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Abstract

We introduce a family of coarse quantization algorithms for heavily oversampled Gabor expansions of
classes of functions inL2(R). These algorithms, which we call the TF�� quantization algorithms, are inspire
by sigma–delta modulation, a widely implemented coarse quantization scheme for oversampled ban
functions. We show that the TF�� algorithms produce weak type approximations where modulation spacesM

1,1
m

with suitable weight functionsm are the appropriate test function spaces. We also show that the TF�� algorithms
are translation invariant up to some uniform correction.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we introduce a family of algorithms to ‘coarsely quantize’ redundant time–freq
representations of certain classes of functions inL2(R). By quantizationwe understand the reductio
of the continuous range of the coefficients to a discrete, possibly finite set. More precisely, gi
expansion of the form

f =
∑
λ∈Λ

fλϕλ, (1.1)

wherefλ ∈ C andΛ is a countable set, a quantization algorithm will produce a sequence(qλ)λ∈Λ that
takes values in some discrete setD such thatf̃ =∑

λ∈Λ qλϕλ is an approximation to the functionf in
some suitable norm.
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1063-5203/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S1063-5203(03)00020-4
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There are two different approaches to quantization:fine quantizationandcoarse quantization. Given
an expansion as in (1.1), one way to quantize the coefficientsfλ is to replacef R

λ andf I
λ , the real and

imaginary parts offλ, respectively, byqRλ := δ round(f R
λ /δ) and qIλ := δ round(f I

λ /δ). Here δ is the
step sizeof the quantizer. In this case, settingqλ = qRλ + iqIλ , we have sup|fλ − qλ| = √

2δ. Therefore
by decreasing the step size, one can make|fλ − qλ| arbitrarily small, and thus the approximation er
diminishes asδ approaches zero. Such algorithms are usually calledfine quantization algorithms.

An alternative approach exists if the expansion is highly redundant. In this case one can rep
coefficientsfλ with coarsely quantized valuesqλ, i.e.,qλ ∈D whereD has just a few elements, and s
have a good approximation. Instead of controlling the individual differences|fλ − qλ|, such an algorithm
aims to produceqλ so that the approximation error‖f −∑λ∈Λ qλϕλ‖ is small. Moreover, the algorithm i
constructed such that the approximation error diminishes as the redundancy of the expansion in
Such algorithms are calledcoarse quantization algorithms. Note that a coarse quantization algorith
exploits the redundancy of the expansion to compensate for the coarseness of the quantization.

An important property of coarse quantization algorithms is that they are more efficient in utilizin
redundancy of an expansion. For example, consider a function,f , that is sufficiently well localized in
both time and frequency. A heuristic argument in [2] shows that quantizing the Gabor frame exp
of f using a fine quantization algorithm with a fixed step sizeδ yields an approximationf̃ with
‖f − f̃ ‖ = O(A−1/2). HereA is the frame bound of the (tight) Gabor frame (and thus a measure o
redundancy of the expansion). In [11] it is shown that the asymptotic behavior of the approximatio
is O(A−1) for tight Gabor frames if the frame boundA is an integer. In this paper we introduce a fam
of coarse quantization algorithms which yield weak-type approximations, where the approximatio
is O(A−k) for a kth-order scheme.

One may of course argue that instead of increasing the redundancy of the expansion, o
increase the resolution of the quantizer, i.e., decrease the step size,δ, to obtain a better approximatio
Like increasing redundancy, this would correspond to using more bits per critical sampling in
(or rectangle in the case of Gabor frames). Indeed, it can be easily shown that fine quan
algorithms achieve exponential precision, i.e., the approximation error decays exponentially as
rate—the number of bits used to quantize each sample—increases. This is usually not the
coarse quantization algorithms. Despite this shortcoming, coarse quantization algorithms are
implemented to quantize oversampled bandlimited functions (functions with compactly sup
Fourier transforms) mainly because of their superior robustness properties. Detailed discussion
robustness properties of particular coarse quantization schemes can be found in [3,9,13]. On c
[12] shows the strong dependence of the numerical stability of fine quantization algorith
computational accuracy in the case of discrete windowed Fourier expansions. In this paper we
discuss robustness properties of TF�� schemes in detail; however we should note that these algori
exhibit similar robustness properties to sigma–delta schemes by construction.

Throughout the paper we will be discussing methods to coarsely quantize Weyl–Heisenberg1

expansions of functions inL2(R). Weyl–Heisenberg framesare frames ofL2(R) that are generated b

1 These frames are also calledGabor framesandwindowed Fourier frames.
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shifting a fixed functionϕ ∈ L2(R) along a latticeΓ = τ0Z × ξ0Z in the time–frequency plane: Fo
ϕn,m(t) := ϕ(t − nτ0)eimξ0t , the{ϕn,m: n,m ∈ Z} constitute a frame inL2(R); in other words

A‖f ‖2 �
∑
n,m

∣∣〈f,ϕn,m〉∣∣2 � B‖f ‖2

for all f ∈ L2(R), where the frame boundsA > 0, B <∞ are independent fromf . (Here〈f,ϕn,m〉 :=∫
f (t)ϕn,m(t).) For a detailed discussion, consult [2,5,6,10]. For the sake of convenience we

by (ϕ, τ0, ξ0) the collection {ϕn,m}(n,m)∈Z2 with ϕn,m(t) as defined above. As is well known,
(ϕ, τ0, ξ0) is a Weyl–Heisenberg frame, the functioñϕ := U−1ϕ, whereUf :=∑

n,m〈f,ϕn,m〉ϕn,m,
also generates a Weyl–Heisenberg frame(ϕ̃, τ0, ξ0) with frame boundsB−1 and A−1, and one has
f = ∑

n,m〈f,ϕn,m〉ϕ̃n,m. The frame(ϕ̃, τ0, ξ0) is called thedual of (ϕ, τ0, ξ0). If (ϕ, τ0, ξ0) is a tight2

frame with frame boundA, U = IdA, thusϕ̃ =A−1ϕ and we have

f = 1

A

∑
〈f,ϕn,m〉ϕn,m, (1.2)

where equality is in the sense ofL2.
Suppose(ϕ, τ0, ξ0) is a tight Weyl–Heisenberg frame ofL2(R) with the frame boundA whereϕ is a

smooth and well-localized function that is normalized inL2, tϕ ∈L2, andξ ϕ̂ ∈ L2. Then it is a standard
result [4] thatA> 1 (necessary to have a frame) andA= (2π)/(τ0ξ0).

One can define also the continuous windowed Fourier transform off with respect toϕ by
Vϕf (τ, ξ) := 〈f,ϕτ,ξ 〉, whereϕτ,ξ = ϕ(t − τ)eiξ t . Combining this with (1.2) implies

Vϕf (τ, ξ)= 1

A

∑
n,m

〈f,ϕn,m〉〈ϕn,m,ϕτ,ξ 〉, (1.3)

where the convergence is pointwise as well as inL2.
Note that (1.2) essentially tells us how to reconstructf from its frame coefficients〈f,ϕn,m〉. Our goal,

as discussed above, is to devise an algorithm to replace the〈f,ϕn,m〉 by someqn,m ∈ {d1, d2, . . . , dK},
with di ∈ C, (i.e., to quantizecn,m) such that

f̃A = 1

A

∑
qn,mϕn,m (1.4)

is a ‘good’ approximation off in some norm, preferably inL2-norm.
The algorithms that we consider throughout the paper are inspired by sigma–delta quan

algorithms that are commonly used to coarsely quantize oversampled bandlimited functions [1]. C
a functionf that is bandlimited with bandwidthπ , i.e., suppf̂ ⊂ [−π,π ], and that satisfies‖f ‖L∞ < 1.
It is well known thatf can be stably reconstructed from its sample valuesf (n/λ) whereλ > 1 is fixed;
in particular, withg satisfyingĝ ∈ C∞, ĝ(ξ )= 1/

√
2π for ξ ∈ [−π,π ], andĝ(ξ )= 0 for |ξ |> λπ , one

has

f (t)= 1

λ

∑
n∈Z

f

(
n

λ

)
g

(
t − n

λ

)
. (1.5)

2 A frame with frame boundsA andB is calledtight if A=B.
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Sigma–delta algorithms generate sequences(qn)n∈Z, qn ∈ {−1,1}, such that replacing the sample val
f (n/λ) in (1.5) by qn gives anL∞-approximation off . This is achieved by constructingqn such
that the running sums ofqn track the running sums of the sample valuesf (n/λ) uniformly. Many
different schemes exist; typically theqn are constructed recursively. For example, a first-order sig
delta quantizer generates theqn via the following recursion:

vn − vn−1 = f λ
n − qλn , qλn = sign

(
vn−1 + f λ

n

)
. (1.6)

In this case, one can show that [3]:

|vn|< 1 for all n, if v0 ∈ (−1,1), (1.7)

‖f − f̃ ‖L∞ � 1

λ
‖g′‖L1. (1.8)

In fact, this bound can be improved; [7] contains a proof that the error can be bounded pointw
Cλ−4/3+η whereC depends onη and on the value of the derivative of the original function at
corresponding point.

A kth-order sigma–delta quantizer can be defined replacing the first-order backward diff
operator in (1.6) by akth-order backward difference operator and adjusting the rule that determ
qn such that the|vn| stay uniformly bounded. In this case, thekth-order running sums ofqn track the
kth-order running sums off (n/λ) uniformly, i.e.,∣∣∣∣∣

Mk∑
mk−1=Nk

· · ·
m2∑

m1=N2

m1∑
n=N1

f

(
n

λ

)
−

Mk∑
mk−1=Nk

· · ·
m2∑

m1=N2

m1∑
n=N1

qn

∣∣∣∣∣<C,

where the value of the constantC does not depend onN1, . . . ,Nk , Mk , or f (n/λ). Thus one can prov
that theL∞ approximation error is O(λ−k). Detailed discussions of higher-order schemes can be f
in [3,13].

In Section 2, we introduce a coarse quantization algorithm for tight Weyl–Heisenberg expan
called the TF�� quantization algorithm. Given the frame coefficients〈f,ϕn,m〉 of a functionf , this
algorithm producesqn,m ∈ {qR + iqI : qR, qI ∈ {−3,−1,1,3}}. When (ϕ, τ0, ξ0) is a tight Weyl–
Heisenberg frame with frame boundA, we show that for functionsf that satisfy|Vϕf | � 1,

f̃ =A−1
∑
n,m

qn,mϕn,m (1.9)

yields a weak-type approximation where the modulation spacesM1,1
m with suitable weight functionsm

are the natural test function spaces. Moreover, we show that the resulting approximation error is O(A−1).
Like the case with the sigma–delta schemes, this is achieved by producingqn,m such that the running
sums ofqn,m track the running sums of〈f,ϕn,m〉 uniformly.

In Section 3, we show that the TF�� quantization algorithm is translation invariant up to so
uniform adjustment. In Section 5, we define the higher-order TF�� schemes, and show that t
approximation error is O(A−k) if the approximation is produced by akth-order scheme (wherek is a
positive integer). Sections 4 and 6 present numerical experiments for the first-order and secon
TF�� schemes, respectively.



Ö. Yılmaz / Appl. Comput. Harmon. Anal. 14 (2003) 107–132 111

s

nctions.
aginary
and the

ents are
, a
2. The time–frequency sigma–delta (TF��) quantization algorithm

Let (ϕ, τ0, ξ0) be a tight Weyl–Heisenberg frame with frame boundA. We will consider functions
f ∈ L2(R) that satisfy|〈f,ϕn,m〉| � 1 for all integersn andm. Denote the collection of such function
by Bϕ. Let cRn,m and cIn,m be the real and imaginary parts of the frame coefficientscn,m := 〈f,ϕn,m〉,
respectively. In this paper we consider algorithms to quantize the frame expansions of certain fu
The frame coefficients are generally complex numbers and the algorithms quantize real and im
parts of these numbers separately; moreover, the algorithms that we consider are recursive
recursion relations that are used to quantize the real and imaginary parts of the frame coeffici
identical. Thus, to simplify the notation, we will use the superscriptS whenever we have an equation
system of equations, or an expression that is valid for bothS = “R” andS = “I ”.

Now consider the recursions:

uSn,m − uSn−1,m = cSn,m − pSn,m, pSn,m = sign
(
uSn−1,m + cSn,m

)
,

vSn,m − vSn,m−1 = uSn,m − rSn,m, rSn,m = sign
(
vSn,m−1 + uSn,m

)
, (2.10)

where

sign(x)=
{

1 x > 0,
−1 x � 0.

The difference equations given in (2.10) will be used to quantize the real part (S = “R”) and imaginary
part (S = “I ”) of the frame coefficientscn,m. Denote the sequences(uSn,m), (v

S
n,m) by uS and vS ,

respectively. SimilarlypS andrS will denote(pSn,m) and(rSn,m), respectively. Note that(
�1�2v

R
)
n,m

= cRn,m − (
pRn,m + (

�1r
R
)
n,m

)
, (2.11)

and (
�1�2v

I
)
n,m

= cIn,m − (
pIn,m + (

�1r
I
)
n,m

)
, (2.12)

where(�1v)n,m := vn,m − vn−1,m and(�2v)n,m := vn,m − vn,m−1. We will define the sequencesqR and
qI by qRn,m := pRn,m + (�1r

R)n,m andqIn,m := pIn,m + (�1r
I )n,m, respectively. Letc := (cn,m)(n,m)∈Z2 and

define the mappingTTF from l2(C) to Q by

TTF(c)= q := qR + iqI , (2.13)

whereQ denotes the collection of all sequences(xn,m + iyn,m) where bothxn,m andyn,m take values in
{−3,−1,1,3}.
Theorem 1. Let (ϕ, τ0, ξ0) be a tight Weyl–Heisenberg frame ofL2(R) with frame boundA. Letf be in
Bϕ and setq = TTF(c) wherecn,m = 〈f,ϕn,m〉. Define

F̃A(τ, ξ) := 1

A

∑
n,m

qn,m〈ϕn,m,ϕτ,ξ 〉. (2.14)

Supposeϕ is chosen such that(1+ |ξ | + |τξ |)Φ(τ, ξ), (1+ |τ |)∂1Φ(τ, ξ), ξ∂2Φ(τ, ξ), and∂1∂2Φ(τ, ξ)

are inL1(R2), whereΦ(τ, ξ) := 〈ϕ,ϕτ,ξ 〉 and∂iΦ is theith partial derivative ofΦ. Then∣∣Vϕf (τ, ξ)− F̃A(τ, ξ)
∣∣� 1 (

Cϕ,1 + |τ |Cϕ,2
)
, (2.15)
A
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whereCϕ,1 andCϕ,2 depend only onϕ. We will call F̃A the time–frequency sigma–delta approximat
of Vϕf .

Before we proceed to prove this theorem we observe that (1.7) implies:

Lemma 1. For eachuR, vR,uI , vI , defined as in(2.10)the l∞-norm is bounded by1.

Proof. Note thatuS (for both S = “R” and S = “I ”) is the state variable of a first-order sigma–de
quantizer, described in (1.6), where the sequence(cSn,m) is the input and the sigma–delta quantization
over the indexn. Sincef ∈ Bϕ, |cSn,m| is bounded by 1. Then by (1.7)uSn,m is bounded by 1. Similarly
vSn,m are the state variables of a first-order sigma–delta quantizer with the input(uSn,m), where sigma–delta
quantization is overm; again sinceuSn,m is bounded by 1, so isvSn,m. ✷

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Let us write the error term

Vϕf (τ, ξ)− F̃A(τ, ξ)= 1

A

∑
n,m

(cn,m − qn,m)〈ϕn,m,ϕτ,ξ 〉, (2.16)

= 1

A

∑
n,m

(�1�2v)n,m〈ϕn,m,ϕτ,ξ 〉, (2.17)

= 1

A

∑
n,m

vn,m
(
�̄2�̄1〈ϕn,m,ϕτ,ξ 〉

)
, (2.18)

where, for anyx = (xn,m), (�̄1x)n,m := xn,m − xn+1,m, and (�̄2x)n,m := xn,m − xn,m+1. (To avoid
unnecessarily complicated notation, sometimes we will write(�ixn,m) instead of(�ix)n,m, and(�̄ixn,m)

instead of(�̄ix)n,m.) The first equality is obvious, the second comes directly from the quantiz
algorithm by setting

vn,m = vRn,m + ivIn,m. (2.19)

The third equality is the result of summing (2.17) by parts; note that the boundary values disappe
〈ϕn,m,ϕτ,ξ 〉 = e−inτ0(ξ−mξ)Φ(τ − nτ0, ξ −mξ0) vanishes asn and/orm tends to infinity for anyτ, ξ . Let
us defineI by I := �̄2�̄1〈ϕn,m,ϕτ,ξ 〉. Then

I = �̄2�̄1
(
e−inτ0(ξ−mξ)Φ(τ − nτ0, ξ −mξ0)

)
, (2.20)

= e−iτ ξ �̄2�̄1Ωτ,ξ (τ − nτ0,mξ0) (2.21)

after definingΩτ,ξ (t, z) := eizτeit (ξ−z)Φ(t, ξ − z). SinceΩτ,ξ is smooth, we can rewrite (2.21) as

I = e−iτ ξ
(
�̄2

τ−nτ0∫
τ−(n+1)τ0

∂1Ωτ,ξ (t,mξ0)dt

)

= e−iτ ξ
τ−nτ0∫ [

∂1Ωτ,ξ (t,mξ0)− ∂1Ωτ,ξ

(
t, (m+ 1)ξ0

)]
dt
τ−(n+1)τ0



Ö. Yılmaz / Appl. Comput. Harmon. Anal. 14 (2003) 107–132 113

y

r

r

= e−iτ ξ
τ−nτ0∫

τ−(n+1)τ0

mξ0∫
(m+1)ξ0

∂2∂1Ωτ,ξ (t, z)dt dz. (2.22)

Substituting (2.22) into (2.18) we obtain

Vϕf (τ, ξ)− F̃A(τ, ξ)= 1

A

∑
n,m

vn,me−iτ ξ
τ−nτ0∫

(τ−n+1)τ0

mξ0∫
(m+1)ξ0

∂2∂1Ωτ,ξ (t, z)dt dz, (2.23)

which yields

∣∣Vϕf (τ, ξ)− F̃A(τ, ξ)
∣∣� 1

A

∑
n,m

∣∣vn,me−iτ ξ ∣∣ τ−nτ0∫
(τ−n+1)τ0

mξ0∫
(m+1)ξ0

∣∣∂2∂1Ωτ,ξ (t, z)
∣∣dt dz

�
√

2

A

∥∥∂2∂1Ωτ,ξ (t, z)
∥∥
L1(R2)

. (2.24)

Note that in the second inequality we used Lemma 1 to bound‖v‖l∞ by
√

2. We complete the proof b
estimating theL1-norm of∂2∂1Ωτ,ξ (t, z): For the sake of convenience, defineΓ (t, z) := eitzΦ(t, z), and
note thatΩτ,ξ (t, z)= eizτ Γ (t, ξ − z). We then observe∥∥∂2∂1Ωτ,ξ (t, z)

∥∥
L1(R2)

� ‖∂2∂1Γ ‖L1(R2) + |τ |‖∂1Γ ‖L1(R2),

which yields the desired bound by setting

Cϕ,1 := √
2‖∂2∂1Γ ‖L1(R2) (2.25)

and

Cϕ,2 := √
2‖∂1Γ ‖L1(R2). ✷ (2.26)

Remark 1. Note that (2.15) still holds up to some small correction term if the frame(ϕ, τ0, ξ0) is “almost
tight.” A frame is said to bealmost tightif the ratio of the frame bounds is close to 1. Suppose(ϕ, τ0, ξ0)

is a frame with frame boundsA andB. If we denote the quantityB/A− 1 by r , the windowed Fourie
transformVϕf of any functionf ∈ L2(R) can be written as

Vϕf (τ, ξ)= 2

(2+ r)A

∑
〈f,ϕn,m〉〈ϕn,m,ϕτ,ξ 〉 + 〈Rf,ϕτ,ξ 〉, (2.27)

where‖R‖ � r/(2+ r). In this case, after defining

F̃A(τ, ξ) := 2

(2+ r)A

∑
qn,m〈ϕn,mϕτ,ξ 〉 (2.28)

we can apply the proof of Theorem 1 to show that∣∣Vϕf (τ, ξ)− F̃A(τ, ξ)
∣∣� 2

(2+ r)A

(
Cϕ,1 + |τ |Cϕ,2

)+ r

2+ r
. (2.29)

Note that to obtain (2.29), we used the fact that|〈Rf,ϕτ,ξ 〉| � r/(2 + r). Thus, the approximation erro
|Vϕf (τ, ξ)− F̃A(τ, ξ)| still has the same asymptotic behavior whenr ≈ 0.
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Remark 2. A sufficient condition forΦ = Vϕϕ to satisfy the smoothness and decay conditions liste
Theorem 1 is that the functionϕ is in the Schwartz spaceS(R).

Remark 3. A natural question to ask is whether the second recursion in (2.10) is essential f
practical point of view, i.e., whether we obtain an approximation using onlypSn,m in (2.10). Our numerica
experiments suggest that if the functionf is well localized in both time and frequency, then we get a w
type approximationf̃ , using onlypSn,m, for which the approximation error is O(A−1/2). Determining
conditions thatf has to satisfy for this approximation to exist is an open problem.

Now we want to raise the question of whether we can approximatef using F̃A, and if yes, in what
sense. Fix the weight functionm(τ, ξ) := 1+ |τ | and consider the modulation spaceM1,1

m , i.e.,3

M1,1
m = {

g ∈ L2(R):
(
1+ |τ |)Vϕg(τ, ξ) ∈L1

(
R

2
)}
. (2.30)

Clearly any functionf ∈ L2(R) defines a linear functionalLf onM1,1
m byLfg := 〈f,g〉. By the Parseva

identity we also haveLfg = (2π)−1〈Vϕf,Vϕg〉. Let F̃A be as above and define〈F̃A,Vϕg〉 as

〈F̃A,Vϕg〉 :=
∫
F̃A(τ, ξ)Vϕg(τ, ξ)dτ dξ. (2.31)

Note that (2.31) makes sense since∣∣∣∣∫ F̃A(τ, ξ)Vϕg(τ, ξ)dτ dξ

∣∣∣∣� ∣∣〈Vϕf,Vϕg〉∣∣+ ∣∣∣∣∫ (F̃A − Vϕf )(τ, ξ)Vϕg(τ, ξ)dτ dξ

∣∣∣∣
�
∣∣〈Vϕf,Vϕg〉∣∣+ Cϕ,1

A
‖Vϕg‖L1 + Cϕ,2

A

∥∥τVϕg(τ, ξ)∥∥L1

<∞. (2.32)

This suggests that we definẽfA as the linear functional that mapsg ∈ M1,1
m to (2π)−1〈F̃A,Vϕg〉. Thus

we have

Theorem 2. Let f̃A be defined as above, i.e.,

f̃A: g ∈M1,1
m → 〈f̃A, g〉 := (2π)−1〈F̃A,Vϕg〉. (2.33)

Thenf̃A converges tof onM1,1
m asA tends to infinity, in the sense that for allg ∈M1,1

m∣∣〈f̃A, g〉 − 〈f,g〉∣∣� 1

2πA

(
Cϕ,1‖Vϕg‖L1 +Cϕ,2

∥∥τVϕg(τ, ξ)∥∥L1

)
. (2.34)

Remark 4. Note thatA = (2π)/(τ0ξ0); thus increasingA means decreasing the time and/or freque
translation steps,τ0 andξ0, so increasing the redundancy of the expansion.

3 Note that the modulation spaceM1,1
m is independent from the windowϕ we used in (2.30). In other words,‖Vϕ1f ‖L1 and

‖Vϕ2f ‖L1 define equivalent norms onM1,1
m for sufficiently nice windowsϕ1 andϕ2. A proof of this as well as an extensiv

discussion on modulation spaces can be found in [6].
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Proof. Let g ∈M1,1
m be arbitrary. Then

〈f̃A, g〉 = (2π)−1
∫
F̃A(τ, ξ)Vϕg(τ, ξ)dτ dξ, (2.35)

〈f,g〉 = (2π)−1
∫
Vϕf (τ, ξ)Vϕg(τ, ξ)dτ dξ, (2.36)

where (2.35) is by definition true, and (2.36) follows from the Parseval identity for windowed Fo
transform. Thus∣∣〈f̃A, g〉 − 〈f,g〉∣∣= (2π)−1

∣∣∣∣∫ (F̃A − Vϕf )(τ, ξ)Vϕg(τ, ξ)dτ dξ

∣∣∣∣, (2.37)

� (2π)−1
∫

|F̃A − Vϕf |(τ, ξ)|Vϕg|(τ, ξ)dτ dξ, (2.38)

� 1

2πA

(
Cϕ,1‖Vϕg‖L1 +Cϕ,2

∥∥τVϕg(τ, ξ)∥∥L1

)
, (2.39)

where to obtain (2.39) we use Theorem 1.✷
Now we have a way of approximatingf using the discrete sequence(qn,m); of course the approxima

tion is in the above described sense and we do not even know whetherf̃A is a function. However, one ca
observe that this way of approximation is particularly useful for ‘comparing’ two functions (thus le
to applications such as pattern recognition); next we will show how one can ‘compare’ two fun
in L2 using their approximations which are obtained via this time–frequency sigma–delta quant
algorithm.

First let us focus on how to calculate the inner product〈F̃A,Vϕg〉; note that

〈F̃A,Vϕg〉 =
〈

1

A

∑
n,m

qn,mVϕϕn,m(τ, ξ),Vϕg(τ, ξ)

〉
, (2.40)

= 1

A

∑
n,m

qn,m
〈
Vϕϕn,m(τ, ξ),Vϕg(τ, ξ)

〉
. (2.41)

But by the Parseval identity for windowed Fourier transform,〈
Vϕϕn,m(τ, ξ),Vϕg(τ, ξ)

〉= 2π〈ϕn,m, g〉. (2.42)

Let us denote the frame coefficients〈g,ϕn,m〉 of g by dn,m. After substituting (2.42) in (2.41), we get

〈F̃A,Vϕg〉 = 2π

A

∑
n,m

qn,mdn,m. (2.43)

Hence we have proved

Theorem 3. Let f ∈ Bϕ, g ∈ M1,1
m with m(τ, ξ) = 1 + |τ |. Let (ϕ, τ0, ξ0) be a tight Weyl–Heisenber

frame ofL2(R) for some fixedτ0 andξ0. Suppose thatϕ fulfills the assumptions of Theorem1. ThenF̃A,
the time–frequency sigma–delta approximation ofVϕf , satisfies

〈F̃A,Vϕg〉 = 2π

A

∑
qn,mdn,m, (2.44)
n,m
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where dn,m = 〈g,ϕn,m〉. Moreover, since forg ∈ M1,1
m , the sequence(〈g,ϕn,m〉)(n,m)∈Z2 is absolutely

summable, we have:

〈Vϕf − F̃A,Vϕg〉 = 2π

A

∑
n,m

(cn,m − qn,m)dn,m, (2.45)

wherecn,m = 〈f,ϕn,m〉, dn,m = 〈g,ϕn,m〉 and the sequence q is given byq = TTF(c); and〈
F̃ 1
A − F̃ 2

A,Vϕg
〉= 2π

A

∑
n,m

(
q1
n,m − q2

n,m

)
dn,m, (2.46)

whereF̃ j

A is the time–frequency sigma–delta approximation ofVϕfj = 〈fj , ϕτ,ξ 〉 for somefj in Bϕ and
qj = TTF(c

j ) with cjn,m = 〈fj , ϕn,m〉.

Remark 5. Note that (2.44) is an explicit formula to calculate the inner product〈F̃A,Vϕg〉; the only terms
in (2.44) that do depend on the functionf are theqn,m. In other words, one can calculate thedn,m just
once and store them in memory.

Remark 6. The second part of the theorem, in particular (2.46), specifies a simple way of determ
how ‘similar’ two functions are by using only the corresponding bit sequences; next we shall mak
what we mean by ‘similar.’

Theorem 4. Letf1, f2 be inBϕ, Vϕfj = 〈fj , ϕτ,ξ 〉 for j = 1,2. SupposẽFj

A is the time–frequency sigma
delta approximation ofVϕfj . Then∣∣〈Vϕf1 − Vϕf2, Vϕg〉 − 〈

F̃ 1
A − F̃ 2

A,Vϕg
〉∣∣� 4π

A

(
Cϕ,1‖Vϕg‖L1 +Cϕ,2

∥∥τVϕg(τ, ξ)∥∥L1

)
, (2.47)

whereCϕ,i , i = 1,2, is defined as in(2.25)and (2.26), respectively.

Proof. Note that

〈Vϕf1 − Vϕf2, Vϕg〉 − 〈
F̃ 1
A − F̃ 2

A,Vϕg
〉= 〈

Vϕf1 − F̃ 1
A,Vϕg

〉− 〈
Vϕf2 − F̃ 2

A,Vϕg
〉
. (2.48)

Thus,∣∣〈Vϕf1 − Vϕf2, Vϕg〉 − 〈
F̃ 1
A − F̃ 2

A,Vϕg
〉∣∣� ∣∣〈Vϕf1 − F̃ 1

A,Vϕg
〉∣∣+ ∣∣〈Vϕf2 − F̃ 2

A,Vϕg
〉∣∣

� 4π

A

(
Cϕ,1‖Vϕg‖L1 +Cϕ,2

∥∥τVϕg(τ, ξ)∥∥L1

)
, (2.49)

where the second inequality is due to Theorem 2.✷
Theorem 4 clearly shows that〈F̃ 1

A − F̃ 2
A,Vϕg〉 is an estimate off1 − f2 in the direction ofg. In other

words, our measure of similarity off1 andf2, i.e.,〈F̃ 1
A − F̃ 2

A,Vϕg〉, is completely insensitive to function
that are orthogonal tog. However, if two functions are close to each other inL2, clearly〈F̃ 1

A − F̃ 2
A,Vϕg〉

will also be small.
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Corollary 1. Letg be inM1,1
m withm(τ, ξ)= 1+|τ |, defineG := Vϕg, and suppose thatf1, f2 are inBϕ.

Then∣∣〈F̃ 1
A − F̃ 2

A,G
〉∣∣� 2π‖f1 − f2‖L2‖g‖L2 + 4π

A

(
Cϕ,1‖G‖L1 +Cϕ,2

∥∥τG(τ, ξ)∥∥
L1

)
,∣∣〈Vϕf1 − Vϕf2,G〉∣∣� ∣∣〈F̃ 1

A − F̃ 2
A,G

〉∣∣+ 4π

A

(
Cϕ,1‖G‖L1 +Cϕ,2

∥∥τG(τ, ξ)∥∥
L1

)
,

whereF̃ j

A is the time–frequency sigma–delta approximation offj , andCϕ,i , i = 1,2, is defined as in
(2.25)and (2.26), respectively.

We now generalize the above discussion in the following way.

Theorem 5. Let g1, . . . , gK be functions inM1,1
m with m(τ, ξ) = 1 + |τ | such that‖gj‖L2 = 1 and

〈gi, gj 〉 = δi,j . OnBϕ define the projection operatorP by

P(F)=
K∑
j=1

〈F,Gi〉Gi, (2.50)

whereGi := Vϕgi andF := Vϕf for f ∈ Bϕ . Letc be the sequence(〈f,ϕn,m〉) andq = TTF(c). Suppose
F̃A is the time–frequency sigma–delta approximation ofF . Then∥∥P(F − F̃A)

∥∥2 = 4π2

A2

∑
n,m,n′,m′

(cn,m − qn,m)(cn′,m′ − qn′,m′)〈P̃ ϕn,m, ϕn′,m′ 〉, (2.51)

whereP̃ is defined bỹP(f ) :=∑K
i=1〈f,gi〉gi for f ∈ Bϕ.

Proof. By (2.32),P(F̃A) is well defined and thus it is in the span of{G1, . . . ,GK}. Then we can write

∥∥P(F − F̃A)
∥∥2 =

K∑
i=1

∣∣〈F − F̃A,Gi〉
∣∣2

= 4π2

A2

K∑
i=1

(∑
n,m

(cn,m − qn,m)d
i
n,m

)(∑
n′,m′

(cn′,m′ − qn′,m′)din,m

)

= 4π2

A2

∑
n,m,n′,m′

(cn,m − qn,m)(cn′,m′ − qn′,m′)
K∑
i=1

〈ϕn,m, gi〉〈gi, ϕn′,m′ 〉

=
∑

n,m,n′,m′
(cn,m − qn,m)(cn′,m′ − qn′,m′)〈P̃ ϕn,m, ϕn′,m′ 〉, (2.52)

wheredin,m := 〈gi, ϕn,m〉. The first equality is due to the definition ofP ; the second equality follows from
Theorem 3; the third and fourth equalities are obvious.✷
Remark 7. LetF 1 andF 2 be the windowed Fourier transforms of two functionsf 1 andf 2 in Bϕ. Denote
the sequence(〈f i, ϕn,m〉) by ci and letqi = TTF(c

i). SupposẽF 1 andF̃ 2 are the time–frequency sigma
A A
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delta approximations ofF 1 andF 2, respectively. Then replacingF andF̃A in the proof of the previous
theorem bỹF 1

A andF̃ 2
A, respectively, yields∥∥P (F̃ 1

A − F̃ 2
A

)∥∥2 = 4π2

A2

∑
n,m,n′,m′

(
q1
n,m − q2

n,m

)(
q1
n′,m′ − q2

n′,m′
)〈P̃ ϕn,m, ϕn′,m′ 〉. (2.53)

Remark 8. By Corollary 1 we have

∥∥P (F̃ 1
A − F̃ 2

A

)∥∥�
∥∥f 1 − f 2

∥∥
L2

K∑
i=1

‖gi‖L2 + 4π

A

(
Cϕ,1

K∑
i=1

‖Gi‖L1 +Cϕ,2

K∑
i=1

∥∥τGi(τ, ξ)
∥∥
L1

)
.

(2.54)

3. Translation invariance

As mentioned before, one possible application area for the time–frequency sigma–delta quan
scheme described in this section is pattern recognition. We have shown above that we can mea
similar two functionsf1 andf2 are by calculating〈F̃ 1

A − F̃ 2
A,G〉. The next important question is wheth

the quantization scheme is robust with respect to translation in both arguments; in this section w
investigate how shifts in the bit-sequence affect the approximation.

Forα,β ∈ R, define the operatorsTαf := f (· + α) andMβf := eiβ·f , the time–shift and modulatio
operators, respectively. Let(ϕ, τ0, ξ0) be a tight Weyl–Heisenberg frame and note that

〈TNτ0f,ϕn,m〉 = eimN(2π)/A〈f,ϕn+N,m〉, (3.55)

whereA = (2π)/(τ0ξ0) is the frame bound. Let us denote〈f,ϕn,m〉 by cn,m and eiN(2π)/A by γN and
rewrite (3.55) as

〈TNτ0f,ϕn,m〉 = (γN)
mcn+N,m. (3.56)

Thus we conclude

TNτ0f =
∑
n,m

(γN)
mcn+N,mϕn,m. (3.57)

From the previous section we know that

F̃A = 1

A

∑
qn,mVϕϕn,m (3.58)

approximatesVϕf as in (2.15). In (3.58)q = (qn,m) = TTF(c) with c = (cn,m) = (〈f,ϕn,m〉). We also
know by (3.57) that the windowed Fourier transform ofTNτ0f is given by

VϕTNτ0f = 1

A

∑
n,m

(γN)
mcn+N,mVϕϕn,m. (3.59)

One important question to ask is whether

H̃A := 1

A

∑
(γN)

mqn+N,mVϕϕn,m (3.60)

n,m
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which is obtained by replacingcn+N,m in (3.59) withqn+N,m, approximatesVϕTNτ0f in a way similar to
the unshifted (2.15), i.e., whether|VϕTNτ0f (τ, ξ)− H̃A(τ, ξ)| � (C̃ϕ,1)/A+ |τ |(C̃ϕ,2)/A for someC̃ϕ,1

andC̃ϕ,2. The next theorem shows that the answer to this question is affirmative.

Theorem 6. Let q = TTF(c), wherec = (cn,m) with cn,m = 〈f,ϕn,m〉 for somef in Bϕ. SupposẽHA is
defined as in(3.60). Then∣∣VϕTNτ0f (τ, ξ)− H̃A(τ, ξ)

∣∣� C̃ϕ,1

A
+ |τ | C̃ϕ,2

A
(3.61)

with C̃ϕ,1 =√
2‖∂2∂1Γ ‖L1(R2) +Nτ0‖∂1Γ ‖L1(R2) andC̃ϕ,2 =√

2‖∂1Γ ‖L1(R2), whereΓ (t, z) :=eitzΦ(t, z).

Proof. We want to show that

1

A

∣∣∣∣∑
n,m

(γN)
mqn+N,mVϕϕn,m(τ, ξ)−

∑
n,m

(γN)
mcn+N,mVϕϕn,m(τ, ξ)

∣∣∣∣, (3.62)

=
∣∣∣∣ 1

A

∑
n,m

(γN)
m(�1�2v)n+N,mVϕϕn,m(τ, ξ)

∣∣∣∣, (3.63)

� C̃ϕ,1

A
+ |τ | C̃ϕ,2

A
, (3.64)

for someC̃ϕ,1 andC̃ϕ,2 wherevn,m is as in (2.19). Define

D := 1

A

∑
n,m

(�1�2v)n+N,m(γN)mVϕϕn,m(τ, ξ).

Then sinceVϕϕn,m(τ, ξ)= e−inτ0(ξ−mξ0)Φ(τ − nτ0, ξ −mξ0), we have

D = 1

A

∑
n,m

(�1�2v)n+N,me−iτ ξΩN,τ,ξ (τ − nτ0,mξ0), (3.65)

whereΩN,τ,ξ (t, z)= eiz(Nτ0+τ )Γ (t, ξ − z). After summing the left-hand side of (3.65) by parts we ge

D = 1

A

∑
n,m

vn+N,me−iτ ξ �̄1�̄2ΩN,τ,ξ (τ − nτ0,mξ0). (3.66)

SinceΩN,τ,ξ is smooth, we have

D = 1

A

∑
n,m

vn+N,me−iτ ξ
τ−nτ0∫

(τ−n+1)τ0

mξ0∫
(m+1)ξ0

∂2∂1ΩN,τ,ξ (t, z)dt dz, (3.67)

which yields

|D| �
√

2

A

∑
n,m

τ−nτ0∫ mξ0∫ ∣∣∂2∂1ΩN,τ,ξ (t, z)
∣∣dt dz,�

√
2

A
‖∂2∂1ΩN,τ,ξ‖L1(R2). (3.68)
(τ−n+1)τ0 (m+1)ξ0
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Finally, after estimating‖∂2∂1ΩN,τ,ξ‖L1(R2) we get∣∣VϕTNτ0(τ, ξ)− H̃A(τ, ξ)
∣∣� 1

A

(
C̃ϕ,1 + |τ |C̃ϕ,2

)
(3.69)

with

C̃ϕ,1 = √
2‖∂2∂1Γ ‖L1(R2) +

√
2Nτ0‖∂1Γ ‖L1(R2), (3.70)

and

C̃ϕ,2 = √
2‖∂1Γ ‖L1(R2), (3.71)

whereΓ (t, z) := eitzΦ(t, z). ✷
Remark 9. Combining Theorem 6 with Theorem 4, we can conclude that∣∣∣∣∑

n,m

(
(γN)

mqn+N,m − q̄n,m
)
dn,m

∣∣∣∣� C̃ϕ,1

A
+ |τ | C̃ϕ,2

A
, (3.72)

whereq̄ := (q̄n,m)= TTF(c̄) with c̄ := (〈TNτ0f,ϕn,m〉).
Remark 10. Note that the constant̃Cϕ,2 given in (3.71) is the same asCϕ,2 given in (2.26);C̃ϕ,1, given
in (3.70), has an extra summand proportional toN , the amount of translation, andτ0, the time translation
step, when compared toCϕ,1, given in (2.26). Thus, forN = 0, i.e., when there is no shift in the quantiz
output(qn,m), both estimates yield the same upper bound on the approximation error.

Remark 11. The time–frequency sigma–delta quantization scheme is translation invariant up
adjustment factor(γN)m; the approximation ofTNτ0f obtained using((γN)mqn+N,m) is (almost) as good
as that obtained by quantizing the translated version separately.

Next, let us investigate shifts in the other index of the bit sequence produced by the time–fre
sigma–delta scheme.

Theorem 7. Letf be inBϕ, c= (〈f,ϕn,m〉) andq = (qn,m)= TTF(c). Define

H̃A = 1

A

∑
n,m

qn,m−MVϕϕn,m. (3.73)

Then∣∣VϕMMξ0f (τ, ξ)− H̃A(τ, ξ)
∣∣� Cϕ,1

A
+ |τ |Cϕ,2

A
, (3.74)

whereCϕ,1 andCϕ,2 are as in(2.25)and (2.26), respectively.

Proof. Note that〈
eiMξ0·f (·), ϕn,m

〉= ∫
f (t)ϕ(t − nτ0)e

−i(m−M)ξ0t dt = 〈f,ϕn,m−M〉, (3.75)

which yields

VϕMMξ0f = 1

A

∑
cn,m−MVϕϕn,m. (3.76)
n,m
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m

Then

VϕMMξ0f (τ, ξ)− H̃A(τ, ξ)= 1

A

∑
n,m

(cn,m−M − qn,m−M)Vϕϕn,m(τ, ξ)

= 1

A

∑
n,m

(�1�2vn,m−M)Vϕϕn,m(τ, ξ), (3.77)

wherevn,m is as in (2.19). As in the proof of Theorem 1 summing by parts yields the result.✷
Now we can combine these two results: Let(ϕ, τ0, ξ0) be a tight Weyl–Heisenberg frame ofL2 with

frame boundA, c= (〈f,ϕn,m〉) for somef ∈ Bϕ, andq = TTF(c). Then the windowed Fourier transfor
of MMξ0TNτ0f = eiMξ0·f (· +Nτ0) is given by

VϕMMξ0TNτ0f = 1

A

∑
n,m

γ m−M
N cn+N,m−MVϕϕn,m(τ, ξ). (3.78)

Similarly, the windowed Fourier transform ofTNτ0MMξ0f is

VϕTNτ0MMξ0f = 1

A

∑
n,m

γ mN cn+N,m−MVϕϕn,m(τ, ξ). (3.79)

Now define

H̃ 1
A(τ, ξ) := 1

A

∑
n,m

γ m−M
N qn+N,m−MVϕϕn,m(τ, ξ), (3.80)

and

H̃ 2
A(τ, ξ) := 1

A

∑
n,m

γ mN qn+N,m−MVϕϕn,m(τ, ξ). (3.81)

Note thatVϕMMξ0f = (1/A)
∑

n,m cn,m−MVϕϕn,m(τ, ξ). We then have by Theorem 6,∣∣∣∣∑
n,m

(γN)
mqn+N,m−MVϕϕn,m(τ, ξ)− TNτ0MMξ0f,ϕτ,ξ

∣∣∣∣� C̃ϕ,1

A
+ |τ | C̃ϕ,2

A
, (3.82)

whereC̃ϕ,1 andC̃ϕ,2 are as in (3.70) and (3.71), respectively. Moreover, since|γN | = 1, we can also write∣∣∣∣∑
n,m

(γN)
(m−M)qn+N,m−MVϕϕn,m(τ, ξ)−MMξ0TNτ0f (τ, ξ)

∣∣∣∣� C̃ϕ,1

A
+ |τ | C̃ϕ,2

A
. (3.83)

Thus we proved

Theorem 8. Let H̃ 1
A andH̃ 2

A be as in(3.80)and (3.81), respectively. Then we have:

(i) |VϕMMξ0TNτ0f (τ, ξ)− H̃ 1
A(τ, ξ)| � C̃ϕ,1/A+ |τ |C̃ϕ,2/A, for all τ, ξ , and

(ii) |VϕTNτ0MMξ0f (τ, ξ)− H̃ 2
A(τ, ξ)| � C̃ϕ,1/A+ |τ |C̃ϕ,2/A, for all τ, ξ ,

whereC̃ϕ,1 andC̃ϕ,2 are as in(3.70)and (3.71), respectively.
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4. Numerical experiment

In this section, we will present some experimental results: We will fix a Weyl–Heisenberg fram
quantize the frame expansions of a functionf using the algorithm TF��-I. We choose

ϕ(t)= π1/4e−t2/2. (4.84)

One can show that(ϕ, τ0, ξ0) is a frame ofL2(R) if τ0 andξ0 are sufficiently small. Moreover, the fram
is almost tight4 (with both frame bounds approximately equal to(2π)/(τ0ξ0)) if one chooses sufficientl
smallτ0 andξ0 such thatτ0 ≈ ξ0.

Let us now consider the function5

f (t)= 0.5e−i0.1t3e−0.05t2. (4.85)

First we compute the frame coefficients off , 〈f,ϕn,m〉, for different values ofτ0 and ξ0. We use an
FFT-based algorithm to compute the frame coefficients using the samples off : Let τ1 be the period a
which we samplef . (It is convenient to chooseτ1 = τ0.) We will use the sequence(f (kτ1))

K
k=−K for

some sufficiently largeK to compute the frame coefficients off . Of courseK has to be finite for al
practical purposes; however that does not introduce a large error if bothf andϕ are well localized in
time and frequency, which is true for our example. Figure 1 shows the windowed Fourier transfoF ,
of f for ϕ given in (4.84); clearlyF(nτ0,mξ0) for integern,m are the frame coefficients off .

In Fig. 2, we show the quantized values of the frame coefficients off , obtained via the time–frequenc
sigma–delta quantization scheme. Next, we consider the frame expansions off with frames(ϕ, τ0, ξ0)

Fig. 1. The continuous windowed Fourier transformF of f , i.e.,F(τ, ξ)= 〈f,ϕτ,ξ 〉. Figure 1a shows the real part ofF—black
and white correspond to−0.49 and 0.75, respectively; Fig. 1b shows the imaginary part ofF—black and white correspon
to −0.57 and 0.69, respectively. Figure 1c shows the absolute value ofF . In this graph, black corresponds to 0 and wh
corresponds to 0.86.

4 As discussed in Remark 1, a frame is called “almost tight” if the ratio of the frame bounds is close to 1. Suppose(ϕ, τ0, ξ0)

is a frame with frame boundsA andB. If we denote the quantityB/A− 1 by r , then any functionf ∈ L2 can be written
asf = 2/(A(2+ r))

∑〈f,ϕn,m〉ϕn,m +Rf where‖R‖ � r/(2+ r) [2]. Hence reconstructingf by (1.2) (with(A(2+ r))/2
instead ofA) introduces an error which is bounded inL2 by r/(2+ r)‖f ‖L2. Therefore, ifr ≈ 0, we can assume the frame
tight and reconstructf using (1.2). For all the frames we will use in this section|r| is smaller than the arithmetical precision
the computer.

5 The functionf is clearly inBϕ .
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Fig. 2. The quantized frame coefficients〈f,ϕn,m〉 for the frame(ϕ,0.1,0.1). Figure 2a shows the real part of the quantiz
coefficients; Fig. 2b shows the imaginary parts of the quantized coefficients; Fig. 2c shows the absolute value of the q
coefficients. In Fig. 2, a and b, black and white correspond to−3 and 3, respectively. In Fig. 2c black corresponds to

√
2 and

white corresponds 3
√

2.

Fig. 3. The ‘approximation error’|〈F − F̃A,Gtot〉| vs. the frame boundA. Both axes are logarithmic. The solid line seen in
figure is the graph{(A,2A−1): 25<A< 1258}; the dashed line is the graph{(A,30A−3/2): 25<A< 1258}.

whereτ0 andξ0 take values between 0.05 and 0.5; thus the frame boundA ranges from approximatel
25.13 to 1256.64. We fixG(τ, ξ)= e−0.2(τ2+ξ2) and we use

Gtot =
2∑

k=−2

2∑
l=−2

Tl,kG, (4.86)

whereTl,kG :=G(· + l, · + k), as our test function. Clearly the inverse windowed Fourier transfor
Gtot is inM1,1

m .
Next, we compute〈F − F̃A,Gtot〉 via (2.45). Figure 3 shows the value of this inner product as

frame bound increases. Theorem 1 bounds the decay of|〈F − F̃A,Gtot〉| by A−1; however experimenta
evidence, e.g., Fig. 3, suggests a faster decay rate. This is similar to the first-order standard
delta scheme for which the analogous estimate yields a bound of O(λ−1) [3] (λ is the oversampling
ratio) whereas the empirically expected decay rate isλ−3/2. In [7], S. Güntürk proved that the error ca
be bounded pointwise byCλ−4/3+η whereC depends onη and on the value of the derivative of th
original function at the corresponding point; the conjecture is that the error can be bounded point
Cλ−3/2+η. (A detailed discussion of various types of improved estimates can be found in [8].) Wh
there is a similar theorem for our case is an open problem; Fig. 3 suggests there may well be.

Now, we want to observe the translation invariance of our algorithm. Letf be as in (4.85). Fix the
frame (ϕ,0.1,0.1) and computeq = TTF(c) wherecn,m = 〈f,ϕn,m〉. Now, definefT,Ω by fT,Ω(t) :=
M−ΩTT f . Let cT ,Ω be the sequence(〈fT,Ω,ϕn,m〉) andqT,Ω := TTF(cT ,Ω). Using q as a template, w
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will estimateT andΩ when we are only given the sequenceqT,Ω . To accomplish this, we will compar
F̃T ,Ω,A :=∑

(qT ,Ω)n,m〈ϕn,m,ϕτ,ξ 〉 with IN,M :=∑
(γN)

m+Mqn+N,m+M 〈ϕn,m,ϕτ,ξ 〉 for variousN andM
by comparing the inner products〈F̃T ,Ω,A − IN,M,Gtot〉. We will calculate these inner products via (2.4
Since the frame constantA is large (A≈ 628 in this case), we expect according to Theorem 8, altho
it is not guaranteed, to haveT ≈ 0.1�N and Ω ≈ 0.1 �M where (�N, �M) = arg inf(N,M)∈Z2〈F̃T ,Ω,A −
IN,M,Gtot〉 if T andΩ are integer multiples ofτ0 = 0.1 andξ0 = 0.1, respectively.

ForT = 1.2 = 12τ0 andΩ = 0.9 = 9τ0, we observe in Fig. 4 that the minimum is attained at(N,M)=
(13,7). In other words, we estimate the amount translationT with an error of 0.1 and we make an error
0.2 when we estimateΩ , the amount of modulation. Figure 5 shows the value of〈F̃T ,Ω,A− IN,M,Gtot〉 as
a function ofN andM for T = 1.17 andΩ = 0.93. In this case〈F̃T ,Ω,A−IN,M,Gtot〉 attains its minimum
atN = 13 andM = 8, i.e., the estimated values ofT andΩ are 1.3 and 0.8, respectively. This indicate
that even the original function is translated and modulated by amounts that are noninteger mult
the time and frequency translation stepsτ0 andξ0 (both equal to 0.1 in this example), the algorithm ca
still estimate these amounts (with the resolution of integer multiples ofτ0 andξ0).

Finally, we want to observe the effects of noise. We consider the case wherefT,Ω is defined as
above withT = 1.2 andΩ = 0.9. We will add independent identically distributed Gaussian ran

Fig. 4. The value〈F̃T ,Ω,A − IN,M,Gtot〉 vs.N andM for T = 1.2 andΩ = 0.9; the minimum is obtained atN = 13 and
M = 7, which means that the algorithm predictsT = 1.3 andΩ = 0.7. Figure 4b shows〈F̃T ,Ω,A − I13,M,Gtot〉 vs.M ; Fig. 4c
shows〈F̃T ,Ω,A − IN,7,Gtot〉 vs.N .

Fig. 5. The value〈F̃T ,Ω,A − IN,M,Gtot〉 vs.N andM for T = 1.17 andΩ = 0.93; the minimum is obtained atN = 13 and
M = 8, which means that the algorithm predictsT = 1.3 andΩ = 0.8. Figure 5b shows〈F̃T ,Ω,A − I13,M,Gtot〉 vs.M ; Fig. 5c
shows〈F̃T ,Ω,A − IN,8,Gtot〉 vs.N .
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variablesνk to each sample offT,Ω(kτ1) (τ1 is the period at whichfT,Ω is sampled; we choos
τ1 = τ0) before computing the frame coefficients. We then compute the frame coefficientsc̃n,m using
(fT ,Ω(kτ1)+ νk)

K
k=−K and via the time–frequency sigma–delta scheme we quantizec̃n,m to obtainF̃ ν

T ,Ω .
Let us define thesignal-to-noise ratio(SNR) as

SNR= 10 log

∑K
k=−K |fT,Ω(kτ1)|2
(2K + 1)σ 2

dB, (4.87)

whereσ 2 is the variance ofνk ; 2K + 1 samplesfT,Ω is used to compute the frame coefficients. In
experiment with SNR= 16 dB,〈F̃ ν

T ,Ω,A − IN,M,Gtot〉 attains its minimum atN = 13 andM = 8, i.e., the
estimated values ofT andΩ are 1.3 and 0.8, respectively. We repeat the same experiment using in
with SNR= 8.5 dB and SNR= 0 dB. In the case where the SNR= 8.5 dB, the parametersT andΩ are
estimated as 1.4 and 0.6, respectively. For the input with SNR= 0 dB the corresponding estimates a
1.4 and 0.2, respectively. We observe that the algorithm does reasonably well for the two cases wh
signal-to-noise ratio is larger; however for SNR= 0 dB, the minimum value of〈F̃T ,Ω,A − IN,M,Gtot〉 is
much larger than the other two cases where the SNR is larger and so is the error in the estimatT
andΩ .

5. Higher-order time–frequency sigma–delta schemes

In this section we will introduce higher-order time–frequency sigma–delta schemes to qu
the frame expansions of functions inBϕ for tight Weyl–Heisenberg frames. We will show that t
approximation error is O(A−k) with a kth-order scheme when the frame bound isA. Let (ϕ, τ0, ξ0)

be a tight Weyl–Heisenberg frame with frame boundA. Let f be inBϕ; c= (cn,m) with cn,m = 〈f,ϕn,m〉
as before. Denote the real and imaginary parts ofcn,m by cRn,m andcIn,m, respectively. Let(�(k)

1 x)n,m :=∑k
l=0(−1)l

(
k

l

)
xn−l,m and(�(k)

2 x)n,m :=∑k
l=0(−1)l

(
k

l

)
xn,m−l for any sequencex. To define thekth-order

time–frequency sigma–delta quantization scheme, consider the recursion relations where the su
S is as described before:(

�
(k)
1 uS

)
n,m

= cSn,m − pSn,m,

pSn,m = sign
(
Θ
((
�
(0)
1 uS

)
n−1,m, . . . ,

(
�
(k−1)
1 uS

)
n−1,m, c

S
n,m

))
, (5.88)(

�
(k)
2 vS

)
n,m

= ūSn,m − rSn,m,

rSn,m = sign
(
Θ
((
�2(0)v

S
)
n,m−1, . . . ,

(
�
(k−1)
2 uS

)
n,m−1, ū

S
n,m

))
, (5.89)

where ūS := uS/Ck,Θ andΘ is a function which guarantees thatuR , vR , uI , and vI are uniformly
bounded inl∞ by Ck,Θ . Note that the recursion relations (5.88) and (5.89) correspond tokth-order
standard sigma–delta quantizers withcSn,m and ūSn,m, respectively, as their input. Thus, since all the
sequences are bounded inl∞ by 1, such aΘ exists due to [3]. Note that

Ck,Θ

(
�
(k)

1 �
(k)

2 vR
)
n,m

= cRn,m − (
pRn,m +Ck,Θ

(
�
(k)

1 rR
)
n,m

)
, (5.90)

and similarly

Ck,Θ

(
�
(k)
�
(k)
vI
) = cIn,m − (

pIn,m +Ck,Θ

(
�
(k)
rI
) )

. (5.91)
1 2 n,m 1 n,m
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We will now define the sequencesqR and qI by qRn,m = pRn,m + Ck,Θ(�
(k)
1 rR)n,m and qIn,m = pIn,m +

Ck,Θ(�
(k)

1 rI )n,m. Finally, let us defineTTFk by

TTFk (c) := q, (5.92)

whereqn,m := qRn,m + iqIn,m.

Theorem 9. Let (ϕ, τ0, ξ0) be a tight Weyl–Heisenberg frame with frame boundA. Letf be inBϕ and
define the sequenceq by (5.92), i.e., qn,m is obtained by quantizing the frame coefficients off via a
kth-order TFΣ∆ scheme. Fix a positive integerk and define

F̃A,k(τ, ξ) := 1

A

∑
n,m

qn,m〈ϕn,m,ϕτ,ξ 〉. (5.93)

Supposeϕ is chosen such thatΦ(τ, ξ)= 〈ϕ,ϕτ,ξ 〉 satisfies

∂k

∂τ k

∂k

∂ξ k

(
eiτ ξΦ(τ, ξ)

) ∈ L1
(
R

2
)
. (5.94)

Then∣∣Vϕf (τ, ξ)− F̃A,k(τ, ξ)
∣∣� 1

Ak

k∑
l=0

Ck,ϕ,l|τ |l (5.95)

with

Ck,ϕ,l = (2π)k−1Ck,Θ‖v‖l∞
(
k

l

)∥∥∂(k−l)2 ∂k1Γ
∥∥
L1(R2)

, (5.96)

wherek is the order of the quantizer andΓ (t, z) = eitzΦ(t, z). We will call F̃A,k the kth-order time–
frequency sigma–delta approximation ofVϕf .

We need the following standard result to prove Theorem 9.

Lemma 2. Let �̄ denote the forward difference operator, i.e.,(�̄x)n := xn − xn+1, as before. The
following equality holds for any functionf ∈Ck :

�̄kf (x − nα)= αk−1

kα∫
0

f (k)
(
x − (n+ k)α+ t

)
ρk

(
t

α

)
dt (5.97)

for anyα. In (5.97), ρk is thekth-orderB-spline,ρk = χ[0,1] ∗ · · · ∗ χ[0,1] (k convolution factors). (Note
that the support ofρk is on[0, k], and

∑
n ρk(x + n)= 1 for all y ∈ R.)

Proof of Theorem 9. As in the proof of Theorem 1, we start by writing the error term

F(τ, ξ)− F̃A,k(τ, ξ)= Ck,Θ

A

∑
n,m

(
�k

1�
k
2v
)
n,m
Vϕϕn,m(τ, ξ), (5.98)

= Ck,Θ

A

∑
vn,m�̄

k
2�̄

k
1Vϕϕn,m(τ, ξ). (5.99)
n,m
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Now let us defineIn,m = �̄k
2�̄

k
1Vϕϕn,m(τ, ξ), which we can also write as

In,m = e−iτ ξ �̄k
2�̄

k
1Ωτ,ξ (τ − nτ0,mξ0) (5.100)

with Ωτ,ξ (t, z) := eizτeit (ξ−z)Φ(t, ξ −z), as in the proof of Theorem 1. By Lemma 2 we can write (5.1
as

In,m = e−iτ ξ �̄k
2τ

k−1
0

kτ0∫
0

∂
(k)

1 Ωτ,ξ

(
τ − (n+ k)τ0 + t,mξ0

)
ρk

(
t

τ0

)
dt, (5.101)

= e−iτ ξ τ k−1
0

kτ0∫
0

(
�̄k

2∂
(k)
1 Ωτ,ξ

(
τ − (n+ k)τ0 + t,mξ0

))
ρk

(
t

τ0

)
dt, (5.102)

= e−iτ ξ (2π)
k−1

Ak−1

kτ0∫
0

kξ0∫
0

∂
(k)
2 ∂

(k)
1 Ωτ,ξ

(
τ − (n+ k)τ0 + t, (m− k)ξ0 + z

)
ρk

(
z

ξ0

)
ρk

(
t

τ0

)
dzdt.

(5.103)

In the last equality we use the fact thatA = (2π)/(τ0ξ0). Since the support ofρk is on [0, k] we can
replace the integration limits of both integrals in (5.103) by−∞ and ∞. Thus after the appropriat
change of variables in both integrals we get

In,m = e−iτ ξ 2πk−1

Ak−1

∞∫
−∞

∞∫
−∞

∂
(k)

2 ∂
(k)

1 Ωτ,ξ (p, s)ρk

(
p

τ0
− p

τ
+ n+ k

)
ρk

(
s

ξ0
−m+ k

)
dp ds. (5.104)

Substituting (5.104) into (5.99) and taking the absolute value of the resulting expression, along w
fact thatρk � 0 and∑

n,m

ρk

(
p

τ0
− p

τ
+ n+ k

)
ρk

(
s

ξ0
−m+ k

)
= 1, (5.105)

yields:∣∣Vϕf (τ, ξ)− F̃A,k(τ, ξ)
∣∣� Ck,Θ‖v‖l∞(2π)(k−1)

Ak

∥∥∂(k)2 ∂
(k)
1 Ωτ,ξ

∥∥
L1. (5.106)

Finally, using

∂
(k)
2 ∂

(k)
1 Ωτ,ξ (t, z)=

k∑
l=0

(
k

l

)
(iτ )leizτ ∂(k−l)2 ∂

(k)
1 Γ (t, ξ − z), (5.107)

we get the result. ✷
Remark 12. The reasoning in Remark 1 still applies and thus Theorem 9 holds, at least approxim
if the frame(ϕ, τ0, ξ0) is almost tight.

Remark 13. A sufficient condition forΦ = Vϕϕ to satisfy (5.94) is that the functionϕ is in the Schwartz
spaceS(R).
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Remark 14. We will again approximatef as a linear functional on some test function space. F
kth-order time–frequency sigma–delta quantization scheme an appropriate test function spac
modulation spaceM1,1

mk
with mk(τ, ξ) := 1+ |τ |k , i.e.,

M1,1
mk

= {
g ∈ L2(R):

(
1+ ∣∣τ k∣∣)Vϕg(τ, ξ) ∈L1(

R
2)}. (5.108)

Let g ∈M1,1
mk

and forf ∈ Bϕ, let F̃A,k be defined as in (5.93). Then

〈Vϕf − F̃A,k, Vϕg〉 :=
∫ (

Vϕf (τ, ξ)− F̃A,k(τ, ξ)
)
Vϕg(τ, ξ)dτ dξ (5.109)

is finite; thus〈F̃A,k, Vϕg〉 is well defined. We now definẽfA,k as a linear functional onM1,1
mk

such that

〈f̃A,k, g〉 := 〈F̃A,k, Vϕg〉. (5.110)

By Theorem 9 we can conclude∣∣〈f,g〉 − 〈f̃A,k, g〉
∣∣� 1

Ak

k∑
l=0

Cϕ,l

∥∥τ lVϕg(τ, ξ)∥∥L1R2, (5.111)

whereCk,ϕ,l is as in (5.96).

Remark 15. Let f1 andf2 be two functions inBϕ, q1, andq2 the corresponding sequences produ
by the kth-order time–frequency sigma–delta scheme, and letF̃ 1

A,k and F̃ 2
A,k be thekth-order time–

frequency sigma–delta approximations off1 andf2, respectively. Then, regardless of the order of
approximation, we have〈

F̃ 1
A,k − F̃ 2

A,k,Vϕg
〉= 1

A

∑
n,m

(
q1
n,m − q2

n,m

)〈g,ϕn,m〉. (5.112)

Similarly, for anyf in Bϕ, let q = TTFk (c) where c denotes the sequence of the frame coefficientsf ;
supposẽFA,k is thekth-order time–frequency sigma–delta approximation off . Then we have

〈F − F̃A,k, Vϕg〉 = 1

A

∑
n,m

(cn,m − qn,m)〈g,ϕn,m〉. (5.113)

Remark 16. Theorems 3 and 5 are true regardless of the orderk of the time–frequency sigma–del
scheme that is used to approximate a given functionf ∈ Bϕ, as long asϕ satisfies the condition
stated in Theorem 9 and the test functions are chosen appropriately. Theorems 4, 6, 7, and 8 ne
modification to be true for the case where the quantizer is ofkth-order. We state these modified versio
below: Theorems 10, 11, 12, and 13 are the generalized versions of the aforementioned th
respectively. The proofs are similar to the first order case and will be omitted.

Theorem 10. Letf1, f2 be inBϕ, Fj := Vϕfj for j = 1,2, F̃ j

A,k be thekth-order time–frequency sigma
delta approximation ofFj for some fixed positive integerk. Then, forg ∈M1,1

mk
,

∣∣〈F 1 −F 2, Vϕg
〉− 〈

F̃ 1
A,k − F̃ 2

A,k,Vϕg
〉∣∣� 4π

Ak

k∑
l=0

Ck,ϕ,l

∥∥τ lVϕg(τ, ξ)∥∥L1(R2)
, (5.114)

whereCk,ϕ,l is defined as in(5.96).
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Theorem 11. Let q = TTFk (c) (i.e., the quantization scheme is of orderk), wherec = (cn,m)(n,m)∈Z2 with
cn,m = 〈f,ϕn,m〉 for somef in Bϕ. LetN be some fixed integer and definẽHA as in(3.60). Then

∣∣VϕTNτ0f (τ, ξ)− H̃A(τ, ξ)
∣∣� 1

Ak

k∑
l=0

C̃k,ϕ,l|τ |l (5.115)

with

C̃k,ϕ,l = (2π)k−1Ck,Θ‖v‖l∞
k∑
j=l

(
k

j

)(
j

l

)
(Nτ0)

j−l∥∥∂(k−j)2 ∂
(k)
1 Γ

∥∥. (5.116)

Theorem 12. Let f be inBϕ, c = (〈f,ϕn,m〉) andq = (qn,m)= TTFk (c) for some positive integerk. Fix
an integerM and defineH̃A as in(3.73). Then

∣∣VϕMMξ0f (τ, ξ)− H̃A(τ, ξ)
∣∣� 1

Ak

k∑
l=0

Ck,ϕ,l|τ |l , (5.117)

whereCk,ϕ,l is as in(5.96).

Theorem 13. Let f be inBϕ, c = (〈f,ϕn,m〉) and q = (qn,m) = TTFk (c). For integersN andM , define
H̃ 1
A andH̃ 2

A as in(3.80)and (3.81), respectively. Then

∣∣VϕMMξ0TNτ0f (τ, ξ)− H̃ 1
A(τ, ξ)

∣∣� 1

Ak

k∑
l=0

C̃k,ϕ,l|τ |l ,

∣∣VϕTNτ0MMξ0f (τ, ξ)− H̃ 2
A(τ, ξ)

∣∣� 1

Ak

k∑
l=0

C̃k,ϕ,l|τ |l ,

whereC̃k,ϕ,l is as in(5.116).

6. Numerical experiment revisited

In this section, we will present the results of numerical experiments for the second-order TF��-I
quantizer analogous to those discussed in Section 4 for the first-order quantizer. We chooseϕ(t) =
π1/4e−t2/2. As we have discussed before,(ϕ, τ0, ξ0) constitutes a frame ifτ0 andξ0 is sufficiently small;
moreover, the frame is almost tight with the frame boundA ≈ (2π)/(τ0ξ0) if τ0 andξ0 are sufficiently
small andτ0 ≈ ξ0.

We will quantize the frame expansion of the functionf (t) = 0.5e−(i0.1t3+0.05t2), which is the same
function we have used in Section 4. We have already computed the frame coefficients〈f,ϕn,m〉 of f .
Using the algorithm described in (5.88) and (5.89) withk = 2 andΘ(u, v, x)= u+ 0.5v we obtain the
quantized frame coefficientsqn,m of f ; these are shown in Fig. 6. Next, we fix the functionGtot, defined
as in (4.86), as our test function and compute the inner product〈F − F̃A,2,Gtot〉 via (5.113) for various
values of the frame boundA. Figure 7 shows the value of〈F − F̃A,2,Gtot〉 whileA takes values betwee
25.13 and 1228.64. Similar to the first-order case, the decay of the approximation error is faste
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Fig. 6. The quantized frame coefficientsqn,m—obtained via the second-order scheme. Figure 6a shows the real part
quantized coefficients; Fig. 6b shows the imaginary parts of the quantized coefficients—black corresponds to−10 and white
corresponds to 10 in these figures. Figure 6c shows the absolute value of the quantized coefficients; in this figu
corresponds to 0 and white corresponds to 10

√
2.

Fig. 7. The ‘approximation error’|〈F − F̃A,2,Gtot〉| vs. the frame boundA for the second-order case. Both axes
logarithmic. The solid line seen in the figure is the graph{(A,30A−2): 25.13< A < 1228.64}; the dashed line is the grap
{(A,150A−5/2): 25.13<A< 1228.64}.

the predicted rate, i.e., instead of being O(A−2), the approximation error seems to be of orderA−5/2.
This again matches the empirical error decay rate observed for the standard second-order sig
quantizers.

Next, we want to observe the translation invariance of the second-order quantizers. To th
we repeat the experiment we did in Section 4: Fix the frame(ϕ,0.1,0.1) and computeq = TTF2(c),
i.e., use a second order quantizer, wherecn,m = 〈f,ϕn,m〉. Now, as in Section 4, definefT,Ω by
fT,Ω := M−ΩTT f . Let cT ,Ω be the sequence(〈fT,Ω,ϕn,m〉) and qT,Ω := TTF2(cT ,Ω). Using q as
a template, we will estimateT andΩ when we are only given the sequenceqT,Ω . To accomplish this
we will compareF̃T ,Ω,A,2 :=∑

(qT ,Ω)n,m〈ϕn,m,ϕτ,ξ 〉 with IN,M :=∑
(γN)

m+Mqn+N,m+M 〈ϕn,m,ϕτ,ξ 〉 for
variousN andM by comparing the inner products〈F̃T ,Ω,A,2 − IN,M,Gtot〉. We will calculate these
inner products via (5.112). Since the frame constantA is large (A ≈ 628 in this case), we expe
according to Theorem 13 (although it is not guaranteed) to haveT ≈ 0.1�N andΩ ≈ 0.1 �M where
(�N, �M)= arg inf(N,M)∈Z2〈F̃T ,Ω,A− IN,M,Gtot〉 if T andΩ are integer multiples ofτ0 = 0.1 andξ0 = 0.1,
respectively.

For T = 1.2 = 12τ0 and Ω = 0.9 = 9τ0, we observe in Fig. 8 that the minimum is attained
(N,M) = (12,9), in other words our algorithm estimated the translation amountsT andΩ correctly.
Next we test whether the algorithm can detect translation and modulation amounts that arenot integer
multiples ofτ0 andξ0 (of course with the resolution given byτ0 andξ0). Figure 9 shows the result whe
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Fig. 8. The value〈F̃T ,Ω,A,2 − IN,M,Gtot〉 vs.N andM for T = 1.2 andΩ = 0.9; the minimum is obtained atN = 12 and
M = 9, which means that the algorithm predictsT = 1.2 andΩ = 0.9, i.e., the correct values ofT andΩ . Figure 8b shows
〈F̃T ,Ω,A,2 − I12,M,Gtot〉 vs.M ; Fig. 8c shows〈F̃T ,Ω,A − IN,9,Gtot〉 vs.N .

Fig. 9. The value〈F̃T ,Ω,A,2 − IN,M,Gtot〉 vs.N andM for T = 1.17 andΩ = 0.93; the minimum is obtained atN = 12 and
M = 9, which means that the algorithm predictsT = 1.2 andΩ = 0.9. Figure 9b shows〈F̃T ,Ω,A − I12,M,Gtot〉 vs.M ; Fig. 9c
shows〈F̃T ,Ω,A − IN,9,Gtot〉 vs.N .

T = 1.17 andΩ = 0.93. One observes that the algorithm has estimatedT andΩ as well as the resolutio
allows.

Finally, we add noise to our signal the way we described in Section 4, and again we use our al
to estimate the translation and modulation amountsT andΩ . We definẽFν

T,Ω,A,2 is defined the same wa
we definedF̃ ν

T ,Ω,A just above (4.87), only this time using theq produced by the second-order quantiz
In an experiment with SNR= 8.5 dB, the algorithm estimatedT andΩ as 1.2 and 0.7, respectively,
where the true values ofT andΩ are 1.1 and 0.9, respectively. When we decrease the SNR to 0 dB
algorithm estimatedT andΩ to be 1.4 and 0.6.
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