 3.79
mean —4.78 14.07 9.53 5.56 2.40 1.06
TABLE VI
DEMIXING PERFORMANCE EXAMPLE WITH5 MIXTURES OF 10 SOURCES(RANDOM MIXING PARAMETERS), p = 0.8, i = 12
| SIR (dB) | S1 | S2 | S3 | S4 | S5 | S6 | S | S8 | So | S10 | mean |
before —7.46 | —6.55 | —5.34 | —10.43 | —5.96 | —6.30 | —3.78 | —10.15 —9.48 —4.31 | —6.98
after 24.12 13.04 25.65 16.34 18.68 20.24 20.47 21.94 18.98 18.80 19.83
gain 31.58 19.59 30.99 26.78 24.64 26.54 24.24 32.09 28.46 23.12 26.80
[SARAB)[ s1 | s2 | s3 | S4 [ ss | se | st ] S8 | So | 510 | mean |
before 2.63 4.08 2.63 4.08 3.27 —4.14 | —0.89 —0.89 —3.16 —3.16 0.446
after 1.72 5.03 2.79 3.76 8.69 6.69 9.24 7.03 6.51 1.87 5.33
gain —0.91 | 0.946 0.163 | —0.327 5.42 10.8 10.1 7.92 9.67 5.03 4.89
[ SDR@B) [ s1 | s2 | s3 | S4 [ ss | ss | s7 | S8 | So | si0 | mean |
before —7.46 | —6.84 | —5.65 | —1043 | —6.77 | —6.60 | —4.59 | —10.15 | —10.40 | —5.43 | —7.43
after 7.67 4.48 0.91 3.05 6.20 3.06 9.06 9.24 5.47 4.47 5.36
gain 15.12 11.32 6.55 13.48 12.97 9.66 13.66 19.40 15.87 9.90 12.79
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Fig. 9. Average SDR, SIR and SAR over the 10 sources obtaimmed demixing 5 mixtures as a function of tlge The user estimates the existence of 12
sources.
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Fig. 10. AverageSDR, SIR and SAR (over 5 sources in 60 experiments) obtairmd flemixing 3 mixtures when the user estimates the existefid
sources. Results are plotted as a function ofg¢Her varying preserved power parameter. The horizontal femesents the results obtained using DUET.
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Fig. 11. AverageSDR, SIR and SAR (over 4 sources in 60 experiments) obtairad tlemixing 3 mixtures when the user estimates the existefd
sources. Results are plotted as a functiory ébr varying preserved power parameter. The horizontal lepresents results obtained using DUET.
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Fig. 12. AverageSDR, SIR and SAR (over 3 sources in 60 experiments) obtairad tlemixing 2 mixtures when the user estimates the existef
sources. Results are plotted as a functiory ébr varying preserved power parameter. The horizontal fe@esents the results obtained using DUET.

TABLE VII
AVERAGE DEMIXING PERFORMANCE(60 VARIOUS EXPERIMENTS WITH 3 ANECHOIC SIMULATED MIXTURES OF 3 SOURCES 71 = 3
| | p=1 [ p=08]p=06 [ DUET |

SIR (dB) | 21.713 29.861 | 34.495 | 19.688
SAR (dB) | 11.051 | 10.171 9.4898 8.4862
SDR (dB) | 9.6528 | 9.2686 8.7186 6.3667

pable of usingall available mixtures in the anechoic scenarighowed that among a class of distributions parametrized by
where both attenuations as well as arrival delays betwegnthe distribution of the STFT of speech is best fit using
sensors are considered. The proposed technique improyes 0.27. Solving the/? minimization problem corresponds to
the separation performance by incorporatitigbasis-pursuit assuming an underlying source distribution witk= ¢, which

with ¢ < 1. In the first stage, certain feature vectors aragrees with the observation that the separation perforeniznc
extracted that are in turn used to extract the parametersbefst when using.1 < ¢ < 0.4.

the mixing model via, for example, a clustering approach. . .
o . . Experimental results were presented for both simulated
This blind mixing model recovery stags followed by a : . . .
. . T .~ as well as real mixtures in anechoic underdetermined en-
blind source extraction stagewhich is based or?¢-basis- .
. Y vironments. The results demonstrated the robustness of the
pursuit, where the demixing is performed separately atyever :
o . - o resented algorithm taiser-set parameterand to thelack
significant T-F point because the mixing matrix is frequen g
f a priori knowledgeof the actual number of sources. The
a

dependent. Further enhancement of the discussed algorit aorithm performance was measured based on the SDR, SIR

was also proposed W.h'Ch was baged on preservation of certaa d SAR. Results consistently demonstrated the method’s
percentages of the signal power in order to reduce the sffec . . .
. . . superior performance with respect to all criteria. The use
of noise and clustering errors. We also provided a standar; .
robabilistic interpretation of the proposed algorithmdan® the preserved power ratio parameter enabled the user to
P P prop 9 balance the type of distortions to incur ranging from acti$a
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TABLE VIII
DEMIXING PERFORMANCE(IN DB) WITH 2 REAL MIXTURES OF2 SOURCESp = 0.7, n = 2

| SIR[42] | SIR (our algorithm)[ SAR [42] | SAR (our algorithm)| SDR [42] | SDR (our algorithm)]

S1 26.232 40.7632 4.5363 7.4011 4.4967 7.3987
S2 55.410 43.4322 5.6433 10.4101 5.6433 10.4077
mean | 40.821 42.0977 5.0898 8.9056 5.0700 8.9032

and interference. The optimal choice of this parameter, and Proof: For simplicity, setA := supps. Then the vectors

its relationship to the estimated number of sources used for{a; : j € A} are linearly dependent, i.e., there exist

demixing and the actual number of sources remains a topiet all zero, such tha} ., c;a; = 0. Define now the vector

for further research. c by settinge(j) = ¢; if j € A andc(j) = 0 otherwise. Note
In this paper, we have not explicitly considered noise astlat suppc # () and suppc C A. Then, we have

part of our mixing model. By virtue of the STFT, a denoising

stage via hard thresholding in the spirit of [43] is already Asy=x, VAER,

incorporated to our algorithm after the actual separattages wheres,, := s+ Ac. Next, we shall show that* = s,. where

during interference suppression, as discussed in Sedfi |y« is the solution of

On the other hand, one could include a similar thresholding

stage prior to the separation, or even explicitty model for

the noise when formulating the optimization problem. Thigagisfies #supp s* < #supps — 1, which will complete

latter approach would lead to a difficult optimization pribl,  the proof of the lemma. To that end, consider the equivalent
however, that can currently be solved by using computalipnaminimization problem

expensive methods that are guaranteed to provide only local

min 55l

minima as solutions, cf., [33]. As a natural extension of ngIISAIIZ.
this work, we plan to investigate the anechoic blind source o
separation problem in the presence of noise. We want to minimize
FOO = lIsalld =" nls; + Acy),
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i. f7(A) <0forxé¢ {)\ X = —s;/cj, j€suppc}
APPENDIX (recall that#s.uppc >1). . -
PROOF OFTHEOREM 1 Thus, the global minimum of must be at one of its critical
oints \;, j € suppc, where f is not differentiable; say it is
fLAj*. Then, after setting* = S« s WE have
i. As* = x,
i [|s*[l4 < |Isll,, and
iii. supp s* C supps \ {j*} which implies #supps* <
min ||sl|, subject to As = x #supps — 1.
S

For the sake of completeness, let us first restate Theorenﬁ
Theorem 1:Let A = [a;|az]...|a,] be anm x n matrix
with n > m, A;; € R, and suppose that is full rank. For
0 < ¢ < 1, the P, problem

/ Proof of Theorem 1: Let A,s, and x be as in the
hask < m non-zero comp:)nents. Moreover, if the nongiaement of Theorem 1. Ad is full rank andn > m, the
zero components 0* are sj;), j = L,....k, then the gq ationAs = x has infinitely many solutions. Suppose now

where x € R", has a solutions* = (s},...s}) which

n

corresponding column vectofg,(;) : j = 1,...,k} of A thatg* is the solution of theP, problem. Then, by Lemma
are linearly independent. _ 1, the column vectorga; : j € supps*} are necessarily
We shall use the following lemma to prove this theorem. linearly independent, and as a consequefisepps* < m.
Lemma l:Lets = [s;...s,]T € R" be such thatds = x,  m
where A andx are as above. Suppose the column vectors of
Ain{a; : j € supps} are linearly dependent. Then there
in{a;: j pps} y dep REFERENCES
existss* with the following properties:
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