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We introduce a family of coarse quantization algorithms for heavily oversampled Gabor
expansions of certain classes of functions in L?(R). These algorithms, which we call
the TFXA quantization algorithms, are inspired by sigma-delta modulation, a widely
implemented coarse quantization scheme for oversampled bandlimited functions. We show
that the TFXA algorithms produce weak type approximations where modulation spaces
M} with suitable weight functions m are the appropriate test function spaces. We also
show that the TFX A algorithms are translation invariant up to some uniform correction.
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1. INTRODUCTION

In this paper we introduce a family of algorithms to ‘coarsely quantize’ redun-
dant time-frequency representations of certain classes of functions in L?(R). By
quantization we understand the reduction of the continuous range of the coefli-
cients to a discrete, possibly finite set. More precisely, given an expansion of the

form
£=> hex (1.1)

AEA

where f), € C and A is a countable set, a quantization algorithm will produce a
sequence (gx)xea that takes values in some discrete set D such that f = 3 xeA DPA
is an approximation to the function f in some suitable norm.

There are two different approaches to quantization: fine quantization and coarse
quantization. Given an expansion as in (1.1), one way to quantize the coefficients
£ is to replace ff and f{, the real and imaginary parts of fy respectively, by
q® := dround(ff/s) and ¢l := dround(f{/5). Here § is the step size of the
quantizer. In this case, setting g» = ¢ + igl, we have sup |fy — qa| = V26.
Therefore by decreasing the step size, one can make |fy — ¢x| arbitrarily small, and
thus the approximation error diminishes as § approaches zero. Such algorithms are
usually called fine quantization algorithms.

An alternative approach exists if the expansion is highly redundant. In this case
one can replace the coefficients f) with coarsely quantized values gy, i.e. g\ € D
where D has just a few elements, and still have a good approximation. Instead of



controlling the individual differences | fx —g¢x|, such an algorithm aims to produce gy
so that the approximation error || f—}_y cx @xal| is small. Moreover, the algorithm
is constructed such that the approximation error diminishes as the redundancy of
the expansion increases. Such algorithms are called coarse quantization algorithms.
Note that a coarse quantization algorithm exploits the redundancy of the expansion
to compensate for the coarseness of the quantization.

An important property of coarse quantization algorithms is that they are more
efficient in utilizing the redundancy of an expansion. For example, consider a
function, f, that is sufficiently well localized in both time and frequency. A heuristic
argument in [2] shows that quantizing the Gabor frame expansion of f using a fine
quantization algorithm with a fixed step size § yields an approximation f with
If = fll = O(A"'/2). Here A is the frame bound of the (tight) Gabor frame
(and thus a measure of the redundancy of the expansion). In [11] it is shown
that the asymptotic behavior of the approximation error is O(A~!) for tight Gabor
frames if the frame bound A is an integer. In this paper we introduce a family of
coarse quantization algorithms which yield weak-type approximations, where the
approximation error is O(A~*) for a kth-order scheme.

One may of course argue that instead of increasing the redundancy of the ex-
pansion, one can increase the resolution of the quantizer, i.e. decrease the step
size, d, to obtain a better approximation. Like increasing redundancy, this would
correspond to using more bits per critical sampling interval (or rectangle in the case
of Gabor frames). Indeed, it can be easily shown that fine quantization algorithms
achieve exponential precision, i.e. the approximation error decays exponentially as
the bit rate —the number of bits used to quantize each sample— increases. This is
usually not the case for coarse quantization algorithms. Despite this shortcoming,
coarse quantization algorithms are widely implemented to quantize oversampled
bandlimited functions (functions with compactly supported Fourier transforms)
mainly because of their superior robustness properties. Detailed discussions about
robustness properties of particular coarse quantization schemes can be found in
[3, 9, 14]. On contrary, [13] shows the strong dependence of the numerical stability
of fine quantization algorithms to computational accuracy in the case of discrete
windowed Fourier expansions. In this paper we do not discuss robustness properties
of TFXA schemes in detail; however we should note that these algorithms exhibit
similar robustness properties to sigma-delta schemes by construction.

Throughout the paper we will be discussing methods to coarsely quantize Weyl-
Heisenberg frame! expansions of functions in L?(R). Weyl-Heisenberg frames are
frames of L?(R) that are generated by shifting a fixed function ¢ € L?(R) along a
lattice I' = 10Z x &Z in the time-frequency plane: For ¢p () := p(t — nro)eiméot,
the {¢n,m : n,m € Z} constitute a frame in L2(R); in other words

AllFIP < D 1KF onm) < BISIP

n,m

for all f € L2(R), where the frame bounds A > 0, B < oo are independent from f.
(Here (f, on,m) = [ f({t)pnm(t).) For a detailed discussion, consult [2, 10, 6, 5].
For the sake of convenience we denote by (¢, 7o, &) the collection {pn m }(n,m)ez2
with ¢, (t) as defined above. As is well known, if (¢, 79, &) is a Weyl-Heisenberg
frame, the function @ := U1y, where U f := > n.m{fs Pn,m)Pn,m, also generates a

Weyl-Heisenberg frame (@, 79, &) with frame bounds B~! and A~!, and one has

IThese frames are also called Gabor frames and windowed Fourier frames.



f= En’m<f, On,m)Pn,m- The frame (@, 70,&) is called the dual of (¢, 710,&). If
(,70,&0) is a tight? frame with frame bound A, U = A 1d, thus ¢ = A~ 'y and we
have

f= %Z(f: ‘Pn,m>‘Pn,ma (1.2)

where equality is in the sense of L2.

Suppose (¢, 70,&o) is a tight Weyl-Heisenberg frame of L?(R) with the frame
bound A where ¢ is a smooth and well-localized function that is normalized in L?,
to € L2, and £p € L2 Then it is a standard result [4] that A > 1 (necessary to
have a frame) and A = 2T

One can define also the continuous windowed Fourier transform of f with respect
to ¢ by V, f(1,€) := (f, pr,e), where . ¢ = p(t — 7)et. Combining this with (1.2)
implies

Vol (1,6) = 5 3 Ufs Pnm) (onam 1) (1.3)

n,m

where the convergence is pointwise as well as in L2.

Note that (1.2) essentially tells us how to reconstruct f from its frame coefficients
(f,¥n,m)- Our goal, as discussed above, is to devise an algorithm to replace the
(f,¥n,m) by some gp m € {di,ds,...dr}, with d; € C, (i.e. to quantize ¢, ;) such
that

~ 1
fA = Z Z dn,mPn,m (14)

is a ‘good’ approximation of f in some norm, preferably in L?-norm.

The algorithms that we consider throughout the paper are inspired by sigma-
delta quantization algorithms that are commonly used to coarsely quantize over-
sampled bandlimited functions. Consider a function f that is bandlimited with
bandwidth =, i.e. suppf C [—7, ], and that satisfies || f||L < 1. It is well-known
that f can be stably reconstructed from its sample values f(%) where A > 1 is
fixed; in particular, with g satisfying § € C™, §(¢) = 1/v/27 for ¢ € [, 7] and
(&) = 0 for |£| > Amr, one has

=155 ()s(-1). w9

nez

Sigma-delta algorithms generate sequences (g, )nez, ¢n € {—1, 1}, such that replac-
ing the sample value f(%) in (1.5) by g, gives an L*-approximation of f. This
is achieved by constructing ¢, such that the running sums of ¢, track the running
sums of the sample values f(%) uniformly. Many different schemes exist; typically
the ¢, are constructed recursively. For example, a first-order sigma-delta quantizer
generates the g, via the following recursion:

VUp —Up—-1 = f;} - q,’:
a sign(vn—1 + f,)- (1.6)

In this case, one can show that [3]
e |vy| <1 foralln,if vy € (—1,1) (1.7)

~ 1
o |If = flle= < 5llg'llz2- (1.8)
2A frame with frame bounds A and B is called tight if A = B.




In fact, this bound can be improved; [7] contains a proof that the error can be
bounded pointwise by CA~%/3+" where C' depends on 7 and on the value of the
derivative of the original function at the corresponding point.

A Ekth-order sigma-delta quantizer can be defined replacing the first-order back-
ward difference operator in (1.6) by a kth-order backward difference operator and
adjusting the rule that determines g, such that the |v,| stay uniformly bounded.
In this case, the kth-order running sums of g, track the kth-order running sums of
f(%) uniformly, i.e.

My, ma mi n My ma mi
1D ST S SRS SRR Sl SPRPYS
mp—1=Np mi1=Ng n=N; mp—1=Np mi1=Ng n=N;

where the value of the constant C' does not depend on Ny, ..., Ng, My, or f(%). Thus
one can prove that the L> approximation error is O(A~*). Detailed discussions of
higher-order schemes can be found in [3, 14].

In Section 2, we introduce a coarse quantization algorithm for tight Weyl-
Heisenberg expansions, called the TFXA quantization algorithm. Given the frame
coefficients (f, ¢nm) of a function f, this algorithm produces g, . € {¢® +iq’ :
q,q¢' € {=3,-1,1,3}}. When (p,79,&) is a tight Weyl-Heisenberg frame with
frame bound A, we show that for functions f that satisfy |V, f| < 1,

f=A" Z n,mPn,m (1.9)

n,m

yields a weak-type approximation where the modulation spaces M} with suitable
weight functions m are the natural test function spaces. Moreover, we show that
the resulting approximation error is O(A™!). Like the case with the sigma-delta
schemes, this is achieved by producing gy, such that the running sums of g, n,
track the running sums of (f, ¢, ) uniformly.

In Section 3, we show that the TFXA quantization algorithm is translation
invariant up to some uniform adjustment. In Section 5, we define the higher-
order TFXA schemes, and show that the approximation error is O(A~*) if the
approximation is produced by a kth-order scheme (where k is a positive integer).
Sections 4 and 6 present numerical experiments for the first-order and second-order
TFXA schemes, respectively.

2. THE TIME-FREQUENCY SIGMA-DELTA (TFXA) QUANTIZATION
ALGORITHM

Let (p,70,&) be a tight Weyl-Heisenberg frame with frame bound A. We will
consider functions f € L?(R) that satisfy |(f,¢nm)| < 1 for all integers n and
m. Denote the collection of such functions by B¢. Let ¢ff,, and ¢ ,, be the real
and imaginary parts of the frame coefficients ¢y, m = (f, ¢n,m) respectively. In this
paper we consider algorithms to quantize the frame expansions of certain functions.
The frame coefficients are generally complex numbers and the algorithms quantize
real and imaginary parts of these numbers separately; moreover the algorithms that
we consider are recursive and the recursion relations that are used to quantize the
real and imaginary parts of the frame coefficients are identical. Thus, to simplify
the notation, we will use the superscript S whenever we have an equation, a system
of equations, or an expression that is valid for both S =“R” and S =“I".



Now consider the recursions:

S S _ S S
Upm —Upn—1,m = Cnm ~ Pnm
S _ : S S
pn,m - Slgn(unfl,m + Cn,m)
S S _ S S
Unym —Unym—1 = Unpm —Tnm
S _ : S S
Tn,m - Slgn(fun,mfl + un,m) (210)

where
. 1 x>0
sign(z) = 1 z<o0-

The difference equations given in (2.10) will be used to quantize the real part
(S =“R”) and imaginary part (S =“I") of the frame coefficients ¢, m. Denote the
sequences (u ﬁm), (v3 m) by u® and v° respectively. Similarly p° and 7 will denote
(p5 ) and (r; ) respectively. Note that

(AIAZUR)n,m = Cg,m - (pg,m + (AITR)n,m)a (2.11)

and
(A1A2v1)n,m = C{l,m - (pil,m + (AITI)n,m)J (212)

where (Aq0)n, m = Up, m vn 1,m and (Ag’l})n’m = VUn,m — Unm— 1 We will define
the sequences ¢ and ¢’ by qn m = pn m (A1), and qn m = pn m A,
respectively. Let ¢ := (cp, m)(n m)ez? and define the mapping Trp from I2(C) to Q
by

Trr(c) = q:=¢" +iq"; (2.13)
where Q denotes the collection of all sequences (zp,m +Yn,m) Where both z,, ,, and

Yn,m take values in {-3,-1,1,3}.

THEOREM 1. Let (¢,70,&) be a tight Weyl-Heisenberg frame of L*(R) with
frame bound A. Let f be in BY and set ¢ = Trr(c) where ¢y m = (f, n,m). Define

(T § A an m (pn ms (PT,E) (214)

n,m

Suppose ¢ is chosen such that (1 + |&| + |7E))@(T,E), (1 + |7|)01 (T, §), £829(T, §)
and 0,0:®(1,€) are in LY(R?), where ®(1,&) := (p, pr¢) and 8;® is the it" partial
derivative of ®. Then

1

Vo £(1,8) — Fa(r,6)| < 1(Ce +171C0.2), (2.15)

where Cy1 and Cy o depend only on ¢. We will call F4 the time-frequency sigma-
delta approzimation of V,, f.

Before we proceed to prove this theorem we observe that (1.7) implies:

LEMMA 1. For each u®, v® u’ v', defined as in (2.10) the lo.-norm is bounded
by 1.



Proof. Note that u® (for both S =“R” and S =“I") is the state variable of
a first-order sigma-delta quantizer, described in (1.6), where the sequence (c5 )
is the input and the sigma-delta quantization is over the index n. Since f € B,
|c5 | is bounded by 1. Then by (1.7) u5 ,, is bounded by 1. Similarly, v§ ,, are the
state variables of a first-order 51gma—de1ta quantizer with the input (u,, m) where

sigma-delta quantization is over m; again since uﬁ’m is bounded by 1, so is Ug’m. '

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Let us write the error term

Vo f(r,8) — Fa(r,8) = % Z(cn,m = @n,m){Pn,m, Pr.e); (2.16)
. )
= A Z(AlAQ'U)n,m <90n,m; SOT,E)J (217)

= Zvnm ‘Pn m;‘PTE)): (2.18)

where, for any & = (Zp,m), (A12)n,m = Tnym — Tnt1,m a0d (Do®)pm = Tpm —
Zn,m+1. (To avoid unnecessarily complicated notation, sometimes we will write
(AiZp,m) instead of (A;z)n,m, and (A;z,,m) instead of (A;z)n,m-) The first equal-
ity is obvious, the second comes directly from the quantization algorithm by setting

Uk = vf},k + ivi’k. (2.19)

The third equality is the result of summing (2.17) by parts; note that the boundary
values disappear since (pn,m, @re) =€ —inTo(§=mE) § (1 — nry, £ —m&y) vanishes as n
and/or m tends to infinity for any 7, €. Let us define I by I := (AsA1{pn,m,Pre)-
Then

~
I

AsAq (e_inTO(g_mg)é(‘r —n10,€ — m§0)) , (2.20)
= e_iT‘EAzAlQT,g(T — nTo,mgo). (2.21)

after defining Q. ¢(t,2) := e®7e6~2)®(t,£ — 2). Since Q¢ is smooth, we can
rewrite (2.21) as

T ’ILT()
I = —17-{ ( algr,g (t,mgo)dt)

—(n+1)mo

. / T 000t ko) — 010 (1, (m + 1)) dt

(n+1)7o

) T—nTQ mé&o
= 7't / / 02019, ¢ (t, 2)dtdz (2.22)
T—(n+1)7o v/ (m+1)éo

Substituting (2.22) into (2.18) we obtain

(r—n+1)7g +1)éo

~ 1 . T—NTQ méo
P f(1,6) = Fa(r,§) = 5 > vnme T / /( 020106 (t, 2)dtdz, (2.23)

which yields

~ 1 —ire T—NnTQ még
Ve f(7,6) — Fa(r, )| < ZZlvn,me | / 102019, ¢ (t, 2)|dtdz
n,m (T—n+1)70 J (m+1)&o
2
< %nazalm,g(t,z)||L1(R2). (2.24)



Note that in the second inequality we used Lemma 1 to bound ||v||;= by V2. We
complete the proof by estimating the L!'-norm of 9:01Q,¢(t, 2): For the sake of
convenience, define T'(t,2) := e®®*®(t, 2), and note that Q, ¢(¢,2) = e*T(¢,£ — 2).
We then observe

1820121 (t, 2) |13 < 10201T Il sy + IO 11 o)
which yields the desired bound by setting
Con = V2[|0:0:T|| L1 (2 (2.25)

and
Cop,2 = V2|01 T L1 (m2).- (2.26)

Remark 1. Note that (2.15) still holds up to some small correction term if the
frame (p, 70, &) is “almost tight”. A frame is said to be almost tight if the ratio of
the frame bounds is close to 1. Suppose (p, 79, &) is a frame with frame bounds A
and B. If we denote the quantity B/A — 1 by r, the windowed Fourier transform
V,f of any function f € L?(R) can be written as

2

Vo f(1,€) = m Z(f: Onm)(Pn,m> Pre) +{Rf,0re), (2.27)
where ||R|| < 7/(2+ 7). In this case, after defining
~ 2
Fy (Ta é-) T m Z dn,m (‘pn,m@r,ﬁ) (228)

we can apply the proof of Theorem 1 to show that

- 2
Vo (€)= PA(r&)| < oy o + 171C02) + 570

Note that to obtain (2.29), we used the fact that |(Rf, ¢r¢)| < r/(2+r). Thus, the
approximation error |V, f(7,§) — Fa(r,&)| still has the same asymptotic behavior
when r = 0.

(2.29)

Remark 2. A sufficient condition for ® = V,,¢ to satisfy the smoothness and
decay conditions listed in Theorem 1 is that the function ¢ is in the Schwartz space
S(R).

Remark 3. A natural question to ask is whether the second recursion in (2.10)
is essential from a practical point of view, i.e. whether we obtain an approximation
using only p;f’m in (2.10). Our numerical experiments suggest that if the function f
is well localized in both time and frequency, then we get a weak type approximation
f, using only pg,m, for which the approximation error is O(A~/?). Determining
conditions that f has to satisfy for this approximation to exist is an open problem.

Now we want to raise the question of whether we can approximate f using Fy,
and if yes, in what sense. Fix the weight function m(7,§) := 1 + || and consider
the modulation space M1, i.e.?

My' ={g€ L*(R) : (1+]r])V,g(,€) € L' (R*)}. (2.30)

3Note that the modulation space M.;! is independent from the window ¢ we used in (2.30).

In other words, ||V,, f||r: and ||Vy, f||r: define equivalent norms on M} for suffi-

ciently nice windows (3 and 2 . A proof of this as well as an extensive discussion
on modulation spaces can be found in [6].




Clearly any function f € L?(R) defines a linear functional Ly on M}! by Lyg :=
(f,9). By the Parseval identity we also have Lyg = (2r) "' (V,, f,V,,g). Let F4 be
as above and define (F4,V,g) as

(Fa,V,g) = / Fa(r, OV, g(r, ©)drde. (2.31)

Note that (2.31) makes sense since

| [ Bar Vogtmdrdel < 1VodVog)| +1 [ (Fa = Vi), Vgl E)drde]
< IV h Vool + 2L Wiglln + S22 Vg (r, €)1
< o (2.32)

This suggests that we define fA as the linear functional that maps g € M}! to
(2m)~"(F4,V,g). Thus we have

THEOREM 2. Let fa be defined as above, i.e.
far ge Myt = (fa,9) = @m) " (Fa,Vyg)- (2.33)

Then fa converges to f on ML as A tends to infinity, in the sense that

Fa,0) = (9] < 57 ConllVoglls + CoallrViogr, ). (234

Remark 4. Note that A = %; thus increasing A means decreasing the time
and/or frequency translation steps, 7o and &g, so increasing the redundancy of the
expansion.

Proof. Let g € ML be arbitrary. Then

(Fag) = (@m0 / Fa(r, €)Vog(r, E)drde, (2.35)

(f,9)

(2m)1 / V, 1 (r, €)Vg(r, E)drde, (2.36)

where (2.35) is by definition true, and (2.36) follows from the Parseval identity for
windowed Fourier transform. Thus

[(f4,9) — (£, 9)|

(2m)!| / (Fa — Vo f)(r, ) Vg (r, E)drde|,  (2.37)

< (2mt / |Fa = Voo (7, )|Vipgl(7, §)drds  (2.38)
1
< 51 CoallVeglir + CoallrVeg(r, ©)llL1),  (2:39)

where to obtain (2.39) we use Theorem 1. 1

Now we have a way of approximating f using the discrete sequence (¢n,m); of
course the approximation is in the above described sense and we do not even know
whether f,4 is a function. However, one can observe that this way of approximation
is particularly useful for ‘comparing’ two functions (thus leading to applications such



as pattern recognition); next we will show how one can ‘compare’ two functions in
L? using their approximations which are obtained via this time-frequency sigma-
delta quantization algorithm.

First let us focus on how to calculate the inner product (F 4, V,9); note that

(FA: Veog) = (% an,mvﬂon,m (1,€), Vo g(7,8)) (2.40)
= %ZQn,m(Vwcpn,m("'v 6)7V<pg(7'7§))- (2.41)

But by the Parseval identity for windowed Fourier transform,

(Vo on,m(T,6), Vog(1,8)) = 27{Pn,m, 9)- (2.42)

Let us denote the frame coefficients (g, pn,m) of g by dy,m. After substituting (2.42)
n (2.41), we get

(FA; Lpg A ZQTLm n,m- (243)

Hence we have proved:

THEOREM 3. Let f € B?, g € M} with m(r,€) = 1+ |7|. Let (¢, 70,&) be
a tight Weyl-Heisenberg frame of L*(R) for some fived 79 and &. Suppose that
@ fulfills the assumptions of Theorem 1. Then F4, the time-frequency sigma-delta
approzimation of Vi, f, satisfies

(FAJ Lpg A ZQTLm T, (244)

where dp m = (g, Pn,m). Moreover, since for g € ML, the sequence ((%‘Pn,m))(n,m)eZZ
is absolutely summable, we have:

()

(V f FA: V<pg A Z Cn,m — qn, m)dn ms (245)
where cpm = {f, Pn,m), dnm = (g,(pn,m) and the sequence q is given by
q= TTF( ),' and

(ii)
1 2m 1 2
<FA FA? V<Pg) A (qn,m - qn,m)dnﬂm (2'46)

n,m

where ﬁfx is the time-frequency sigma-delta approzimation of Vi, f; = (f;j, pr.e)
for some f; in B? and ¢’ = Trp(c?) with ¢}, ., = (fj, Pn,m)-

Remark 5. Note that (2.44) is an explicit formula to calculate the inner product
(F4,V,g); the only terms in (2.44) that do depend on the function f are the gy -
In other words, one can calculate the d,, ,, just once and store them in memory.

Remark 6. The second part of the theorem, in particular (2.46), specifies a
simple way of determining how ‘similar’ two functions are by using only the corre-
sponding bit sequences; next we shall make clear what we mean by ‘similar’.



THEOREM 4. Let fy, fa be in B?, V,f; = (fi,pre) for j =1,2. Suppose I is
the time-frequency sigma-delta approzimation of V,, f;. Then

. . 4T
|<V<pf1 - Vgof27 V¢g> - <F}1 - Ffla Vgog)l < I(Ccp,lnvcpg”Ll + C<p,2||TV<pg(T: Ellr)-
(2.47)
where Cy;, i = 1,2, is defined as in (2.25) and (2.26) respectively.

Proof. Note that
(Vo fr = Vi f2,Vog) — (Fa — F4,Veg) = (Vo fr — FA, Vog) — (Vo fo — F4, Vipg).  (2.48)
Thus,
(Ve f1 = Ve fo, Vog) — (Fa — F3, Vo)
< (Vefi = Fa, Vogdl + (Ve f2 — Fi, Veg)|
< %(C%lnupg”Ll + Coa|lTVog(r,6)ll1), (2.49)

where the second inequality is due to Theorem 2.

Theorem 4 clearly shows that (F}j — F3,V,g) is an estimate of f; — f» in the
direction of g. In other words, our measure of similarity of f; and fs, i.e. (ﬁj -
ﬁ'ﬁ, @), is completely insensitive to functions that are orthogonal to g. However if
two functions are close to each other in L?, clearly (F} — F,G) will also be small.
In other words,

COROLLARY 1. Let g be in MY with m(r,€) = 1+ |7|, define G := Vg, and
suppose that f1, fo are in B¥. Then

1. [(F} - F3,6)| < 27llf1 = fellezllgllze + 22 (Cp 1[Gl + CplITG (T, )| 1)
2. |(Vo 1 = Vo fo, G| < (F) = F5,G)| + 4 (Cp1|IGll 11 + Cop2llTG(7,€)I11),

where ﬁ’j is the time-frequency sigma-delta approzimation of f;, and Cy;, i = 1,2,
is defined as in (2.25) and (2.26) respectively.

We now generalize the above discussion in the following way.

THEOREM 5. Let g1,...,9x be functions in MY' with m(r,€) = 1 + || such
that ||g;|lz2 =1 and (gi, g;) = i ;. On B¥ define the projection operator P by
K
P(F) =Y (F,G)Gi, (2.50)

Jj=1

where G; := V,9; and F := V,f for f € B?. Let c be the sequence ({f, Pn,m))
and ¢ = Trr(c). Suppose Fy4 is the time-frequency sigma-delta approzimation of
F. Then

3 472 -
||P(F_FA)||2 =4z Z (enym=an,m)(Cnt s — @ ;! ){(PPn,m, Pnt ), (2.51)

7 i
n,m,n’,m

where P is defined by P(f) := Zfil (f,9:)g; for f € B%.

10



Proof. By (2.32), P(Fy) is well-defined and thus it is in the span of {G, . ..,Gx}.
Then we can write

IP(F —Fa)I* =) I(F — Fa, Go)?

i=1

4r? K _ -
- F (Z(cn,m - Qn,m)d%,m) Z (cn’,m’ — Qn',m’)d;,m

’ ’

i=1 \n,m n',m
4> K
= F Z (cﬂ,m - Qn,m)(cn’,m’ - qn’,m’) Z(‘Pn,m: gi)(gi7 ‘Pn’,m’)
n,m,n’,m’ i=1
= Z (Cn,m - Qn,m)(cn',m’ = Qn!,m’ )(Pgﬂn,m: Pn',m! )7 (2'52)
n,m,n’ ,m'

where dg’m = (94, Yn,m). The first equality is due to the definition of P; the second
equality follows from Theorem 3; the third and fourth equalities are obvious.

Remark 7. Let F! and F? be the windowed Fourier transforms of two functions
f! and f? in B¥. Denote the sequence ({fi,nm)) by ¢* and let ¢ = Trp(ct).
Suppose F and F? are the time-frequency sigma-delta approximations of F' and
F2 respectively. Then replacing F' and F4 in the proof of the previous theorem by
F} and F%, respectively, yields

472 .
= 2 Gm = G (@G s = G ) Py O )-

7 ’
n,m,n’ ,m

IP(F) = FR)I? =

(2.53)
Remark 8. By Corollary 1 we have

K K K
o - 4
IP(Fa — FEDI < I = 12 D Nlgillee + %(Cv,l Y NGl +Co2 Y II7Gi(7,€) 1)

i=1 i=1 i=1

(2.54)

3. TRANSLATION INVARIANCE

As mentioned before, one possible application area for the time-frequency sigma-
delta quantization scheme described in this section is pattern recognition. We have
shown above that we can measure how similar two functions f; and f» are by
calculating (ﬁ’j — ﬁ’j, G). The next important question is whether the quantization
scheme is robust with respect to translation in both arguments; in this section we
shall investigate how shifts in the bit-sequence affect the approximation.

For a,8 € R, define the operators T,f := f(- + a) and Mgf := e f, the
time-shift and modulation operators respectively. Let (p, 70,&) be a tight Weyl-
Heisenberg frame and note that

(Tro fr Prm) = €™ (f, Onin,m)s (3.55)

27

where A = 2% is the frame bound. Let us denote (f, pnm) by cn,m and etNF by
~vn and rewrite (3.55) as

(TN‘ro 5 Wn,m) = (’YN)mcn—i-N,m- (3.56)

11



Thus we conclude
Tnrof =Y (YN) ™ Cnt NymPr,m- (3.57)

n,m

From the previous section we know that

-1
Fa=7 > tnmVenm (3.58)

approximates V., f as in (2.15). In (3.58) ¢ = (¢n,m) = Trr(c) with ¢ = (cp,m) =
({f,on,m))- We also know by (3.57) that the windowed Fourier transform of T, f
is given by

1
VWTNTOf = Z Z(’YN)an-l—N,chp(Pn,m- (359)

n,m

One important question to ask is whether

1
Hy= > ()™t N VipPrm (3.60)

n,m

which is obtained by replacing ¢, 4 n,m in (3.59) with ¢, n,m, approximates V, Tn -, f
in a way similar to the unshifted (2.15), i.e. whether |V,Tn., f(7,&) — Ha(7,&)| <

Cj"l +|7] ij for some C, ; and Cy, 5. The next theorem shows that the answer to

this question is affirmative.

THEOREM 6. Let ¢ = Trr(c), where ¢ = (¢n,m) With cnm = (f,¥n,m) for some
f in B®. Suppose H 4 is defined as in (3.60). Then
étp,l
A

écpﬂ
A b

Vo Tnro f(1,6) — Ha(r,6)| < + 7| (3.61)

with Cp1 = v2[10201 |11 (r2) + N70l|01T |1 (z2) and Cy 2 = V2[|01T |11 (=), where
[(t,2) := e ®(t, 2).

Proof. We want to show that

1 N -

1 2O " N Ve nm (1,€) = D (Y8) ™ nt N Vip P (7€) (3.62)
1 m

= |Z Z('YN) (A1229) 54 N,m Vi Prm (T, €)] (3.63)

< CZ’I + |T|—CZ2’ (3.64)

for some Cy 1 and Cy 2 where vy, , is as in (2.19). Define

1
D= a Z(AIA?U)M—N,m('YN)mVso‘Pn,m(T: &)

Then since Vi,@p,m(T, &) = e~70E~mE0) G (1 — 1y, € — mé&), we have

1 —iT
D=2 (AAsv)ninme” T 1 (7 — 070, mEo), (3.65)

12



where Qn - ¢(t,2) = e N0+IT(¢, ¢ — z). After summing the left hand side of
(3.65) by parts we get

1 AP
D = Z ZUTH_N’me_lTEAlAZQN’T’g(T — N7, m§0) (366)

n,m

Since Qn ¢ is smooth, we have

1 . T—NTQo mEo
.D = Z ZUH-FN,me_zTg / / 82819N777§(t’z)dtdz’ (367)
n,m ( (

T—n+1)70 J (m+1)&o

which yields

\/5 T—NTo mé&o
|D| < 72 10201 QN 7.¢(t, 2)|dtdz,
n,m (r—n+1)10 J (M+1)&o
V2

< T 10:09N rell 1 m)- (3.68)

Finally, after estimating ||0201 QN 7.¢ll L1 (r2) We get

. 1 - N
[VeTro (7, €) = Ha(r; §)| < 5 (Co1 +[7Co,2) (3.69)
with y
Cot = V2(|0:01T || L1 (r2) + V2N 10|01 T | £1(R2). (3.70)
and 3
Copo = \/§||61F||L1(R2)- (3.71)

where T'(t, 2) := €2 ®(t,2).

Remark 9. Combining Theorem 6 with Theorem 4, we can conclude that

égo,l ©,2
" + |7 Vi (3.72)

| Z((’YN)mQTH-N,m - (Yn,m)dn,ml <

n,m

where ¢ := (q_n,m) = TTF((_Z) with ¢ := ((TN‘rofa (pn,m))-
Remark 10. Note that the constant Cy,» given in (3.71) is the same as Ci, »

given in (2.26); C, 1, given in (3.70), has an extra summand proportional to N, the
amount of translation, and 79,the time translation step, when compared to Cy 1,
given in (2.26). Thus, for N = 0, i.e. when there is no shift in the quantizer output

(gn,m), both estimates yield the same upper bound on the approximation error.

Remark 11. The time-frequency sigma-delta quantization scheme is translation
invariant up to the adjustment factor (yn)™; the approximation of T, f obtained
using ((Ya)™qn+nN,m) is (almost) as good as that obtained by quantizing the trans-
lated version separately.

Next, let us investigate shifts in the other index of the bit sequence produced
by the time-frequency sigma-delta scheme.
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THEOREM 7. Let f be in B%, ¢ = ({f, ¢n,m)) and ¢ = (¢n,m) = Trr(c). Define

- 1
Ha= Z Z qn,mevcp(Pn,m- (373)
Then o o
Ve Margo f(r,€) = Ha(r, §)] < =55 + |7|=57 (3.74)

where Cy, 1 and Cy, 5 are as in (2.25) and (2.26) respectively.
Proof. Note that

(€M 1), onm) = / F)p(t — nmy)e— im0ty

= {f,nm-m), (3.75)
which yields
VoMuye, f = % > cnm-mVoPnm- (3.76)
Then
VoMteof(r,8) = Ba(r8) = 53 (nm-tt — ename30)Voonm(7:6)

= %Z(Alsz)n,me)prn,m(T,g), (3.77)

n,m

where vy, ., is as in (2.19). As in the proof of Theorem 1 summing by parts yields
the result.

Now we can combine these two results: Let (¢, 70, &) be a tight Weyl-Heisenberg
frame of L? with frame bound 4, ¢ = ((f, ¢n,m)) for some f € B¢, and ¢ = Trr(c).
Then the windowed Fourier transform of Mg, Tnr, f = €M% f(- + N1g) is given
by

1 _
VgoMMgoTNTof = ZZ’Y}G Mcn+N,meV<p(pn,m(7—a 6) (378)

Similarly, the windowed Fourier transform of Tnr, Marg, f is

V. TNTOMMEO = Z’)’Ncn_;,_]\]m MV(p(an(T; é') (379)
Now define )
= Z Z’Y;G_qu'f'N’m*MV@SOn,m(Ta 5)7 (380)
and

Note that Vi, Mue, f = 53, 0 cn,m_MVq,gan,m(T, €¢). We then have by Theorem 6,

C’ -
A

| Z ’YN q'n+N m— MV‘P‘P” m(Taé) TNTO MMEO fa 3 (382)

n,m
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where C, 1 and C, 2 are as in (3.70) and (3.71) respectively. Moreover, since
|vw| = 1, we can also write
Cya Co.2
Yl | 7| e

1 )" gninm 2 Ve n,m (7€) — Margo Trg f(7,6)| < (3.83)

Thus we proved:

THEOREM 8. Let HY and H? be as in (3.80) and (3.81) respectively. Then we
have both

(i) [V MargoTrvry f(r,6) = HY (7,6)] < S5 + |7/ %52, for all 7, €,and

e}

(ii) [VioTNr Murgo f(,€) — H3(1,€6)| < C2 47|92 for all 7, ¢,

where C, 1 and C,, > are as in (3.70) and (3.71) respectively.

4. NUMERICAL EXPERIMENT

In this section, we will present some experimental results: We will fix a Weyl-
Heisenberg frame and quantize the frame expansions of a function f using the
algorithm TFXA-I. We choose

+2
p(t) =/t 7. (4.84)
One can show that (¢, 70, &) is a frame of L?(R) if 7o and & are sufficiently small.
Moreover, the frame is almost tight* (with both frame bounds approximately equal
to %) if one chooses sufficiently small 75 and & such that 7y =~ &.

Let us now consider the function®
F(t) = 0.5e= 701" =005 (4.85)

First we compute the frame coefficients of f, {f, Yn,m), for different values of o
and &. We use an FFT-based algorithm to compute the frame coefficients using
the samples of f: Let 7, be the period at which we sample f. (It is convenient
to choose 71 = 79.) We will use the sequence (f(k71))X _, for some sufficiently
large K to compute the frame coefficients of f. Of course K has to be finite for all
practical purposes; however that does not introduce a large error if both f and ¢ are
well-localized in time and frequency, which is true for our example. Figure 1 shows
the windowed Fourier transform, F, of f for ¢ given in (4.84); clearly F(nmy, m&o)
for integer n, m are the frame coefficients of f.

In Figure 2, we show the quantized values of the frame coefficients of f, obtained
via the time-frequency sigma-delta quantization scheme. Next, we consider the

4As discussed in Remark 1, a frame is called “almost tight” if the ratio of the frame bounds is
close to 1. Suppose (@, 70,&0) is a frame with frame bounds A and B. If we denote the quantity
B/A—1 by r, then any function f € L2 can be written as f = ﬁ >SSy @n,m)@n,m—+ Rf where

IRl < 57, [2]. Hence reconstructing f by (1.2) (with @ instead of A) introduces an
error which is bounded in L? by 77 |[fllz2- Therefore, if r ~ 0, we can assume the
frame is tight and reconstruct f using (1.2). For all the frames we will use in this

section |r| is smaller than the arithmetical precision of the computer.
5The function f is clearly in B¥.
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frame expansions of f with frames (¢, 79, &) where 19 and & take values between
0.05 and 0.5; thus the fr2am2e bound A ranges from approximately 25.13 to 1256.64.
We fix G(7,€) = e 927" +¢) and we use

2 2
Giot= > > TiiG, (4.86)

k=—2]=-2

where 171G := G(- + 1,- + k), as our test function. Clearly the inverse windowed
Fourier transform of Gy is in G.

Next, we compute (F — Fya,Gyop) via (2.45). Figure 3 shows the value of
this inner product as the frame bound increases. Theorem 1 bounds the decay
of |(F — F4,Gyor)| by A™'; however experimental evidence, e.g. Figure 3, sug-
gests a faster decay rate. This is similar to the first-order standard sigma-delta
scheme for which the analogous estimate yields a bound of O(A~1) [3] (X is the
oversampling ratio) whereas the empirically expected decay rate is A=%/2. In [7],
S. Giintiirk proved that the error can be bounded pointwise by CA~%/3+7 where
C depends on 1 and on the value of the derivative of the original function at the
corresponding point; the conjecture is that the error can be bounded pointwise by
CA—3/24n, (A detailed discussion of various types of improved estimates can be
found in [8].) Whether there is a similar theorem for our case is an open problem;
Figure 3 suggests there may well be.

Now, we want to observe the translation invariance of our algorithm. Let f be
as in (4.85). Fix the frame (p,0.1,0.1) and compute ¢ = Typ(c) where ¢, m =
(f,on,m).- Now, define frq by frao(t) == M_oTrf. Let crq be the sequence
({fr,0, ¢n,m)) and gr,0 := Trr(cr,e). Using g as a template, we will estimate 7' and
2 when we are only given the sequence gr.o. To accomplish this, we will compare
FT,Q,A = Z(QT,Q)n,m <‘pn,ma 907,E> with IN,M = Z('YN)m—i_MQn—i-N,m—i-M(‘pn,ma 907,E>
for various N and M by comparing the inner products <F~‘T’Q, A—In, Giot). We will
calculate these inner products via (2.46). Since the frame constant A is large (A =
628 in this case), we expect according to the Theorem 8, although it is not guaran-
teed, to have T ~ 0.LN and Q &~ 0.1M where (N, M) = arg inf(y rsyez2(Fro,a —
In o, Gior) if T and Q are integer multiples of 79 = 0.1 and & = 0.1 respectively.

For T = 1.2 = 1279 and 2 = 0.9 = 979, we observe in Figure 4 that the minimum
is attained at (N, M) = (13, 7). In other words, we estimate the amount translation
T with an error of 0.1 and we make an error of 0.2 when we estimate 2, the amount
of modulation. Figure 5 shows the value of (FT’Q, A — In.a, Gior) as a function of
N and M for T =1.17 and Q = 0.93. In this case (FT7Q’A — In,mr, Giot) attains its
minimum at N = 13 and M = §, i.e. the estimated values of T" and 2 are 1.3 and
0.8 respectively. This indicates that even the original function is translated and
modulated by amounts that are non-integer multiples of the time and frequency
translation steps 79 and & (both equal to 0.1 in this example), the algorithm can
still estimate these amounts (with the resolution of integer multiples of 79 and &p).

Finally, we want to observe the effects of noise. We consider the case where
fro is defined as above with 7" = 1.2 and © = 0.9. We will add independent
identically distributed Gaussian random variables v, to each sample of fro(km)
(71 is the period at which fr o is sampled; we choose 71 = 79) before computing the
frame coefficients. We then compute the frame coefficients &, n, using (fr.o(kn) +
I/k)kK:_  and via the time-frequency sigma-delta scheme we quantize é,,,, to obtain
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(2) (b) ()

FIG. 1 The continuous windowed Fourier transform F of f,i.e. F(71,&) = (f,¢r¢).
Figure 1a shows the real part of F' —black and white correspond to —0.49 and 0.75,
respectively ; Figure 1b shows the imaginary part of F' —black and white correspond
to —0.57 and 0.69, respectively. Figure lc shows the absolute value of F'. In this
graph, black corresponds to 0 and white corresponds to 0.86.

(2) (b) ()

FIG. 2 The quantized frame coefficients (f, ¢n,m) for the frame (¢,0.1,0.1). Figure
2a shows the real part of the quantized coefficients; Figure 2b shows the imaginary
parts of the quantized coefficients; Figure 2c shows the absolute value of the quan-
tized coefficients. In Figures 2a and 2b black and white correspond to —3 and 3
respectively. In Figure 2c black corresponds to v/2 and white corresponds 3v/2.

17



error 109721

FIG. 3 The ‘approximation error’ |{(F — FA,Gtot)| vs. the frame bound
A. Both axes are logarithmic. The solid line seen in the figure
is the graph {(4,2471): 25< A < 1258}; the dashed line is the graph
{(4,30473/2): 25 < A < 1258}.

O
< )0
\\\\\\}“{3‘ SRS

FIG. 4 The value <FT7Q’A —In M, Gio) versus N and M for T =1.2 and Q = 0.9;
the minimum is obtained at N = 13 and M = 7, which means that the algorithm
predicts T'= 1.3 and Q2 = 0.7. Figure 4b shows (FT,Q’A —Ii3,m, Got) vs. M; Figure
4¢ shows <FT,Q,A — IN,7, Gtot) vs. N.
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Fvpq. Let us define the signal-to-noise ratio (SNR) as

Yk | frakm)?
(2K +1)0?

SNR = 10log dB, (4.87)
where o2 is the variance of v;; 2K + 1 samples fr,o is used to compute the frame
coefficients. In an experiment with SNR= 16 dB, <ﬁVT,Q’ A — In o, Got) attains
its minimum at N = 13 and M = &, i.e. the estimated values of T and Q are 1.3
and 0.8 respectively. We repeat the same experiment using inputs with SNR= 8.5
dB and SNR= 0 dB. In the case where the SNR= 8.5 dB, the parameters T" and
Q are estimated as 1.4 and 0.6 respectively. For the input with SNR= 0 dB the
corresponding estimates are 1.4 and 0.2 respectively. We observe that the algorithm
does reasonably well for the two cases where the signal-to-noise ratio is larger;
however for SNR= 0 dB, the minimum value of <FT,Q’ A — In,m, Geor) is much
larger than the other two cases where the SNR is larger and so is the error in the
estimation of 7" and (.

5. HIGHER-ORDER TIME-FREQUENCY SIGMA-DELTA SCHEMES

In this section we will introduce higher-order time-frequency sigma-delta schemes
to quantize the frame expansions of functions in B¥ for tight Weyl-Heisenberg
frames. We will show that the approximation error is O(A~*) with a kth-order
scheme when the frame bound is A. Let (p,70,&) be a tight Weyl-Heisenberg
frame with frame bound A. Let f be in B¥; ¢ = (cp,m) with cpm = (f,¥n,m) as
before. Denote the real and imaginary parts of ¢, m by ¢ff,, and cf ,, respectively.
Let (Agk):c)n,m = Efzo(—l)l(’;)xn_l’m and (Agk)x)n,m = Efzo(—l)l(’l“):cn,m_l
for any sequence z. To define the kth-order time-frequency sigma-delta quantiza-

tion scheme, consider the recursion relations where the superscript S is as described
before:

(Agk)us)n,m = ci,m _pi,m

pom = sign(O(ALu ) normye ey (AF VUl myen ) (5.89)
(A;k)vs)n,m = ﬂg,m—rf,m

rSm = sign(©((A2(0)0 ) nm 1.0y (AF VU)o, a5 1)), (5.89)

where @° := u¥/Cj,e and © is a function which guarantees that uf?, v, u! and
v! are uniformly bounded in [ by Cje. Note that the recursion relations (5.88)
and (5.89) correspond to kth-order standard sigma-delta quantizers with cﬁ’m and

ﬂﬁ’m respectively as their input. Thus, since all these sequences are bounded in [*°

by 1, such a © exists due to [3]. Note that

Cro(AP AR, =l — B + Cro(AP ), ), (5.90)
and similarly
Cro(AP AP W), =l — 0 + Cro(AF )0 m). (5.91)

We will now define the sequences ¢* and ¢! by ¢%,, = pf, + Cro(APrR), . and
Gk = Ph o + Cro(AYrD), . Finally, let us define Trp, by

TTFk (C) = q, (592)
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.— R T
where gn,m 1= Gy m Q0 m-

THEOREM 9. Let (p,70,&) be a tight Weyl-Heisenberg frame with frame bound
A. Let f be in B? and define the sequence q by (5.92), i.e. ¢nm is obtained by
quantizing the frame coefficients of f via a kth-order TFX.A scheme. Fix a positive
integer k and define

- 1
FA,k(Ta 5) = A Z An,m <<Pn,m7 ‘Pr,ﬁ)- (5-93)

n,m

Suppose ¢ is chosen such that &(7,&) = (p, pr¢) satisfies

8k 6k iTE Ll RZ 4
WB—&’“(e ®(7,¢)) € L' (R°). (5.94)

Then i

~ 1

Vo £ (7,6) = Far(r.)| < 5 > Crpltl (5.95)

1=0

with
_ (o yk—1 E\ 1 4(k=D ok

Chr,pq = (2m)" " Crol|v]li= ; 105" 07T L1 (me2) (5.96)

where k is the order of the quantizer and T'(, z) = e*®(t, 2). We will call Fis j, the
kth-order time-frequency sigma-delta approximation of V,, f.

We need the following standard result to prove Theorem 9.

LEMMA 2. Let A denote the forward difference operator, i.e. (Ax), = z, —
Tpi1, as before. The following equality holds for any function f € C*:

ko
Ak f(z —na) = oF1 / F® (@ = (n+ k)a + t)pk(é)dt (5.97)
0
for any a. In (5.97), py is the kth-order B-spline, px = Xx[o1] * --- * X[0,1] (K
convolution factors). (Note that the support of py, is on [0, k], and >~ pr(z+n) =1
for ally € R)

Proof of Theorem 9. As in the proof of Theorem 1, we start by writing the
error term

- c
F(Ta é-) - FA,k(T7 6) — _Z’e Z(Ai’Aé’U)n,chpwn,m(T: 6) (598)
Ck’@ [
- = ;vn,mASA{“VW”,m(T, £). (5.99)

Now let us define I,, ,, = AYA¥V, 0, (7, €), which we can also write as

Lnm = e TEAEARQ, (T — n1o,m&o). (5.100)

)
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with Q. ¢(t,2) := €76~ ®(t,& — 2), as in the proof of Theorem 1. By Lemma
2 we can write (5.100) as

X B kTo t
Inn = e iTEAkrk-1 / M, ¢(r— (n+k)mo + 1, méo)pi ()it (5.101)
0

X kg ,_ t

= emitegh- /0 (8509, ¢(r = (n + K)o +t,méo)) pr () (5.102)
L (2m)k=1 pkmo phéo 2 "

= it Alz_l /0 /0 aPo®Q, (1 — (n+ k)10 + t, (m — k)éo + Do ol ).
(5.103)

In the last equality we use the fact that A = —§ Since the support of py is on

[0, I’_cll we can replace the integration limits of both integrals in (5.103) by —oco and
hus after the appropriate change of variables in both integrals we get

717—.5 271'
Ak—1

In,m

/ / oM, ¢ (p, s )pk(———-I—n—l—k)pk(——m—l—k)dpds (5.104)

Substituting (5.104) into (5.99) and taking the absolute value of the resulting
expression, along with the fact that pr > 0 and

Zpk__£+n+k)pk(€__m+k)_1 (5.105)
yields:
. c oo (2) K1)
Ve £ €)= Fa(r )] < Sel=CDjawaog. (5.106)

Finally, using

k
Ao, (t, 2) = Z( ) (ir)lei=m kD aMr (¢, ¢ — 2), (5.107)
=0

we get the result.

Remark 12. The reasoning in Remark 1 still applies and thus Theorem 9 holds,
at least approximately, if the frame (¢, 79, &) is almost tight.

Remark 13. A sufficient condition for ® = V¢ to satisfy (5.94) is that the
function ¢ is in the Schwartz space S(R).

Remark 14. We will again approximate f as a linear functional on some test
function space. For a kth-order time-frequency sigma-delta quantization scheme
an appropriate test function space is the modulation space M}n*i with mg(7, &) =
1+ |7k, ie.

MY ={ge L*(R) : (1+|*|)V,g(r,€) € L'(R*)}. (5.108)
Let g € MY! and for f € B?, let Fy j, be defined as in (5.93). Then

(Vo f = Fa,Vpg) = / (Vo £(1,€) — Fai(r,€))Vpg(r, €)drdg (5.109)

is finite; thus (Fg 1, V,9) is well-defined. We now define fax as a linear functional
on ML such that

(Far,9) = (Fan, Vo). (5.110)
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By Theorem 9 we can conclude

k
[0F:9) = Fais )| < 5 D Coallr' Vg, Ol iz, (5.111)

1=0
where Cy ,; is as in (5.96).

Remark 15. Let f; and f, be two functions in B?, ¢* and ¢? the corresponding
sequences produced by the kth-order time-frequency sigma-delta scheme, and let
}3’}17 , and ﬁ’j’ » be the kth-order time-frequency sigma-delta approximations of f;
and fo, respectively. Then, regardless of the order of the approximation, we have

<ﬁ%,k FA k’ng AZ qnm qn m)(ga‘Pn m)- (5.112)

n,m

Similarly, for any f in B¥, let ¢ = Trp,(c) where ¢ denotes the sequence of the
frame coefficients of f; suppose Fjy  is the kth-order time-frequency sigma-delta
approximation of f. Then we have

(F FA k:Vgog AZ Cn,m — qnm)(.g:(pnm) (5-113)

n,m

Remark 16. Theorem 3 and Theorem 5 are true regardless of the order & of the
time-frequency sigma-delta scheme that is used to approximate a given function
f € B?, as long as ¢ satisfies the conditions stated in Theorem 9 and the test
functions are chosen appropriately. Theorems 4, 6, 7 and 8 need some modification
to be true for the case where the quantizer is of kth-order. We state these modified
versions below: Theorems 10, 11, 12 and 13 are the generalized versions of the
aforementioned theorems respectively. The proofs are similar to the first order case
and will be omitted.

THEOREM 10. Let fi, fo be in B¢, FJ := V,f; for j = 1,2, F} , be the kth-
order time-frequency sigma-delta approzimation of FJ for some fized positive integer
k. Then, for g € ML!

my?

(F' = F2,Viog) = (Fi = Fi i Veg)| < Ak ch el Vg (7, )ll1r o) (5.114)
1=0

where Cy,, is defined as in (5.96).

THEOREM 11. Let ¢ = Trp,(c), (i-e. the quantization scheme is of order k),
where ¢ = (Cn,m)(n,m)ez2 With Cnm = {f,n,m) for some f in B?. Let N be some
fized integer and define H 4 as in (3.60). Then

k
1 ~
\VoT'Nro f(1,6) — HA A_ Zock,%”ﬂl (5.115)
with
Crpt = @0 Crollolli= 3 (J) (l) (Nroy o0 Por).  (5.116)
Jj=l
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THEOREM 12. Let f be in B?, ¢ = ({f, pn,m)) and ¢ = (gn,m) = Trr,(c) for
some positive integer k. Fix an integer M and define Ha as in (3.73). Then

k
. 1
Ve Mg, f(7,€) = Ha(r, )| < o7 > Crpalrl! (5.117)
=0

where Cj,,; is as in (5.96).

THEOREM 13. Let f be in B?, ¢ = ({f, ¥n,m)) and ¢ = (¢n,m) = Trr,(c). For
integers N and M, define HY, and H% as in (3.80) and (3.81), respectively. Then

(1)

k
1 ~
Vo Mgy Trvro f(7,6) = HA(1,6)| < -5 >~ Crpall',
=0
(ii)
1 k
|V<PTNT0MM§0f(Ta 5) HA 7,& S A_ Z ,ga,l|7'|l;
=0

where C,,, is as in (5.116).

6. NUMERICAL EXPERIMENT REVISITED

In this section, we will present the results of numerical experiments for the
second-order TFXA-I quantizer analogous to those discussed in Section 4 for the

first-order quantizer. We choose p(t) = 7'/ 1e=%. As we have discussed before,
(¢, 70,&0) constitutes a frame if 79 and &g is suﬁiciently small; moreover the frame
is almost tight with the frame bound A = O—”O if 79 and & are sufficiently small
and T0 N 60

We will quantize the frame expansion of the function f(t) = 0.5¢~ (i0-1¢°+0.05t%)
which is the same function we have used in Section 4. We have already computed
the frame coefficients (f, ¢n,m) of f. Using the algorithm described in (5.88)-(5.89)
with £ = 2 and O(u,v,z) = u + 0.5v we obtain the quantized frame coefficients
gn,m Of f; these are shown in Figure 6. Next, we fix the function Gy, defined
as in (4.86), as our test function and compute the inner product (F — FA,z,Gtot)
via (5.113) for various values of the frame bound A. Figure 7 shows the value of
(F — FA,Q,GtOt) while A takes values between 25.13 and 1228.64. Similar to the
first-order case, the decay of the approximation error is faster than the predicted
rate, i.e. instead of being O(A~2), the approximation error seems to be of order
A~5/2_ This again matches the empirical error decay rate observed for the standard
second-order sigma-delta quantizers.

Next, we want to observe the translation invariance of the second-order quan-
tizers. To this end, we repeat the experiment we did in Section 4 : Fix the frame
(¢,0.1,0.1) and compute ¢ = Trg,(c), i.e. use a second order quantizer, where
Cnym = (f,¥n,m). Now, as in Section 4, define fro by fro := M_oTrf. Let
cr,o be the sequence ((fr.o,¥n,m)) and gro := Trr,(cr,n). Using ¢ as a tem-
plate, we will estimate T" and 2 when we are only given the sequence ¢r.o. To
accomplish this, we will compare Fro a2 := 3(47.0)n,m(Pn.m> Pr.e) With I pr =
S (YN) ™M gyt N omt-m (Pnym s Pr¢) for various N and M by comparing the inner
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products <FT,Q’A’2 —In p,Grot). We will calculate these inner products via (5.112).
Since the frame constant A is large (A ~ 628 in this case), we expect according to
Theorem 13 (although it is not guaranteed) to have 7'~ 0.1N and Q ~ 0.1 M where
(N, M) = arg inf y rpyez2{Fr.0,4 — Inu, Gror) if T and Q are integer multiples of
70 = 0.1 and & = 0.1 respectively.

For T = 1.2 = 1219 and © = 0.9 = 97y, we observe in Figure 8 that the
minimum is attained at (N, M) = (12,9), in other words our algorithm estimated
the translation amounts T and 2 correctly. Next we test whether the algorithm
can detect translation and modulation amounts that are not integer multiples of 7y
and & (of course with the resolution given by 79 and &). Figure 9 shows the result
when 7" = 1.17 and 2 = 0.93. One observes that the algorithm has estimated T’
and 2 as well as the resolution allows.

Finally, we add noise to our signal the way we described in Section 4, and again
we use our algorithm to estimate the translation and modulation amounts 7" and (2.
We define ﬁ’q‘i’g, 4,2 is defined the same way we defined }7"7’1’97 4 just above (4.87), only
this time using the ¢ produced by the second-order quantizer. In an experiment
with SNR= 8.5 dB, the algorithm estimated 7" and Q as 1.2 and 0.7 respectively
where the true values of T' and 2 are 1.1 and 0.9 respectively. When we decrease
the SNR to 0 dB, the algorithm estimated T and 2 to be 1.4 and 0.6.
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FIG. 5 The value <.F~1T’Q’A—IN’M, Giot) versus N and M for T = 1.17 and Q = 0.93;
the minimum is obtained at N = 13 and M = 8, which means that the algorithm
predicts T' = 1.3 and 2 = 0.8. Figure 5b shows (F‘T,Q,A —Ii3,m, Giot) vs. M; Figure
5c shows (FT,Q’A —Ing,Giot) vs. N.

FIG. 6 The quantized frame coefficients ¢y,, —obtained via the second-order
scheme. Figure 6a shows the real part of the quantized coefficients; Figure 6b
shows the imaginary parts of the quantized coefficients —black corresponds to —10
and white corresponds to 10 in these figures. Figure 6¢ shows the absolute value
of the quantized coefficients; in this figure black corresponds to 0 and white corre-
sponds to 10v/2.
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FIG. 7 The ‘approximation error’ |[(F — FA,Q,GtOt)| vs. the frame bound A for
the second-order case. Both axes are logarithmic. The solid line seen in the figure
is the graph {(4,3047%): 25.13 < A < 1228.64}; the dashed line is the graph
{(A,150475/2) : 2513 < A < 1228.64}.
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FIG. 8 The value (FT’Q,A,Q —In,m,Gior) versus N and M for T = 1.2 and Q = 0.9;
the minimum is obtained at N = 12 and M = 9, which means that the algorithm
predicts T'=1.2 and 2 = 0.9, i.e. the correct values of T" and Q2. Figure 8b shows
<FT,Q,A,2 — 112,M; Gtot) VS. M; Figure 8c shows <FT,Q’A — INyg, Gtot> vs. N.
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FIG. 9 The value <FT,Q7A72 — In,m,Giot) versus N and M for T = 1.17 and
Q = 0.93; the minimum is obtained at N = 12 and M = 9, which means that the
algorithm predicts 7' = 1.2 and © = 0.9. Figure 9b shows (FT’Q,A —TIio. m, Giot) vs.
M ; Figure 9c shows <FT’Q’A — In,9,Giot) vs. N.
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