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ABSTRACT: Using scaling arguments, this paper first demonstrates that most hydraulic fracturing treatments
are in the viscosity-dominated regime; i.e., the evolution of the fracture during fluid injection does not depend
on the rock toughness, a material parameter quantifying the energy required to break the rock. In the viscosity-
dominated regime, the aperture in the crack tip region (viewed at the fracture scale) is no longer characterized
by the classical square root behavior predicted by linear elastic fracture mechanics, since other asymptotic
behaviors prevail. For example, under conditions of large efficiency and small fluid lag, the asymptotic tip
aperture that reflects the predominance of viscous dissipation is of the form w ∼ s2/3 (where s is the distance
from the tip). The physical reality of the viscosity-dominated regime is confirmed by results of laboratory
experiments where radial hydraulic fractures were propagated by injecting aqueous solutions of glycerin or
glucose along an epoxy-bonded interface between two Polymethyl Methacrylate (PMMA) blocks. Agreement
to within 10 percent is demonstrated between the experimental results for the location of the fracture front and
the full-field fracture opening (measured using a novel optical technique), and the semi-analytical solution of a
radial hydraulic fracture propagating in a zero toughness impermeable elastic material. Finally, we demonstrate
that provided the appropriate tip behavior is embedded in the algorithm, a planar hydraulic fracture simulator
with a rather coarse mesh is able to accurately reproduce the semi-analytical solution for a radial hydraulic
fracture propagating in the viscosity-dominated regime.

1 INTRODUCTION

Fluid-driven fractures represent a particular class of
tensile fractures that propagate in solid media, typi-
cally under preexisting compressive stresses, as a re-
sult of internal pressurization by an injected viscous
fluid. Hydraulic fractures are most commonly en-
gineered for the stimulation of hydrocarbon-bearing
rock strata to increase production of oil and gas wells
(Economides & Nolte 2000), but there are other in-
dustrial applications such as remediation projects in
contaminated soils (Murdoch 2002), waste disposal
(Abou-Sayed 1994), preconditioning and cave in-
ducement in mining (Jeffrey & Mills 2000). Further-
more, hydraulic fractures manifest at the geological
scale as kilometer-long vertical dikes bringing magma
from deep underground chambers to the earth’s sur-
face (Lister & Kerr 1991, Rubin 1995), or as subhori-
zontal fractures known as sills that divert magma from
dikes (Pollard & Hozlhausen 1979).

Since the pioneering work by Khristianovic &

Zheltov (1955), there have been numerous contribu-
tions to the modeling of fluid-driven fractures that
have been mainly motivated by the application of hy-
draulic fracturing to the stimulation of oil and gas
wells, see e.g. Bunger et al. (2007) for a comprehen-
sive list of references.

Most of the hydraulic fracture simulators that are
freed of a priori constraints on the fracture shape and
of the approximations associated with models com-
monly referred to as “Pseudo-3D,” are based on linear
elastic fracture mechanics (LEFM); this is reflected
by the imposition of a square root asymptotic behav-
ior on the fracture aperture, w ∼ s1/2 in the tip region
(where s is the distance from the crack front). As is
well known, the square root asymptote is intimately
linked to the energy dissipated in the creation of new
fracture surfaces in the rock (Rice 1968). However, it
was progressively realized in the late 1980’s and early
1990’s (Spence & Sharp 1985, Lister 1990, Desroches
et al. 1994) that other tip asymptotes (e.g., of the form
w ∼ s2/3 for a Newtonian fluid and in the absence of



leak-off) arise under conditions where the energy in
the tip region of a propagating fracture is essentially
dissipated in viscous flow. These results have mo-
tivated in part the construction of accurate solutions
for plane strain and penny-shaped fractures propagat-
ing in the viscosity-dominated regime (Savitski & De-
tournay 2002, Adachi & Detournay 2002, Garagash &
Detournay 2005, Garagash 2006, Adachi & Detour-
nay 2007, Madyarova & Detournay 2007, Mitchell
et al. 2006).

In this paper, we first demonstrate that most
hydraulic fracturing treatments are indeed in the
viscosity-dominated regime. We then report the re-
sults of experiments, where radial hydraulic fractures
were propagated in the viscosity-dominated regime
by injecting aqueous solutions of glycerin or glu-
cose along an epoxy-bonded interface between two
PMMA blocks. The fluids contained blue dye and the
fracture aperture was measured using a technique that
relies on analyzing the reduction of the light inten-
sity on the passage of light from a backlight source
through the fluid-filled fracture. Agreement to within
10 percent is demonstrated between the experimen-
tal results for the location of the fracture front and the
full-field fracture opening, and the semi-analytical so-
lution for a radial hydraulic fracture propagating in a
zero toughness impermeable elastic material. Finally,
we demonstrate that provided the w ∼ s2/3 tip behav-
ior is embedded in the algorithm, a hydraulic fracture
simulator with a rather coarse mesh is able to accu-
rately reproduce the semi-analytical solution.

2 MATHEMATICAL MODEL

Mathematical models of hydraulic fractures propagat-
ing in permeable rocks have to account for the pri-
mary physical mechanisms involved, namely, defor-
mation of the rock, fracturing or creation of new sur-
faces in the rock, flow of viscous fluid in the fracture,
and leak-off of the fracturing fluid into the perme-
able rock. The material parameters quantifying these
processes correspond to the Young’s modulus E and
Poisson’s ratio ν, the rock toughness KIc, the frac-
turing fluid viscosity μ (assuming a Newtonian fluid),
and the leak-off coefficient Cl, respectively.

In principle, there is also a lag λ between the front
of the fracturing fluid and the crack edge, which de-
pends, among other parameters, on the magnitude
of the in-situ stress and the pore pressure. How-
ever, a parametric analysis indicates that the lag can
be ignored for most hydraulic fracturing treatments
(Bunger & Detournay 2007).

The problem of a radial hydraulic fracture, driven
by injecting a viscous fluid from a “point-source” at
a constant volumetric rate Qo, is schematically shown
in Figure 1. Under conditions where the lag is neg-
ligible (λ/R � 1), determining the solution of this
problem consists of finding the aperture w of the frac-

Figure 1. Radial hydraulic fracture.

ture, and the net pressure p (the difference between
the fluid pressure pf and the far-field stress σo) as a
function of both the radial coordinate r and time t, as
well as the evolution of the fracture radius R(t). The
functions R(t), w(r, t), and p(r, t) depend on the in-
jection rate Qo and on the four material parameters
E ′, μ′, K ′, and C ′ respectively defined as

E ′ =
E

1− ν2
μ′ = 12μ

K ′ =

(
32

π

)1/2

KIc C ′ = 2Cl (1)

The three functions R(t), w(r, t), and p(r, t) are de-
termined by solving a system of equations which can
be summarized as follows:

• Elasticity equation:

w =
R

E ′

∫ 1

0

G(r/R, s)p(sR, t)sds (2)

where G is a known elastic kernel Sneddon
(1951). This singular integral equation expresses
the non-local dependence of the fracture width w
on the net pressure p.

• Lubrication equation:

∂w

∂t
+ g =

1

μ′
1

r

∂

∂r

(
rw3 ∂p

∂r

)
(3)

This non-linear partial differential equation gov-
erns the flow of a viscous incompressible fluid
inside the fracture Batchelor (1967). The func-
tion g(r, t) denotes the rate of fluid leak-off,
which evolves according to

g =
C ′√

t− to(r)
(4)

where to(r) is the exposure time of point r (i.e.,
the time at which the fracture front was at a dis-
tance r from the injection point). The leak-off
law (4) is an approximation with the constant C ′

lumping various small scale processes. In gen-
eral, (4) can be defended under conditions where
the leak-off diffusion length is small compared
to the fracture length.



• Global volume balance:

Qot = 2π

∫ R

0

wrdr + 2π

∫ t

0

r

∫ R(τ)

0

g(r, τ)dr dτ

(5)

This equation expresses the fact that the total vol-
ume of fluid injected is equal to the sum of the
fracture volume and the volume of fluid lost into
the rock surrounding the fracture.

• Propagation criterion:

w ∼ K ′

E ′
√

R− r, 1− r

R
� 1 (6)

Within the framework of linear elastic fracture
mechanics, this equation embodies the fact that
the fracture is always propagating and that en-
ergy is dissipated continuously in the creation of
new surfaces in rock. Obviously (6) implies that
w = 0 at the tip.

• Tip conditions:

w3 ∂p

∂r
= 0, r = R (7)

This zero fluid flow rate condition (q = 0) at the
fracture tip is applicable only if the fluid com-
pletely fills the fracture (including the tip region)
or if the lag is negligible at the scale of the frac-
ture.

3 MULTIPLE TIME SCALES

We now summarize the scaling laws for a finite ra-
dial fracture driven by a fluid injected at a constant
rate (Detournay & Garagash 2007), as these are the
key to the understanding of the different regimes of
propagation.

Propagation of a hydraulic fracture with zero lag
is governed by two competing dissipative processes
associated with fluid viscosity and solid toughness,
respectively, and two competing components of the
fluid balance associated with fluid storage in the frac-
ture and fluid storage in the surrounding rock (leak-
off). Consequently, limiting propagation regimes can
be associated with the dominance of one of the two
dissipative processes and/or the dominance of one
of the two fluid storage mechanisms. Thus, we can
identify four primary asymptotic regimes of hydraulic
fracture propagation (with zero lag) where one of the
two dissipative mechanisms and one of the two fluid
storage components are vanishing: storage-viscosity
(M), storage-toughness (K), leak-off-viscosity (M̃),
and leak-off-toughness (K̃) dominated regimes. For

example, in the storage-viscosity-dominated regime
(M), fluid leak-off is negligible compared to fluid stor-
age in the fracture and the energy expended in fractur-
ing the rock is negligible compared to viscous dissipa-
tion. The solution in the storage-viscosity-dominated
limiting regime is given by the zero-toughness, zero-
leak-off solution (K ′ = C ′ = 0).

Consider the general scaling of a finite fracture
which hinges on defining the dimensionless crack
opening Ω(ρ;P1,P2), net pressure Π(ρ;P1,P2), and
fracture radius γ(P1,P2) as (Detournay 2004, Detour-
nay & Garagash 2007)

w = εLΩ, p = εE ′, R = γL (8)

With these definitions, we have introduced the scaled
coordinate ρ = r/R(t) (0 ≤ ρ ≤ 1), a small number
ε(t), a length scale L(t) of the same order of magni-
tude as the fracture length R(t), and two dimension-
less evolution parameters P1 (t) and P2 (t), which de-
pend monotonically on t.

Four different scalings can be defined in connection
to the four primary limiting cases introduced earlier.
These scalings yield power law dependence of L, ε,
P1 , and P2 on time t; i.e. L ∼ tα, ε ∼ tδ, P1 ∼ tβ1 ,
P2 ∼ tβ2 , see Table 1 for the case of a radial fracture.
Furthermore, the evolution parameters can take either
the meaning of a toughness (Km, K

em), or a viscosity
(Mk, Mk̃), or a storage (S

em, Sk̃), or a leak-off coef-
ficient (Cm, Ck).

Table 1. Small parameter ε, lengthscale L for the two storage
scalings (viscosity and toughness) and the two leak-off scalings
(viscosity and toughness).

Scaling ε L

storage/
viscosity (M)

(
μ′
E′t

)1/3 (
E′Q3

ot4

μ′

)1/9

storage/
toughness (K)

(
K′6

E′6Qot

)1/5 (
E′Qot

K′

)2/5

leak-off/

viscosity (M̃)

(
μ′4C′6

E′4Q2
o t3

) 1
16

(
Q2

o t
C′2

)1/4

leak-off/

toughness (K̃)

(
K′8C′2
E′8Q2

o t

)1/8 (
Q2

o t
C′2

)1/4

Table 2. Parameters P1 and P2 for the two storage scalings
(viscosity and toughness) and the two leak-off scalings
(viscosity and toughness).

P1 P2

M Km =
(

K′18t2

μ′5E′13Q3
o

) 1
18 Cm =

(
C′18E′4t7

μ′4 Q6
o

) 1
18

K Mk =
(

μ′5Q3
oE′13

K′18t2

) 1
5 Ck =

(
C′10E′8t3

K′8 Q2
o

) 1
10

M̃ K
em =

(
K′16t

E′12μ′4C′2Q2
o

) 1
16 S

em =
(

μ′4Q6
o

E′4C′18 t7

) 1
16

K̃ Mk̃ =
(

μ′4E′12C′2Q2
o

K′16 t

) 1
4 Sk̃ =

(
K′8Q2

o

E′8C′10 t3

) 1
8



The solution regimes can be conceptualized in a
rectangular phase diagram MKK̃M̃ shown in Figure
2. Each of the four primary regimes (M, K, M̃, and
K̃) of hydraulic fracture propagation corresponding
to the vertices of the diagram is dominated by only
one component of fluid global balance while the other
can be neglected (i.e. respectively P1 = 0, see Table
2) and only one dissipative process while the other
can be neglected (i.e. respectively P2 = 0, see Table
2). The solution for each primary regime has the im-
portant property that it evolves with time t according
to a power law. In particular, the fracture radius R
evolves in these regimes according to R ∼ tα where
the exponent α depends on the regime of propagation:
α = 4/9,2/5,1/4,1/4 in the M-, K-, M̃-, K̃- regime,
respectively.

3

1

2

Figure 2. Parametric space.

The regime of propagation evolves with time, since
the parameters M’s, K’s, C’s and S’s depend on t.
With respect to the evolution of the solution in time,
it is useful to locate the position of the state point in
the MKK̃M̃ space in terms of the dimensionless times
τmk = t/tmk, τm em = t/tm em, where the time scales are
defined as

tmk =

(
μ′5E ′13Q3

o

K ′18

)1/2

, tm em =

(
μ′4Q6

o

E ′4C ′18

)1/7

(9)

Indeed, the parameters M’s, K’s, C’s and S’s can be
simply expressed in terms of these times according to

Km = M−5/18
k = τ

1/9
mk , Cm = S−8/9

em = τ
7/18
m em (10)

and, therefore, the dimensionless times τ ’s define
evolution of the solution along the respective edges
of the rectangular space MKK̃M̃. Furthermore, the
evolution of the solution regime in the MKK̃M̃ space
takes place along a trajectory corresponding to a con-
stant value of the parameter ϕ, which is related to the
ratios of characteristic times

ϕ =
E ′11μ′3C ′4Qo

K ′14
, ϕ9/14 =

tmk

tm em

(11)

(Examples of such trajectories are depicted in Fig. 2.)
In view of the dependence of the parameters M, K,

C, and S on time, see (10), it becomes obvious that
the M-vertex corresponds to the origin of time, and
the K̃-vertex to the end of time (except for an imper-
meable rock). Thus, given all the problem parameters
which completely define the number ϕ (0 ≤ ϕ ≤∞),
the system evolves with time (say time τmk) along
a ϕ-trajectory, starting from the M-vertex (viscosity-
storage dominated regime: Km = 0, Cm = 0) and
ending at the K̃-vertex (toughness-leak-off dominated
regime:Mk̃ = 0, Sk̃ = 0). For small values of ϕ (i.e.,
for small values of the ratio tmk/tm em), the trajectory
is attracted by the K-vertex, and conversely for large
values of ϕ the trajectory is attracted by the M̃-vertex.

The evolution of the fracture in the phase diagram
MKK̃M̃ is in part linked to the multiscale nature of
the tip asymptotes (Garagash et al. 2007), in partic-
ular to the transition from the viscosity edge MM̃
to the toughness edge KK̃ (Madyarova & Detournay
2007). Along the viscosity edge, the tip aperture pro-
gressively changes from w ∼ s2/3 at the M-vertex to
w ∼ s5/8 at the M̃-vertex (Adachi & Detournay 2007).

An analysis of the range of physical parameters
shows that most hydraulic fracturing treatments spend
their describable lives in the viscosity-dominated
regime. Consider, for example, the typical set of pa-
rameters: Qo = 0.05 m3/s, E = 15 GPa, ν = 0.2, KIc

= 0.5 MPa·m1/2, μ = 0.2 Pa·s, Cl = 10−5 m·s−1/2.
The corresponding time scales are tmk � 3 h and
tm em � 3.7 h; also ϕ � 0.72. With a treatment time of
order O(1h), the fracture propagates for the most part
in the viscosity-dominated regime, according to nu-
merical simulations (Madyarova & Detournay 2007).
The conditions, for which viscous dissipation is much
larger than the rate at which energy is expended in the
creation of new surfaces in the rock, depend in princi-
ple on two parameters, namely τmk and ϕ. However,
computations indicate that the fracture evolves along
the viscosity edge MM̃ when τmk � 1.

4 ANALYTICAL SOLUTION AT M-VERTEX

To facilitate the physical interpretation of the solution,
we introduce scaling factors that do not depend on
time. Thus, let ε̄ = εm(tmk) and L̄ = Lm(tmk), using
(9) to eliminate tmk in the expressions of εm and Lm

found in Table 1 (with the subscript m denoting the
M-scaling)

ε̄ =

(
K ′6

Qoμ′E ′5

)1/2

, L̄ =
Qoμ

′E ′3

K ′4 (12)

Using (12) in the general scaling relationships (8),
it is possible to show that the scaled solution F =
{Ω,Π, γ} can be expressed in the form F(ρ, τ ;ϕ),
where τ = τmk = t/tmk. Furthermore, F(ρ, τ ;ϕ)
tends towards the M-vertex solution when τ tends



to 0, irrespective of the value of ϕ. In the time-
dependent scaling, the M-vertex solution can be ex-
pressed as

γ = γmoτ
4/9, Ω = Ωmo(ρ)τ 1/9, Π = Πmo(ρ)τ−1/3

(13)

where a first order approximation of the self-similar
solution γmo, Ωmo(ρ), Πmo(ρ) is given by Savitski &
Detournay (2002)

Ωmo �γmo

[√
70

3
C1 +

4
√

5

9
C2(13 ρ̄− 6)

]
(1− ρ)2/3

+
8B

π

[
(1− ρ)1/2 − ρarccosρ

]
(14)

Πmo � A1

[
ω1 − 2

3 (1− ρ)1/3

]
−B

(
ln

ρ

2
+ 1

)
(15)

with γmo � 0.696, A1 � 0.3581, B � 0.09269, ω1 �
2.479, C1 � 0.6846, C2 � 0.07098.

5 EXPERIMENTS NEAR THE M-VERTEX

Viscosity-dominated laboratory experiments were
performed in order to validate the M vertex solution.
The experiments make use of a polyaxial reaction
frame (used only for uniaxial loading in this case)
which is specially-designed to allow loading parallel
to the direction of fracture opening while maintaining
the transparency of the system (Fig. 3). In this way
the formation of fluid lag can be limited by applica-
tion of the stress σo, while still permitting the growing
fracture to be monitored continuously using a digital
video camera. This capability relies both on a PMMA
lower platen, which also serves as a light source, and
on a transparent PMMA upper reaction plate. The lo-
cation of the fracture front is then determined directly
from the video images, and furthermore the fracture
opening w is measured from analysis of grayscale
images of the growing fracture according to (Bunger
2006)

w(x, y) = k log10

Po(x, y)

P (x, y)
, (16)

where Po and P are grayscale pixel values (0 ≤
P,Po ≤ 256), with P (x, y) corresponding to the value
at a location (x, y) within the fluid filled portion of the
fracture and Po(x, y) giving the value at the same lo-
cation prior to fracture growth. Here k is a calibration
factor determined using fluid-filled wedges for which
the opening w is known. It has been demonstrated
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Figure 3. Experimental setup.

that this method is capable of measuring the full-field
fracture opening to within an accuracy of 10%, pro-
vided that all lighting conditions are carefully con-
trolled (Bunger 2006).

Circular hydraulic fractures were driven along
a 0.01 mm thick epoxy-bonded interface between
two, 200 x 200 x 75 mm Polymethyl Methacrylate
(PMMA) blocks using an aqueous solution of water,
blue food dye, and glucose. Fractures were initiated
from a 1 mm groove at the base of the 8 mm diameter
injection hole. Results are presented for one represen-
tative experiment. The plane strain modulus for the
PMMA specimen has been determined from uniaxial
compression experiments and is given by E ′ = 3930
MPa. The fracture toughness of the epoxy-interface
bond has been determined from low viscosity fluid-
driven fracture analysis, which is described in detail
by Bunger (2006), and is given by KIc = 0.38 MPa
m1/2. At the temperature at which this experiment
was performed, the fluid viscosity is 28.9 Pa s as de-
termined by measurement with a Canon-Fenske type
viscometer. Fluid was injected at a nominal rate of
Qo = 0.04 mL/s, but the injection rate was not con-
stant and is therefore determined from the pressure
drop across the flow-control valve using a test-by-
test calibration method that ensures the closest pos-
sible satisfaction of global volume balance based on
integration of the full-field fracture opening measure-
ments (Bunger et al. 2005). Prior to and during fluid
injection, the specimen was loaded so that σo = 14.5
MPa, which was sufficient to prevent formation of a
visible lag between the fluid and fracture fronts, as
shown in the photograph of the growing fracture in
Figure 4. Note that the fracture maintained its hori-
zontal orientation in spite of the uniaxial compressive
vertical loading because it was initiated along a low-
toughness interface.

The opening as a function of the normalized ra-
dial positions ρ = r/R is shown in Figure 5. Here
the opening is measured based on image analysis
of 4 video frames for which the fracture radii were
R = 27, 31, 36, and 40 mm and the corresponding



40 mm

Specimen
boundary
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Tube

Figure 4. One frame from the video of the growing fracture
(R = 40 mm), after Bunger & Detournay (2007).

times were t = 6, 8, 10, and 14 s, respectively. The
dimensionless viscosity is computed for each of these
snapshots to be Mk = 6.0, 5.5, 5.0, and 4.7, respec-
tively, which indicates that the fracture propagates in
the viscosity-dominated regime throughout this por-
tion of its lifetime. For each image, the opening is
measured over the fluid-filled portion of the fracture
along 16 radial lines and the average is taken. Then,
scaling the opening according to (8) and (12), the
experimental opening is expressed in the dimension-
less form Ωmo. Strong agreement between the experi-
mental and analytical results is demonstrated over the
outer 60% of the fracture, which is the region that can
be clearly viewed in the images.
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Figure 5. Experimental results compared to the M-vertex
solution.

The experimental fracture radius, normalized ac-
cording to (12), gives a mean value of γexp

mo = 0.62
with a standard deviation of 0.01. This value is
11% smaller than the analytical value (0.696). This
small discrepancy can most likely be traced to the
non-constant injection rate (i.e. for the four snap-
shots used here Qo = 0.040, 0.036, 0,040, and 0.046
mL/s). Nonetheless, these results further uphold the

ability of the M-vertex solution, under appropriate
conditions, to predict hydraulic fracture behavior.

6 NUMERICAL SOLUTION AT M-VERTEX

Finally, we show that accurate numerical solutions of
the hydraulic fractures propagating in the viscosity-
dominated regime can be achieved, provided that the
appropriate tip asymptotes are implemented in the
simulator. Here, however, we restrict considerations
to the M-vertex conditions.

The numerical solutions were computed with the
planar hydraulic fracture code MALIKA (Peirce &
Detournay 2007), which is briefly described below.
The algorithm is built on a fixed computational grid
consisting of a uniform mesh of rectangular constant
displacement discontinuity (DD) elements for the
elasticity computations Crouch & Starfield (1983),
coupled with a five node finite difference stencil for
the fluid flow calculations Siebrits & Peirce (2002).
The computational scheme further relies on dividing
the fracture into two regions, the “Channel” represent-
ing the main part of the fracture, and the “Tip,” which
is under the asymptotic umbrella, and on iterating at
each new time step between the solution in the Chan-
nel and that in the Tip. In fact, the Channel corre-
sponds to the contiguous set of fully-filled elements,
while the Tip is the set of partially filled elements at
the periphery of the fracture. Tip elements exchange
fluid only with Channel elements. Figure 6 illustrates
the computed footprint of a radial fracture after 25
steps of propagation on a square mesh (see below for
further details); the “Channel” and “Tip” elements are
colored in green and brown/red, respectively.

 Time step = 25

25 30 35 40

25

30

35

40

Figure 6. Footprint of fracture at time step 25.

Determining the solution in the Channel requires
solving a system of non-linear equations obtained
from discretizing the lubrication and elasticity equa-



tions, which are formulated in terms of the constant
apertures of the DD elements as the primary un-
knowns. The solution in the Tip involves comput-
ing the location of the front in the partially filled el-
ements, using the tip asymptotic volume and the cur-
rent volume of fluid stored in the tip elements; the
appropriate asymptotic behavior relies on the tip ve-
locity, which is extrapolated from the fluid velocity
at the Channel/Tip interface. The local computation
of the front position as well as that of the mean aper-
ture of the tip elements is made possible by the one-
dimensional nature of the tip asymptote.

Figures 6-9 compare the results of computations
carried out with MALIKA for conditions that forces
the fracture to evolve at the M-vertex, with the cor-
responding semi-analytical solution (14)-(15). At the
M-vertex, there is no time scale in view of the multi-
plicative power law dependance of the solution upon
time; in other words, the time is here arbitrary. For the
example considered, we used square elements with
Δχ = Δζ = 1; the injection point is here located at
χ = ζ = 32.5.
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Figure 7. Comparison of computed crack aperture with the
exact solution.

In Figure 6 we plot the fracture footprint after 25
time steps which corresponds to τ =26.5. The local
fluid velocity vectors are indicated by the scaled red
arrows while the exact fracture front is indicated by
the magenta circle. The approximate front positions
are indicated by the yellow circles joined by the black
line segments. Even for this relatively coarse mesh,
the numerical solution is able to locate the circular
fluid front relatively accurately.

In Figure 7 we plot the cross section of the width
surface Ω(χ, ζ) with the plane ζ = 32.5 for both the
numerical solution (solid circles) and the exact solu-
tion (solid line), at three different times. The close
agreement between these two solutions, for the three
levels of discretization is apparent. In Figure 8 we
plot a similar cross section through the fluid pres-
sure surface Π(χ, ζ) for both the numerical pressure
(solid circles) and the exact pressure (solid line). In
Figure 9 we compare the numerical fracture radius
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Figure 8. Comparison of computed net pressure with the exact
solution.
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Figure 9. Comparison of fracture radius history (numerical
solution plotted every 20 time steps) with the exact solution.

γ(τ) computed by averaging the interception points
between the approximate front segments and the ele-
ment boundaries over the whole perimeter of the frac-
ture.

7 CONCLUSIONS

Using scaling arguments, we have shown that hy-
draulic fractures engineered to stimulate underground
hydrocarbon reservoirs typically propagate in the vis-
cosity dominated regime. Under these conditions, the
fractures are characterized by a tip behavior that dif-
fers from the classical square root asymptote of lin-
ear elastic fracture mechanics. While restricting con-
siderations to the no leak-off case, we have not only
demonstrated the physical reality of the M-vertex so-
lution (storage-viscosity-dominated regime) but also
the ability to accurately compute fracture propagation
under these conditions by embedding the relevant tip
asymptote in the numerical simulator.
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