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Abstract

We introduce a family of coarse quantization algorithms for heavily oversampled Gabor expansions of certain
classes of functions in?(R). These algorithms, which we call the TR quantization algorithms, are inspired
by sigma—delta modulation, a widely implemented coarse quantization scheme for oversampled bandlimited
functions. We show that the TFA algorithms produce weak type approximations where modulation sm};és
with suitable weight functions are the appropriate test function spaces. We also show that i Higorithms
are translation invariant up to some uniform correction.
0 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we introduce a family of algorithms to ‘coarsely quantize’ redundant time—frequency
representations of certain classes of function&4(R). By quantizationwe understand the reduction
of the continuous range of the coefficients to a discrete, possibly finite set. More precisely, given an
expansion of the form

f:ZfA(P)u (1.1)
reA

where f; € C and A is a countable set, a quantization algorithm will produce a sequengg 4 that
takes values in some discrete gesuch thatf =", _, ., is an approximation to the functiofi in
some suitable norm.
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There are two different approaches to quantizatfore quantizatiorandcoarse quantizatianGiven
an expansion as in (1.1), one way to quantize the coefficiénts to replacef,® and £/, the real and
imaginary parts off,, respectively, byg® := sround £;¥/8) and g/ := §round £/ /8). Heres is the
step sizeof the quantizer. In this case, settipg= g~ + iq!, we have supf, — ¢ | = V/25. Therefore
by decreasing the step size, one can mgke- g; | arbitrarily small, and thus the approximation error
diminishes as$ approaches zero. Such algorithms are usually céithedquantization algorithms

An alternative approach exists if the expansion is highly redundant. In this case one can replace the
coefficientsf, with coarsely quantized valueg, i.e.,q, € D whereD has just a few elements, and still
have a good approximation. Instead of controlling the individual differenfes g;.|, such an algorithm
aims to produce;, so that the approximation errfpyf — > ", _, ¢, ¢, |l is small. Moreover, the algorithm is
constructed such that the approximation error diminishes as the redundancy of the expansion increases.
Such algorithms are callecbarse quantization algorithm$Note that a coarse quantization algorithm
exploits the redundancy of the expansion to compensate for the coarseness of the quantization.

An important property of coarse quantization algorithms is that they are more efficient in utilizing the
redundancy of an expansion. For example, consider a funcfipthat is sufficiently well localized in
both time and frequency. A heuristic argument in [2] shows that quantizing the Gabor frame expansion
of f using a fine quantization algorithm with a fixed step sizgields an approximation/ with
I f — fll = O(A~Y/2). HereA is the frame bound of the (tight) Gabor frame (and thus a measure of the
redundancy of the expansion). In [11] it is shown that the asymptotic behavior of the approximation error
is O(A~1) for tight Gabor frames if the frame bountlis an integer. In this paper we introduce a family
of coarse quantization algorithms which yield weak-type approximations, where the approximation error
is O(A~*) for akth-order scheme.

One may of course argue that instead of increasing the redundancy of the expansion, one can
increase the resolution of the quantizer, i.e., decrease the step,daeabtain a better approximation.
Like increasing redundancy, this would correspond to using more bits per critical sampling interval
(or rectangle in the case of Gabor frames). Indeed, it can be easily shown that fine quantization
algorithms achieve exponential precision, i.e., the approximation error decays exponentially as the bit
rate—the number of bits used to quantize each sample—increases. This is usually not the case for
coarse quantization algorithms. Despite this shortcoming, coarse quantization algorithms are widely
implemented to quantize oversampled bandlimited functions (functions with compactly supported
Fourier transforms) mainly because of their superior robustness properties. Detailed discussions about
robustness properties of particular coarse quantization schemes can be found in [3,9,13]. On contrary,
[12] shows the strong dependence of the numerical stability of fine quantization algorithms to
computational accuracy in the case of discrete windowed Fourier expansions. In this paper we do not
discuss robustness properties of2T& schemes in detail; however we should note that these algorithms
exhibit similar robustness properties to sigma—delta schemes by construction.

Throughout the paper we will be discussing methods to coarsely quantize Weyl-Heisenbefg frame
expansions of functions ifh?(R). Weyl-Heisenberg framese frames of.2(R) that are generated by

1 These frames are also call&bor framesandwindowed Fourier frames
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shifting a fixed functiony € L?(R) along a latticel”’ = 10Z x &Z in the time—frequency plane: For
(1) 1= @(t — n1o)€™ | the{gp, .. n,m € Z} constitute a frame ih2(R); in other words

AIFIR< Y4 ouad | < BIFIP

n,m

for all f € L?(R), where the frame bounds > 0, B < oo are independent fronf. (Here (f, g, ) :=

[ f®)¢,n(t).) For a detailed discussion, consult [2,5,6,10]. For the sake of convenience we denote
by (¢, 10,&0) the collection {¢, u}u.mezz With ¢, ,,(t) as defined above. As is well known, if
(¢, 10, &) is a Weyl-Heisenberg frame, the functign:= U~1¢, where Uf := Y onm (S Cam) P

also generates a Weyl-Heisenberg fratero, &) with frame boundsB—! and A, and one has

=2 mlfs ©um)Pum- The frame(@, 1o, o) is called thedual of (¢, 7o, §0). If (¢, 70, &0) is a tight

frame with frame boundi, U =Id A, thusg = A~%¢ and we have

1
f = Z Z(f, @n,m)gan,m, (12)

where equality is in the sense bf.

Supposee, 1o, &) is a tight Weyl-Heisenberg frame &f(R) with the frame boundi whereg is a
smooth and well-localized function that is normalized.i) t¢ € L?, and£$ € L2. Then it is a standard
result [4] thatA > 1 (necessary to have a frame) afid= (27)/(10&0).

One can define also the continuous windowed Fourier transforny afith respect tog by
V, f(T,€) := (f, ¢re), Wherep, . = (r — 7)€*’. Combining this with (1.2) implies

1
VoS (@ 8) =2 3 {F @nm) Prms Pr), (1.3)

n,m

where the convergence is pointwise as well asin

Note that (1.2) essentially tells us how to reconstrfiétom its frame coefficientsf, ¢, ,,). Our goal,
as discussed above, is to devise an algorithm to replacéfihe ,,) by someg, ,, € {d1,d>, ..., dk},
with d; € C, (i.e., to quantize, ,,) such that

~ 1
fA = Z ZQn,/n¢n,in (14)

is a ‘good’ approximation off in some norm, preferably ih2-norm.

The algorithms that we consider throughout the paper are inspired by sigma—delta quantization
algorithms that are commonly used to coarsely quantize oversampled bandlimited functions [1]. Consider
a function f that is bandlimited with bandwidth, i.e., suppf C [—, ], and that satisfielsf || .~ < 1.

It is well known thatf can be stably reconstructed from its sample valfigés/A) wherei > 1 is fixed;
in particular, withg satisfyingg € C®, §(¢) = 1/+/2x for & € [—n, 7], andg(&) = O for |€| > A, one
has

fio= %Zf(%)g(t - g) (15)

nez

2 A frame with frame bounds and B is calledtight if A = B.
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Sigma—delta algorithms generate sequerniggs.cz, 9. € {—1, 1}, such that replacing the sample value
f(m/A) in (1.5) by g, gives anL®-approximation of f. This is achieved by constructing, such
that the running sums af, track the running sums of the sample valugg:/1) uniformly. Many
different schemes exist; typically thg are constructed recursively. For example, a first-order sigma—
delta quantizer generates thgvia the following recursion:

Uy — Up—1= fn)\ - 612, 612 = Sign(vnfl + fn)\) (16)

In this case, one can show that [3]:
lv,| <1 foralln, if vge (—1,1), .7
- 1,
If = flle= < Xllg llz2. (1.8)

In fact, this bound can be improved; [7] contains a proof that the error can be bounded pointwise by
CA~43 where C depends om and on the value of the derivative of the original function at the
corresponding point.

A kth-order sigma—delta quantizer can be defined replacing the first-order backward difference
operator in (1.6) by &th-order backward difference operator and adjusting the rule that determines
g, such that thgv,| stay uniformly bounded. In this case, thth-order running sums qf, track the
kth-order running sums of (n/A) uniformly, i.e.,

My mo mq n My mo miq
DRI IS I CIEIDDRED B A
my_1=Ng m1=Np n=N1 my_1=Ng m1=No n=N1
where the value of the constafitdoes not depend oN, ..., Ny, My, or f(n/A). Thus one can prove
that theL> approximation error is Q.7%). Detailed discussions of higher-order schemes can be found
in [3,13].

In Section 2, we introduce a coarse quantization algorithm for tight Weyl-Heisenberg expansions,
called the TEZ A quantization algorithmGiven the frame coefficientsf, ¢, ,,) of a function f, this
algorithm producesy, ,, € {¢® + iq': g%, q' € {-3, -1, 1,3}}. When (¢, 10, &) is a tight Weyl—
Heisenberg frame with frame bourd we show that for functiong’ that satisfy|V,, f| <1,

f: AilZQn,m(pn,m (19)

n,m

yields a weak-type approximation where the modulation spatEswith suitable weight functions:
are the natural test function spaces. Moreover, we show that the resulting approximation e¢rordis O
Like the case with the sigma—delta schemes, this is achieved by prodyginguch that the running
sums ofg, ,, track the running sums dff, ¢, ,,) uniformly.

In Section 3, we show that the BFA quantization algorithm is translation invariant up to some
uniform adjustment. In Section 5, we define the higher-orde& AFschemes, and show that the
approximation error is ) if the approximation is produced byh-order scheme (wherkeis a
positive integer). Sections 4 and 6 present numerical experiments for the first-order and second-order
TFX A schemes, respectively.
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2. Thetime—frequency sgma—delta (TFX A) quantization algorithm

Let (¢, 70, o) be a tight Weyl-Heisenberg frame with frame boufidWe will consider functions
f € L%(R) that satisfy|( f, ¢,..)| < 1 for all integers: andm. Denote the collection of such functions
by B¢. Let c,’im andc! , be the real and imaginary parts of the frame coefficients := (f, ¢u.m),
respectively. In this paper we consider algorithms to quantize the frame expansions of certain functions.
The frame coefficients are generally complex numbers and the algorithms quantize real and imaginary
parts of these numbers separately; moreover, the algorithms that we consider are recursive and the
recursion relations that are used to quantize the real and imaginary parts of the frame coefficients are
identical. Thus, to simplify the notation, we will use the superscipthenever we have an equation, a
system of equations, or an expression that is valid for Seth* R” and S ="1".

Now consider the recursions:

S S S S S : S S
Upm —Up_1m = cn,m — Pum> Pum = Slgn(unfl,m + Cn,m)’
S S N S S H S S
vn,m - Un,m—l = un,m - rn,m’ rn,m = Slgn(vn,m—l + un,m)’ (210)
where
. 1 x >0,
SIgn(x) =
gn(x) { -1 x<O0.

The difference equations given in (2.10) will be used to quantize the realspart R”) and imaginary
part (S = “I") of the frame coefficients, ,,. Denote the sequences; ), (v;,) by u® and v’,

n,m

respectively. Similarlyp® andr* will denote(p] ,,) and(r} ), respectively. Note that

n,m

(AlszR)m = c,ﬁm — (p,fm + (Aer)n!m), (2.11)
and

(Alszl) = C;i,m — (p,im + (Alrl)n!m), (2.12)

where (A1v),.m = Vnm — Vn_1.m @NA (A20)m = Vpm — Vu.m—1. We will define the sequencesd and
q' by gk, =pk, + (A1), » andg] ,, == pl ., + (Arr!), ., respectively. Let := (cum)(umyezz @nd
define the mappin@re from 12(C) to Q by

Tre(c) =q :=q" +iq", (2.13)

where Q denotes the collection of all sequendaes,, + iy,..) where bothx, ,, andy, , take values in
{(-3,-1,1, 3.

Theorem 1. Let (¢, 1o, &) be a tight Weyl-Heisenberg frame bf(R) with frame boundA. Let f be in
B¢ and sety = Tre(c) wherec,, ,, = (f, ¢u.m). Define

~ 1
FA(T, E) = Z ZQn,m <(pn,ma gar,&')- (214)

n,m

Supposey is chosen such thall + [§| + [t§ )@ (7, §), (1 + [t) 01D (7, §), 2D (7, §), and910,D (7, §)
are in L1(R?), where® (t, &) := (¢, ¢..¢) and 3; @ is theith partial derivative of®. Then

~ 1
Vo f (2. 8) = Faz, ©)| < Z(Co1+17IC, ), (2.15)
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whereC, ;1 and C,, > depend only orp. We will call F, the time—frequency sigma—delta approximation
of V. f.

Before we proceed to prove this theorem we observe that (1.7) implies:
Lemma 1. For eachu®, v® u!, v!, defined as irf2.10)thel,,-norm is bounded by.

Proof. Note thatu® (for both S = “R” and S = “I”) is the state variable of a first-order sigma—delta
quantizer, described in (1.6), where the seque(ﬁg,) is the input and the sigma—delta quantization is
over the index:. Sincef € B¢, |c] | is bounded by 1. Then by (1.7}, is bounded by 1. Similarly,
v3 are the state variables of a first-order sigma—delta quantizer with the(irﬁ_),yl, where sigma—delta

n,m

quantization is ovem; again sincer; ,, is bounded by 1, sois; .. O
Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Let us write the error term

~ 1
V(pf(fv é) - FA (t’ E) - Z ;ﬂ:(cn,m - Cbl,m)(@n,mv %,s), (216)
1
= Z Z(AlAZU)n,m (‘pn,m’ @t,é)v (2-17)
1« o
= Z Z Un,m (A2A1<(pn,m’ @t,é))’ (218)

n,m

Where, for anyx = (xn,m)v (Alx)n,m = Xpom — Xntlm and (AZX)n,m = Xnm — Xn,m41- (TO avoid
unnecessarily complicated notation, sometimes we will wrkgx,, ,,) instead of A, x),,.,,, and(A; x,,.,)
instead of(A;x),...) The first equality is obvious, the second comes directly from the quantization
algorithm by setting

Un,m = Uylf)m + iv,i’m- (219)

The third equality is the result of summing (2.17) by parts; note that the boundary values disappear since
(@nms Pre) =€ MOEDD (1 — nry, & — méo) vanishes aa and/orm tends to infinity for anyr, £. Let
us definel by I := AsA1{(@nm, ¢-¢). Then

I = Az&l(eiinm(gimg)@(f —nt, & — mfo)), (2.20)
=€ " ApA102: ¢ (t — no, méo) (2.21)

after defining. ¢ (¢, z) := €-7€'¢ 9D (1, & — 7). Since, ¢ is smooth, we can rewrite (2.21) as

T—nTQ
] = e—i‘[&' (Az / alQ‘L’,E(ta mEO) dt)

t—(n+1)1o
T—nTo

—e 76 / [0192¢.¢ (r, m&0) — 3182. ¢ (1, (m + D)&o) ] ot
T—(n+1)1o
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T—n1g még
—e it / / 020192, (1, z) dr dz. (2.22)
T—(n+D7o (m+1)éo
Substituting (2.22) into (2.18) we obtain
T—n1g méo
Vo f(1,8) — Fy(z.6) = %Z V€' / / 020192:.¢ (1, 2) dr dlz, (2.23)
i (r—n+D7o (m+Dko

which yields

T—nTp méo

~ 1 .
Vo6 = Fae) < 5 Yl ™| [ [ om0 o

nm (t—n+D)1o (m+1)Eo

Y

>
< 192012061, D)) ey (2.24)

Note that in the second inequality we used Lemma 1 to bdurige by +/2. We complete the proof by
estimating the.*-norm of 3,312, ; (¢, z): For the sake of convenience, defifgr, z) := € ®(t, z), and
note that, (¢, z) = € I'(t, & — z). We then observe

020192: ¢ (2, Z)HLl(RZ) S N02010 | L2 wey + 171001 (| L1R2),
which yields the desired bound by setting

Cp1:=2]001T |l 12 (2.25)
and

Cp2: =20l g2, O (2.26)
Remark 1. Note that (2.15) still holds up to some small correction term if the frémey, &) is “almost
tight.” A frame is said to balmost tightif the ratio of the frame bounds is close to 1. Supp@sero, &)

is a frame with frame bounds and B. If we denote the quantit$/A — 1 by r, the windowed Fourier
transformV, f of any functionf € L2(R) can be written as

Vol C8 =G ma D . ) (Prms 0) + (RE pee), (2.27)
where||R| < r/(2+ r). In this case, after defining

~ 2

FA(T’ E) = m ZQn,m <(pn,m(pr,f> (228)

we can apply the proof of Theorem 1 to show that

|V, f(T,6) — Fa(r,6)| < (Co1+171C,.2) (2.29)

,
2+nrA + 2471
Note that to obtain (2.29), we used the fact tha&tf, . ¢)| <r/(2+ r). Thus, the approximation error
|V, f(r,&) — Fa(t, §)| still has the same asymptotic behavior wires 0.
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Remark 2. A sufficient condition for@ = V,,¢ to satisfy the smoothness and decay conditions listed in
Theorem 1 is that the functigp is in the Schwartz spacg(R).

Remark 3. A natural question to ask is whether the second recursion in (2.10) is essential from a
practical point of view, i.e., whether we obtain an approximation using pjljyin (2.10). Our numerical
experiments suggest that if the functigns well localized in both time and frequency, then we get a weak
type approximationf, using onlypn ,.» for which the approximation error is (@ ~%/2). Determining
conditions thatf has to satisfy for this approximation to exist is an open problem.

Now we want to raise the question of whether we can approxirfiaising F,, and if yes, in what
sense. Fix the weight function(z, £) := 1+ |t| and consider the modulation spaeg-1, i.e.?

Myt ={g e L*R): (1+ |t|)V,g(r, &) e L*(R?)}. (2.30)

Clearly any functionf e L?(R) defines a linear functiondl ; on MM byL,g:= - (f, g). By the Parseval
identity we also havé. ;g = (27)"Y(V, f, V,.g). Let F, be as above and definé V,8) as

(Fp, V,g) := / Fa(t,£)V,g(t, &) dr de. (2.31)

Note that (2.31) makes sense since
‘/ﬂ(r,é)wg(r,é)drdé‘ (Vo f. V)| + V(FA — Vo )(t,8)V,g(z,§)dr dg

<[V f. Veg) | + ||v¢g||u 4 Co2 ||rv¢g<r 8,
< 00. (2.32)

This suggests that we defin as the linear functional that magse M1 to (27) 1(Fy, V,.g). Thus
we have

Theorem 2. Let f, be defined as above, i.e.,
fai geME = (fa, g) == (27)M(F4, V,g). (2.33)

Then f, converges tgf on M:* as A tends to infinity, in the sense that for gl M1?
~ 1
[(fa.8)— (f28)] < ﬂ(cw,l”‘/wg”Ll +Cpa|tVyg(r.8)] 1) (2.34)

Remark 4. Note thatA = (2)/(t0&0); thus increasingd means decreasing the time and/or frequency
translation steps; andép, so increasing the redundancy of the expansion.

3 Note that the modulation spaqz)enl;l is independent from the window we used in (2.30). In other wordiV,, f ;1 and

Vg, f Il .1 define equivalent norms OM,:,L{]' for sufficiently nice windowsp; andgo. A proof of this as well as an extensive
discussion on modulation spaces can be found in [6].
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Proof. Letg € M11 be arbitrary. Then
g =@ [ Fac Vg edr e, (2.35)

(f.g) = (@) f V, f(t.6)V,g(c. B dr k. (2.36)

where (2.35) is by definition true, and (2.36) follows from the Parseval identity for windowed Fourier
transform. Thus

[(fa,8) = (frg)| =(@0) /(FA — V)1, 6)V,g(z, &) dr di |, (2.37)
g(zn)_]-/'ﬁf\ - V¢f|(f,§)|V¢g|(f,§)dtdg, (238)
< 5 (ConllVoglln + Co2| Vg (T )] 1), (2.39)

where to obtain (2.39) we use Theorem 1J

Now we have a way of approximating using the discrete sequengg. ,,); of course the approxima-
tion is in the above described sense and we do not even know whgtieea function. However, one can
observe that this way of approximation is particularly useful for ‘comparing’ two functions (thus leading
to applications such as pattern recognition); next we will show how one can ‘compare’ two functions
in L? using their approximations which are obtained via this time—frequency sigma—delta quantization
algorithm.

First let us focus on how to calculate the inner produc, V,g); note that

~ 1
(Fq, V(pg> = <Z ZQn,m Vw‘pn,m(fv §), V(pg(fv é)>’ (2-40)
L
=2 2 dnn(Voum(T. 8. Vg (z. 6). (2.41)

n,m

But by the Parseval identity for windowed Fourier transform,

(Vopum (T, 8), Vog(z,6)) =27 (9 m, &)- (2.42)
Let us denote the frame coefficients ¢, ,) of g by d, ,,. After substituting (2.42) in (2.41), we get
~ 27
<FA7 V(pg> = 7 %;Cbl,mdn,m- (243)

Hence we have proved

Theorem 3. Let f € BY, g € Mx" with m(z, &) = 1+ |z]. Let (¢, 70, §0) be a tight Weyl-Heisenberg
frame of L2(R) for some fixedy and . Suppose thap fulfills the assumptions of TheoreinThenF,,
the time—frequency sigma—delta approximatiorVgf, satisfies

~ 2
<FAa Vgag> = X ZQn,mdn,m, (244)

n,m
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whered, ,, = (g, ¢..m). Moreover, since forg € Mn11’1, the sequenceé(g, ©,.m))w.mycz2 IS absolutely
summable, we have

~ 2T —
<V<pf - FAa Vgag> = 7 Z(Cn,m - Qn,m)dn,ma (245)

n,m

Wherecn,m = <fa (/)n,m>v dn,m = <g, (pn,m> and the sequence q is given‘by: TTF(C); and

— o~ 27
(Fi—F2,V,8)= - Z(q,}’m —q2,)dnm: (2.46)

wherefj is the time—frequency sigma—delta approximatiorVpf; = (f;, ¢. ¢) for somef; in B¢ and
qj = TTF(Cj) with C)é,m = <fj, (Pn,m>'

Remark 5. Note that (2.44) is an explicit formula to calculate the inner pro«jﬁgt V,g); the only terms
in (2.44) that do depend on the functighare theg, ,,. In other words, one can calculate g, just
once and store them in memory.

Remark 6. The second part of the theorem, in particular (2.46), specifies a simple way of determining
how ‘similar’ two functions are by using only the corresponding bit sequences; next we shall make clear
what we mean by ‘similar.’

Theorem 4. Let f1, fobeinB?, V, f; = (fj, p..) for j = 1, 2. Suppose’ is the time—frequency sigma—
delta approximation o¥, f;. Then

4
(VoS = Vo for Vog) = (B3 = F2. V)| < =2 (CoallVoglls + Coal tVos @ 6] ,2).  (247)

whereC, ;, i =1, 2, is defined as if2.25)and (2.26), respectively.

Proof. Note that
(Vo fr— Vo fo, Vog) —(Fr — F2,V,8) =V, f1 — F1, V,8) — (Vo fo — F2, V,g). (2.48)
Thus,

‘<V<ﬂfl_ Vo 12, Vp8) _<fj - Ff%’ V¢g>| < |<wa1_ Fj’ V¢g>‘ + ‘(waZ_ Fj’ ng)‘

4
< %(Cw,lll Vogllr + C(p,zntv‘/,g(t, &) ||L1)’ (2.49)

where the second inequality is due to Theorem 2.

Theorem 4 clearly shows thaFA Fj, V,g) is an estimate of, — f> in the direction ofg. In other
words, our measure of similarity g and 1>, i.e. (F1 Fj, V,g), is completely insensitive to functions
that are orthogonal tg. However, if two functions are close to each otheLf) cIearIy(Fl Fj, V,8)
will also be small.
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Corollary 1. Letg be inM:t withm(z, £) = 1+ |z, defineG := V, g, and suppose that;, 1, are in B*.
Then

~ o~ 4
(Fy — F3,G)| <27l fi = falleliglie + In(cw,l”G”Ll +Cy2|tG(z, )| 1),

~ ~ 4
(Vo f1— Vo fo, G| < |(Fi — F5, G)| + f(cw,lnGnLl +Cp2||TG(,8)| 1),

where fj is the time—frequency sigma—delta approximationfgfand C,;, i =1, 2, is defined as in
(2.25)and (2.26) respectively.

We now generalize the above discussion in the following way.

Theorem 5. Let g1, ..., gk be functions inMX! with m(z,&) = 1 + || such that||g;|l,2 = 1 and
(gi,8;) =0 ;. OnB¥ define the projection operata? by

K
P(F)=) (F,G)Gi, (2.50)
j=1
whereG; :=V,g; and F :=V, f for f € BY. Letc be the sequencg f, ¢, »)) andg = Trr(c). Suppose
F, is the tlme—frequency S|gma—delta approximatior’ofrhen

HP(F - I’FA)HZZ % Z (Cn,m _Qn,m)(cn’,m’ _Qn’,m’)<ﬁ¢n,m’ (pn’,m’>’ (251)

n,m,n’,m’

where P is defined byP (f) := "X (£, gi)g: for f € B.

Proof. By (2.32),P(fA) is well defined and thus it is in the span{@f,, ..., Ggx}. Then we can write

K
|P(F = Fo)|* =Y [(F - Fa.Gy)[*
i=1

(Z(CV[ m Qn m) > ( Z (Cn Yﬂ Qn m )dn nl)

n,m n',m’
471 S
Z (Cnm qn, m)(cn m m)z @n, magt gt,(pn/ m/>
n,m,n’,m’ i=1
Z (Cn,m - Qn,m)(cn/,m/ - Qn’,m/) <i;§0n,m’ (pn/,m’>’ (252)
n,m,n’,m’
whered,’l n -= (8, ¥n.m). The first equality is due to the definition &f, the second equality follows from

Theorem 3; the third and fourth equalities are obvious.

Remark 7. Let F* andF? be the windowed Fourier transforms of two functigfisand £2 in 3#. Denote
the sequencé(f’, ¢, »)) by ¢’ and letg’ = Tre(c’). Supposer't and F2 are the time—frequency sigma—
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delta approximations of ! and F?, respectively. Then replacing and F, in the proof of the previous
theorem byF! and F-2, respectively, yields

B 452

|| P(F/} - Fi) ||2 - A2 Z (qi,m - qlim)(qr::-’,m’ - qr%)rn’) <F¢n,m’ @n’,m’>‘ (253)

n,m,n’,m’

Remark 8. By Corollary 1 we have

N N K 4 K K
| P(Fr=FDI <M= 122D leille + 7” Coa Y NGilli+Co2) [Gi(z.6)] 1)
i=1

i=1 i=1

(2.54)

3. Trandation invariance

As mentioned before, one possible application area for the time—frequency sigma—delta quantization
scheme described in this section is pattern recognition. We have shown above that we can measure how
similar two functionsf; and £, are by calculating F+ — F2, G). The next important question is whether
the quantization scheme is robust with respect to translation in both arguments; in this section we shall
investigate how shifts in the bit-sequence affect the approximation.

Fora, B € R, define the operatorg, f := f(- + «) andM; f := € f, the time—shift and modulation
operators, respectively. Lép, 1o, &) be a tight Weyl-Heisenberg frame and note that

<TNro fv ‘pn,m> = eimN(er)/A (fv ‘pn+N,m>’ (355)

where A = (27)/(10o) is the frame bound. Let us denot¢, ¢,..) by c,.,, and é'@)/4 py yy and
rewrite (3.55) as

<TNtofv (pn,m> — (VN)manrN,m' (356)
Thus we conclude
TNrof = Z(yN)mcn+N,m§0n,m- (357)

n,m

From the previous section we know that

~ 1
FA — Z ZCIn,m V(p@n,m (358)

approximatesV,, f as in (2.15). In (3.58) = (gn,m) = Trr(c) With ¢ = (cpm) = ((f, @nm)). We also
know by (3.57) that the windowed Fourier transformiaf,, f is given by

1
VgaTNrof = X Z(VN)mcn-i-N,m Vga‘/)n,m- (359)

n,m

One important question to ask is whether

~ 1
HA = Z Z(yN)an—i-N,m V(p(pn,m (360)

n,m
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which is obtained by replacing,; v, in (3.59) withg,,; n ., approximated/, Ty, f in a way similar to

the unshifted (2.15), i.e., whethg¥, Ty, f (1. &) — Ha(z,§)| < (Cp1)/A + |71(C,,2)/ A for someC,, 1
andC, ». The next theorem shows that the answer to this question is affirmative.

Theorem 6. Let g = Trr(c), wherec = (c,.n) With ¢, = (f, ¢n.m) fOr somef in B?. SupposefIA is
defined as in3.60). Then

~ ~

~ C
|V Tineo £ (7, &) — Ha(z,8)| < fl + |r|%2 (3.61)

with Cp 1 =~/2[18201 1 || j1x2) + N7ol| 01T || 11 w2) aNdCyp 2 = /21011 || 11m2), Wherel (1, 2) := €D (¢, 7).

Proof. We want to show that

1
Z Z(yN)an-i-N,m V(p(pn,m(f, E) - Z(yN)mcn-l-N,m V(p(pn,m(f, E) ’ (362)
1 m
= ZZ(VN) (AlAZU)n—i-N,nga(pn,m(Tag) ’ (363)
Cor, _ Cpo
< —%= %< 3.64
21 |22, (3.64

for someC, 1 andC, » wherev, ,, is as in (2.19). Define

1
D= (A1A20)nsnn(PN)" V(7. 6).

n,m

Then sinceV, g, . (t, &) = e7 "m0 @ (v — ntg, & — mé&o), we have

1 .
D=3 (MA)n € ™ 2 e (T = no, mEo), (3.65)

where2y . ¢ (1, z) = €V (1, & — 7). After summing the left-hand side of (3.65) by parts we get

1 L
D=2 thvn€ Aoy e (¢ — o, mo). (3.66)

n,m

Sincef2y . ¢ is smooth, we have

T—ntQ mé&op
1 .
D=1 vwne / / D012y (1. 2) dr iz, (3.67)
n,m (t—n+D1g (m+1)&o
which yields
T—nT mé&o
Nz ’ V2
|ID| < e Z / / |020192 .6 (¢, 2) | dr dz, < 7”82819N,r,§ l 1®2)- (3.68)

M —n+ Do (m+1D)ko
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Finally, after estimating| 020182y ¢ |l .1 (g2, We get

|V Tz (1, 6) — Ha(1,8)| < %(@,1 +171Cy.2) (3.69)
with

Coa =2110200T || 22y + V2N 10/l 01T || 11 k2. (3.70)
and

Cp2 =201 || 12), (3.71)

wherel'(t,z) :=€%®(t,z). O

Remark 9. Combining Theorem 6 with Theorem 4, we can conclude that

~

) _ Co1 , Cyo
((]/N) 16]n+N,m - CIn,m)dn,m < £ + |t| £ ’ (372)
A A

n,m

whereg := (qu,m) = Tre(c) With ¢ := (T f, @a,m))-

Remark 10. Note that the constarﬁp,z given in (3.71) is the same &3, » given in (2.26);5%1, given

in (3.70), has an extra summand proportionaltahe amount of translation, ang, the time translation
step, when compared @, 1, given in (2.26). Thus, foN =0, i.e., when there is no shift in the quantizer
output(g,..), both estimates yield the same upper bound on the approximation error.

Remark 11. The time—frequency sigma—delta quantization scheme is translation invariant up to the
adjustment facto(yy)”; the approximation of y., f obtained usind(yx)"gn+~.») i (almost) as good
as that obtained by quantizing the translated version separately.

Next, let us investigate shifts in the other index of the bit sequence produced by the time—frequency
sigma—delta scheme.

Theorem 7. Let f be inB?, ¢ = ({f, ¢n.m)) @ndqg = (gn.m) = Te(c). Define

~ 1
Hy = 2 ZQn,me Voln.m-. (3.73)

n,m

Then
~ C C
Vi Mueo f(1.6) = Ha(r. §)] < =55 + 7] =22, (3.74)
whereC, ; andC, » are as in(2.25)and (2.26) respectively.

Proof. Note that
(dMSof('), (pn,m> = / f(t)¢(t - nTO)eii(miM)EOI dr = <f, @n,m—M)a (375)
which yields

1
VgaMMEof = Z Z Cn.m—M V¢¢n,/n- (376)

n,m
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Then

~ 1
VoMueo f (1.6) = Ha(t.8) = ) (Cnm—nt = dnn—31) VP (7. &)

n,m
1
= Z Z(AlAZUn,me)Vgo@n,m(fv £), (377)
n,m

wherev, ,, is asin (2.19). As in the proof of Theorem 1 summing by parts yields the result.

Now we can combine these two results: et o, &) be a tight Weyl-Heisenberg frame bf with
frame boundA, ¢ = ((f, ¢..m)) for somef € B¢, andg = Tre(c). Then the windowed Fourier transform
Of My, Ty f = €M50 £ (- + N1o) is given by

VoMueIne f = % > v M ensnm s Volnm (T, E). (3.78)
nm

Similarly, the windowed Fourier transform &%, Mz, f is

VoTnwMums f = % ;ﬂ: YN CntN.m—m Vp@nm (T, §). (3.79)
Now define |

Hi(t,8):= % > M G-t Vo Pum (T, 6, (3.80)
and |

Hi(r,£) = % ij YN Gn+Nam—m Vo @Pnm (T, E). (3.81)

Note thatV, My, f = (1/A) Y, cnum—m Vo@n.m (T, §). We then have by Theorem 6,

Z(yN)an+N,m—M Vga(pn,m (‘L’, 5) - TNIOMMEof, (pr,’;‘

n,m

Cor  Cy2
< 2= —L 3.82
A TItl— (3.82)

whereap,l and@,,z are asin (3.70) and (3.71), respectively. Moreover, sipgé= 1, we can also write

. C, Cy2
Z(VN)( M)QnJrN,me Vw@n,m(t’ E) - MMEOTNrof(fv é)‘ < %l + |f|% (383)

n,m

Thus we proved
Theorem 8. Let H +and ﬁf be as in(3.80)and(3.81) respectively. Then we have

(i) 1VoMueyTwe f (v, §) — Hi(1,6)| < Cpa/A+171C, 2/ A, for all 7, £, and
(i) 1VyTweoMus, f(7,8) — H(1,8) < Cp1/A +17IC, 2/ A, for all 7, &,

whereC, 1 andC,, are as in(3.70)and (3.71) respectively.
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4. Numerical experiment

In this section, we will present some experimental results: We will fix a Weyl-Heisenberg frame and
guantize the frame expansions of a functipmising the algorithm TE A-l. We choose

o(t) =V /2, (4.84)

One can show thaip, 1o, £o) is a frame ofL2(R) if 7o and&, are sufficiently small. Moreover, the frame
is almost tightt (with both frame bounds approximately equal®a)/(to£o)) if one chooses sufficiently
small g and&g such thatrg ~ &.

Let us now consider the functién

f(t) = 0.5g 101 005 (4.85)

First we compute the frame coefficients 6f (f, ¢...), for different values ofryp and &,. We use an
FFT-based algorithm to compute the frame coefficients using the sampjesLet ; be the period at
which we samplef. (It is convenient to choose, = 15.) We will use the sequencef (kt1))~__, for
some sufficiently largek to compute the frame coefficients ¢f Of courseK has to be finite for all
practical purposes; however that does not introduce a large error if foathd ¢ are well localized in
time and frequency, which is true for our example. Figure 1 shows the windowed Fourier tranBform,
of f for ¢ given in (4.84); clearlyF (nto, mé&o) for integern, m are the frame coefficients gf.

In Fig. 2, we show the quantized values of the frame coefficienfs obtained via the time—frequency
sigma—delta quantization scheme. Next, we consider the frame expansignsithf frames(g, 1o, &)

(a) (b) (c)

Fig. 1. The continuous windowed Fourier transfofnhof f,i.e., F(t,§) = (f, ¢r ¢ ). Figure 1a shows the real part Bi—black
and white correspond te-0.49 and 075, respectively; Fig. 1b shows the imaginary partFef-black and white correspond
to —0.57 and 069, respectively. Figure 1c shows the absolute valué# ofn this graph, black corresponds to 0 and white
corresponds t0.86.

4 As discussed in Remark 1, a frame is called “almost tight” if the ratio of the frame bounds is close to 1. Suppesk))
is a frame with frame bound# and B. If we denote the quantityg/A — 1 by r, then any functionf € L2 can be written
asf=2/(AR+r)Y_{f. ¢n,m)eon,m + Rf where||R|| <r/(2+r) [2]. Hence reconstructing by (1.2) (with(A(2+r))/2
instead ofA) introduces an error which is boundedzid by r/+r)| fll 2. Therefore, ifr ~ 0, we can assume the frame is
tight and reconstruct using (1.2). For all the frames we will use in this sectjonis smaller than the arithmetical precision of
the computer.

5 The functionf is clearly in/3%.
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100

(a) (b) (c)

Fig. 2. The quantized frame coefficientg, ¢, ») for the frame(yp, 0.1, 0.1). Figure 2a shows the real part of the quantized
coefficients; Fig. 2b shows the imaginary parts of the quantized coefficients; Fig. 2c shows the absolute value of the quantized
coefficients. In Fig. 2, a and b, black and white correspond3aand 3, respectively. In Fig. 2¢ black corresponds/®and

white corresponds32.

error 1072

Fig. 3. The ‘approximation erroif{F — FA, Giot)| vs. the frame bound. Both axes are logarithmic. The solid line seen in the
figure is the graph(4, 24~ 1): 25 < A < 1258; the dashed line is the graphd, 304=3/2): 25 < A < 1258.

wherety and&, take values between@b and 05; thus the frame bound ranges from approximately
25.13 to 125664. We fixG(z, &) = e 02+ and we use

2 2
Got= Y Y TG, (4.86)

k=—21=-2

whereT; G := G(- + 1, -+ k), as our test function. Clearly the inverse windowed Fourier transform of
Giot isin Mg;’l.

Next, we computeF — F4, Gy Via (2.45). Figure 3 shows the value of this inner product as the
frame bound increases. Theorem 1 bounds the dechyof F,, Gior)| by A~1; however experimental
evidence, e.g., Fig. 3, suggests a faster decay rate. This is similar to the first-order standard sigma—
delta scheme for which the analogous estimate yields a boundof'[3] (1 is the oversampling
ratio) whereas the empirically expected decay rate 2. In [7], S. Guntirk proved that the error can
be bounded pointwise bgr~%3" where C depends om; and on the value of the derivative of the
original function at the corresponding point; the conjecture is that the error can be bounded pointwise by
CA~%/%1_ (A detailed discussion of various types of improved estimates can be found in [8].) Whether
there is a similar theorem for our case is an open problem; Fig. 3 suggests there may well be.

Now, we want to observe the translation invariance of our algorithm.fLbe as in (4.85). Fix the
frame (¢, 0.1,0.1) and computey = Tte(c) wherec, ,, = (f, ¢u.m). NOw, define fr o by fro(t) =
M_oTr f. Letcr o be the sequencé fr. o, ¢u.m)) andgr o := Tre(cr.e). Usingg as a template, we
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will estimate7 ands2 when we are only given the sequenge,. To accomplish this, we will compare
FT,.Q,A = Z(CIT,Q)n,m (‘pn,mv (prE)lNlth IN,M = Z(VN)erMCInJrN,erM (‘pn,mv §0r,5> for various N and M
by comparing the inner product®r ¢ 4 — In.m, Giot)- We will calculate these inner products via (2.46).
Since the frame constat is large (A ~ 628 in this case), we expect according to Theorem 8, although
it is not guaranteed, to havé ~ 0.1N and 2 ~ 0.1M where (N, M) = arginfy 4, z2(Fr.0.a —
In.u, Giot) If T and$2 are integer multiples ofy = 0.1 andéy, = 0.1, respectively.

ForT = 1.2 = 12t5 and$2 = 0.9 = 9y, we observe in Fig. 4 that the minimum is attained¥t M) =
(13, 7). In other words, we estimate the amount translafiomith an error of 0.1 gnd we make an error of
0.2 when we estimat€, the amount of modulation. Figure 5 shows the valugfofe 4 — Iy m, Giot) @S
afunction ofN andM for T = 1.17 ands2 = 0.93. In this cas&Fr o 4 — Iy u, Gior) @ttains its minimum
atN =13 andM = 8, i.e., the estimated values Bfand 2 are 13 and 08, respectively. This indicates
that even the original function is translated and modulated by amounts that are noninteger multiples of
the time and frequency translation stepsandé, (both equal to A in this example), the algorithm can
still estimate these amounts (with the resolution of integer multipleg ahdég).

Finally, we want to observe the effects of noise. We consider the case wheres defined as
above withT = 1.2 and£2 = 0.9. We will add independent identically distributed Gaussian random

_— ‘\‘:
AASS et
ST (5K
AN TR
RS
SR Ness
W

(a) (b) (c)

Fig. 4. The valug(Fy o 4 — Iy m. Grot) VS. N and M for T = 1.2 and2 = 0.9; the minimum is obtained a¥ = 13 and
M=17, \/thich means that the algorithm predi¢ts= 1.3 ands2 = 0.7. Figure 4b show$Fr o 4 — 113 M. Gtot) VS. M; Fig. 4c
ShOWS(FT,_Q,A — IN,7’ Gtot) VS. N.

g\ ! !
TS
\}}}}&\\\\t\’.‘o&:
\}

Fig. 5. The value(ﬁT,_Q!A — 1IN m,Giot) VS. N and M for T = 1.17 ands2 = 0.93; theNminimum is obtained & = 13 and
M =8, v~vhich means that the algorithm predi¢ts= 1.3 ands2 = 0.8. Figure 5b show$Fr o 4 — 113 m. Gtot) VS. M ; Fig. 5¢C
ShOWS(FT,_Q,A — IN,8’ Gtot) VS. N.



O. Yiimaz / Appl. Comput. Harmon. Anal. 14 (2003) 107-132 125

variables v, to each sample offr o(k71) (71 is the period at whichfr o is sampled; we choose
71 = 70) before computing the frame coefficients. We then compute the frame coeffijgntssing
(fr.e(kty) + v, and via the time—frequency sigma—delta scheme we quafitjz¢o obtalnFT” o
Let us define thaignal-to-noise ratidSNR) as

Zfsz | fr.e(kty)|?
2K + 1)o?

whereo? is the variance ofy; 21{ + 1 samplesfr o is used to compute the frame coefficients. In an
experiment with SNR= 16 dB, (F; , , — In u, Gor) attains its minimum av = 13 andM = 8, i.e., the
estimated values df and 2 are 13 and 08, respectively. We repeat the same experiment using inputs
with SNR= 8.5 dB and SNR= 0 dB. In the case where the SNR8.5 dB, the parameterE ands2 are
estimated as.4 and 06, respectively. For the input with SNR 0 dB the corresponding estimates are

1.4 and 02, respectively. We observe that the algorithm does reasonably well for the two cases where the
signal-to-noise ratio is larger; however for SNRD dB, the minimum value ofFr o 4 — Iy m, Giot) IS

much larger than the other two cases where the SNR is larger and so is the error in the estini&tion of

ands2.

SNR=10log

dB, (4.87)

5. Higher-order time-frequency sgma—delta schemes

In this section we will introduce higher-order time—frequency sigma—delta schemes to quantize
the frame expansions of functions B for tight Weyl-Heisenberg frames. We will show that the
approximation error is Q%) with a kth-order scheme when the frame boundAisLet (¢, 1o, £o)
be a tight Weyl-Heisenberg frame with frame bouhd_et f be inBY; ¢ = (¢p.m) With ¢, = (f, On.m)
as before. Denote the real and imaginary parts,qf by cX andc!  , respectively. Le(A‘l")x),l,m =

n,m n,m?

oD (M) Xt ANA(AF ), 1= 1o (= D) (¥)x, s fOr any sequence. To define thekth-order
time—frequency sigma—delta quantization scheme, consider the recursion relations where the superscript
S is as described before:

k), S =S
(Al u )n,m nm pn m?

P,im = S|gn( & ((A(lo)us),,,l,m, e, (A(lk_l)us)nil’m, cf)m)), (5.88)
(A(Zk)vs)n m lzf m rif,m’
n m Slgn( ((AZ(O)US)n,mfl’ Tt (Aék_l)us)n,mfl’ L_t;im))’ (589)

whereu® := u5/Cr o and ® is a function which guarantees thaf, v®, !, and v’ are uniformly
bounded inl* by Cy . Note that the recursion relations (5.88) and (5.89) corresporidhtorder
standard sigma—delta quantizers \Anﬁ'; and i un n» respectively, as their input. Thus, since all these
sequences are bounded by 1, such a exists due to [3]. Note that

Ck)@(A(lk)A(zk)vR) =cf, —(pX,+ Ck,@(A(lk)rR)mm), (5.90)

n,m

and similarly
Cro (A APV, =cl,, = (Phn+ Cro(Afr"), ). (5.91)

nm
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We will now define the sequencegt andq’ by ¢F, = pF, + Cro(Ar"),,, andg!,, = p!, +
Cr.o(AYr), . Finally, let us defindre, by

TTFk (C) =q, (592)
whereq, . :==qf, +iq] ,,.
Theorem 9. Let (¢, 10, &) be a tight Weyl-Heisenberg frame with frame bound_et f be in 3% and

define the sequencg by (5.92) i.e., g, iS obtained by quantizing the frame coefficientsfovia a
kth-order TFX' A scheme. Fix a positive integérand define

~ 1
FA,k(Ta 5) = Z ZQn,m <(pn,m’ (pr,f>- (593)

n,m

Suppose is chosen such tha@ (z, £) = (¢, ¢, ¢) Satisfies

ok ok .
—— ("o LY(R?). 5.94
gor ger (@ P(.6) € LY(RY) (5.94)
Then
~ 1 &
|V, f(T,6) — Fax(z,8)| < I ch,ga,llfll (5.95)
=0
with
k _
Crpr = (21) " Crollvlli ( l) 185798 | 1 g (5.96)

wherek is the order of the quantizer anfi (¢, z) = €*®(t, z). We will call FA,,{ the kth-order time—
frequency sigma—delta approximationof /.

We need the following standard result to prove Theorem 9.

Lemma 2. Let A denote the forward difference operator, i.€Ax), := x, — x,41, as before. The
following equality holds for any functiofi € C*:

ko

_ t
A f(x —na) = ozk_1/ f(k)(x —(n+koa+ t)pk <—> dr (5.97)
o
0
for any«. In (5.97) pi is thekth-order B-spline, pr = xj0.1) * - - - * xj0.1) (k convolution factors (Note
that the support op; is on[0, k], and) _, px(x +n) =1forall y e R.)

Proof of Theorem 9. As in the proof of Theorem 1, we start by writing the error term

Cro

F(1.8) = Fau(t,6) === "(ASAL),  Vogum(T.6), (5.98)

n,m

> Unm ASAL V(7. £). (5.99)

n.m

_ Gro
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Now let us defind, ,, = ASAAV, ¢, .. (z, &), which we can also write as
Lim =€ ASALQ, ¢ (T — n1o, m&p) (5.100)

with 2, (¢, z) :== €7D P (¢, & —7), as in the proof of Theorem 1. By Lemma 2 we can write (5.100)
as

kto
iTE A t
L= g ité Agf(]){_]-/ 8&‘) .Qt,é (T —(n+k)o+1t, méo)pk (‘[_0> dr, (5101)
0
kto
i A t
= elts‘[gl/(Agaik)Qf,E (T - (f’l + k)TO +1, méo))pk(t—> dt, (5102)
0 0
(27_[)](71 ko kéo t
—iT z
= E—Ak_l // 3§k)aik>.(2ns (t— 4K+t (m—k)é+ Z)pk(g)pk (r_o> dz dt.
0 0

(5.103)

In the last equality we use the fact that= (27)/(10&0). Since the support g, is on [0, k] we can
replace the integration limits of both integrals in (5.103) byo and co. Thus after the appropriate
change of variables in both integrals we get

A T / / 3§k)3ik)9t,s(l7’ S)'Ok<r£ — é +n +k>,0k(§i —m +k> dpds. (5.104)
0 0

Ak-1

Substituting (5.104) into (5.99) and taking the absolute value of the resulting expression, along with the
fact thatp, > 0 and

Zpk(£_£+n+k>pk(i_m+k>:1, (5.105)
70 T SO

yields:
Crollvll~(2r)* L

~ )
|V f(z,6) — Fax(r,8)| < v 8500 2. ¢ 1. (5.106)
Finally, using
k
k e
05300102, (t,2) = (l)(ir)lef”ag‘ Do r@, & -2, (5.107)
=0

we get the result. O

Remark 12. The reasoning in Remark 1 still applies and thus Theorem 9 holds, at least approximately,
if the frame(gp, 19, &) is almost tight.

Remark 13. A sufficient condition for® = V,¢ to satisfy (5.94) is that the functianis in the Schwartz
spaceS(R).
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Remark 14. We will again approximatef as a linear functional on some test function space. For a
kth-order time—frequency sigma—delta quantization scheme an appropriate test function space is the
modulation spac@/,.! with m(z,§) :=1+ ||}, i.e.,

Myt=1{g e L*R): (1+|7"|)V,g(r. &) e LY(R?)}. (5.108)

my

Letg e M.t and for f € BY, let F x be defined as in (5.93). Then
(Vo f = Fax, Vy8) = / (Vo f (2. 8) — Fpu(1, ) Vg (z, &) dr dé (5.109)

is finite; thus(ﬁA,k, V,g) is well defined. We now definﬁA,k as a linear functional oM,};kl such that

(Fak: &) = (Fax. Vyg). (5.110)
By Theorem 9 we can conclude

. 1 K
[(f. 8) — (fax 8)] < F D Coi| T Vgt 8) | 1pe (5.111)
=0

whereCy ,; is as in (5.96).

Remark 15. Let f; and f» be two functions in3¢, ¢, andg? the corresponding sequences produced
by the kth-order time—frequency sigma—delta scheme, ande‘g,I and Fj,k be thekth-order time—
frequency sigma—delta approximations fafand f>, respectively. Then, regardless of the order of the
approximation, we have

-~ 1
(Fa = Fi i Vog) =D (dnn — 4im) (& 0nm). (5.112)

n,m

Similarly, for any f in B?, letq = Trr, (c) where ¢ denotes the sequence of the frame coefficients of
SUpPOSEF, ;. is thekth-order time—frequency sigma—delta approximatiorf ol hen we have

~ 1 .
<F - FA,k, V(pg> = Z Z(Cn,m - Qn,m)<ga ¢n,m>- (5113)

n,m

Remark 16. Theorems 3 and 5 are true regardless of the okdef the time—frequency sigma—delta
scheme that is used to approximate a given functioa B%, as long asp satisfies the conditions

stated in Theorem 9 and the test functions are chosen appropriately. Theorems 4, 6, 7, and 8 need some
modification to be true for the case where the quantizer idtebrder. We state these modified versions
below: Theorems 10, 11, 12, and 13 are the generalized versions of the aforementioned theorems,
respectively. The proofs are similar to the first order case and will be omitted.

Theorem 10. Let f1, fobe inB%, F/ .=V, f; for j =1, 2, ﬁf{’k be thekth-order time—frequency sigma—
delta approximation o’/ for some fixed positive integér Then, forg € M1!

my !

- - ar &
(L= F2, Vog) = (P, = F2 1 Vi)l < 52 D Cru[ Vg (0. iy (5.114)
=0

whereCy ,; is defined as ir{5.96).
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Theorem 11. Letg = T7r (c) (i.e., the quantization scheme is of ordgr wherec = (c,,im) (1. myezz With
Com = (f> ou.m) fOr somef in B?. Let N be some fixed integer and defiflg as in(3.60) Then

k
~ 1 ~
VT (1.6) = Hy(r.6)] < 7 3 Crgulel (5.115)
=0
with
- KRN .
CWJ=@ww4q@wmm§:()(;mey4wyfwﬁrw (5.116)

j=l

Theorem 12. Let f be inB?, ¢ = ((f, ¢n.m)) @and g = (g».m) = Trr, (c) for some positive integer. Fix
an integerM and defineH 4 as in(3.73) Then

~ 1 &
[VeMugof (v.6) = Ha(z. ©)| < 3 Cugulel’ (5.117)
=0

whereCy ,; is as in(5.96)

Theorem 13. Let f be in 3%, ¢ = ((f, ¥u.m)) @Nd g = (gn.m) = T1F,(c). For integersN and M, define
H}and H? as in(3.80)and (3.81) respectively. Then

k
~ 1 ~
[ Vo Mty Tveo f (1.6) = Hi(r. )| < 7 > Crgulel’
=0
k

~ 1 ~
|wmwmmh@—ﬁm@KK; Cropiltl,
[=0

whereCy.,; is as in(5.116)

6. Numerical experiment revisited

In this section, we will present the results of humerical experiments for the second-orélex-TF
guantizer analogous to those discussed in Section 4 for the first-order quantizer. We ghoagse
nY4e~?/2_ As we have discussed befoKe, 1o, £&9) constitutes a frame ify and&y is sufficiently small;
moreover, the frame is almost tight with the frame bounet (27)/(to&o) if 170 andé&g are sufficiently
small andry ~ &.

We will quantize the frame expansion of the functigir) = 0.5e~(01*+005% \hich is the same
function we have used in Section 4. We have already computed the frame coeffi¢ignts,) of f.
Using the algorithm described in (5.88) and (5.89) wita 2 and® (u, v, x) = u + 0.5v we obtain the
guantized frame coefficientg, ,, of f; these are shown in Fig. 6. Next, we fix the functiGr,, defined
as in (4.86), as our test function and compute the inner produet fA,z, Got) Via (5.113) for various
values of the frame bound. Figure 7 shows the value ¢of — fA,z, Got) While A takes values between
25.13 and 122&4. Similar to the first-order case, the decay of the approximation error is faster than
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100 100

-50)

(a) (b) (c)

Fig. 6. The quantized frame coefficients, ,,—obtained via the second-order scheme. Figure 6a shows the real part of the
quantized coefficients; Fig. 6b shows the imaginary parts of the quantized coefficients—black correspeh@sia white
corresponds to 10 in these figures. Figure 6c shows the absolute value of the quantized coefficients; in this figure black
corresponds to 0 and white corresponds te/20

s
error 10°¢

Fig. 7. The ‘approximation error|(F — I?A)z, Giot)| vs. the frame boundd for the second-order case. Both axes are
logarithmic. The solid line seen in the figure is the grdph, 30A~2): 2513 < A < 122864}; the dashed line is the graph
{(A, 150475/2); 2513 < A < 122864}.

the predicted rate, i.e., instead of being40?), the approximation error seems to be of order®?.
This again matches the empirical error decay rate observed for the standard second-order sigma—delta
quantizers.

Next, we want to observe the translation invariance of the second-order quantizers. To this end,
we repeat the experiment we did in Section 4: Fix the frage.1, 0.1) and compute; = Trg,(¢),
i.e., use a second order quantizer, wheye, = (f, ¢,..). Now, as in Section 4, defingr o by
fro =M_oTrf. Let cr o be the sequenc€(fr o, ¢,»)) and qro = Trr,(cr.e). UsSing g as
a template, we will estimat& and$2 when we are only given the sequenge.. To accomplish this,
we will CompareFT,.Q,A,Z = Z(QT,Q)n,m <§0n,mv (pt,é> WI!D IN,M = Z(VN)m+qu+N,m+M <(pn,m’ %,g) for
various N and M by comparing the inner product¥r ¢ 42 — Iy m, Gior). We will calculate these
inner products via (5.112). Since the frame constanis large @ ~ 628 in this case), we expect
according to Theorem 13 (although it is not guaranteed) to Hawve 0.1N and £2 ~ 0.1M where
(N, M) =arg inf(N)M)ezz(FT,g,A — Iy v, Giop) if T and$2 are integer multiples of, = 0.1 andgo = 0.1,
respectively.

For T = 1.2 = 1219 and 2 = 0.9 = 97y, we observe in Fig. 8 that the minimum is attained at
(N, M) = (12,9), in other words our algorithm estimated the translation amoiingsd $2 correctly.
Next we test whether the algorithm can detect translation and modulation amounts that iateger
multiples oftg and&g (of course with the resolution given by and&g). Figure 9 shows the result when
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(a) (b) (c)

Fig. 8. The valugFr o 4.2 — In.m> Grot) VS. N and M for T = 1.2 ands2 = 0.9; the minimum is obtained a¥ = 12 and
M~: 9, which means that the algorithm predigts: 1.2 and$2 = 0.9, i.e., the correct values @f and 2. Figure 8b shows
(Fr.©2.4,2—I12,m. Gtot) VS. M; Fig. 8¢ shows Fr o 4 — Iy 9, Giot) VS. N.

o -
“‘\\\‘
TSSO,
QTS ~—
A\ ‘\\‘“‘\‘\ L ~-
LSS

\Y TS
A LIRS U g0
N

(a) (b) ()

Fig. 9. The vaIue(fT)g)Agg —IN,m, Grot) vs. N andM for T = 1.17 ands2 = 0.93; the minimum is obtained &f =12 and
M =9, which means that the algorithm predigts= 1.2 ands2 = 0.9. Figure 9b shows$Fr o 4 — 12 i Gtot) VS. M Fig. 9¢
shows(Fr o 4 — In 9, Gtot) VS. N.

T = 1.17 ands2 = 0.93. One observes that the algorithm has estimatadds? as well as the resolution
allows.

Finally, we add noise to our signal the way we described in Section 4, and again we use our algorithm
to estimate the translation and modulation amo@nésds2. We definel:‘;,g,A,2 is defined the same way
we definedf;,g,A just above (4.87), only this time using theproduced by the second-order quantizer.
In an experiment with SNR= 8.5 dB, the algorithm estimate@d and £2 as 12 and 07, respectively,
where the true values @f and$2 are 11 and 09, respectively. When we decrease the SNR to 0 dB, the
algorithm estimated” ands2 to be 14 and 06.
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