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ABSTRACT: The design of a hydraulic fracturing treatment typically requires using a computational model that provides rapid
results. One such possibility is to use the so-called classical pseudo-3D (P3D) model with symmetric stress barriers. Unfortunately,
the original P3D model is unable to capture effects associated with fracture toughness in the lateral direction due to the fact that the
assumption of plane-strain (or local) elasticity is used. On the other hand, a recently developed enhanced P3D model utilizes full
elastic interactions and is capable of incorporating either toughness or viscous regimes of propagation by using the corresponding
asymptotic solution at the tip element. Since either the viscous or toughness asymptote is used, the intermediate regime is not
described accurately. To deal with this problem, this study aims to implement the intermediate asymptotic solution into the enhanced
P3D model. To assess the level of accuracy, the results are compared to a reference solution. The latter reference solution is calculated
numerically using a fully planar hydraulic fracturing simulator (Implicit Level Set Algorithm (ILSA)), which also incorporates the
asymptotic solution for tip elements that captures the transition from viscous to toughness regime.

1. INTRODUCTION

Hydraulic fracturing (HF) plays a crucial role in the
petroleum industry, as it allows one to perform reser-
voir stimulation and intensify hydrocarbon production [1].
To design a HF treatment, an appropriate HF model
needs to be utilized. The simplest model is the one-
dimensional Khristianovich-Zheltov-Geertsma-De Klerk
(KGD) model [2], in which the fracture propagates in a
plane, the elastic interactions are modelled assuming that
plane strain conditions prevail, and the coupling between
viscous fluid flow and elasticity is included. To represent
the fracture geometry more realistically, the Perkins-Kern-
Nordgren (PKN) model [3, 4] was developed to predict
fracture propagation in a horizontally layered medium.
The PKN model assumes that the fracture height is al-
ways equal to the thickness of the reservoir layer, the frac-
ture opening in each vertical cross-section is taken to be
elliptic, while the fluid pressure is calculated assuming
that a plane strain condition holds in each cross-section.
Given the fact that the PKN model does not allow for the
height growth, the pseudo-3D (P3D) model, which per-
mits height growth, has been developed [5]. Later, with

the increase of the computational power, more accurate
planar 3D models (PL3D) were developed [7, 8]. As
follows from the name, the fracture is contained in one
plane, where the fracture geometry within this plane is dis-
cretized using a two-dimensional grid. Since the KGD,
PKN and P3D are essentially one-dimensional models,
while all varieties of PL3D are two-dimensional, the CPU
time increases dramatically. The PL3D models improve
accuracy and open the possibility of capturing different
fracture geometries. Recently, researchers have shifted
their effort to investigate the interaction between multiple
hydraulic fractures that are growing simultaneously [9],
and to describe non-planar fracture propagation [10].

Given the hierarchy of models described above, it is
clear that recent more advanced models intend to cap-
ture more physical phenomena and thus represent real HF
more accurately. At the same time, there are still situations
when computational time imposes severe restrictions. In
such situations, less accurate P3D models that are capa-
ble of producing rapid results are used. For instance, the
P3D model is used in [11, 12] for production optimization
purposes. Also, the interaction of multiple hydraulic frac-



tures is studied in [13] using a P3D modelling approach.
For this reason, it is important to develop an accurate P3D
model, which is capable of capturing as many physical
phenomena as possible, but which is still able to produce
results rapidly. To address this issue, an enhanced P3D
model (EP3D) has been developed in [14]. This model
introduces non-local elasticity and a correction for the
viscous height growth, which together eliminate the two
weakest points of the classical P3D model, namely: its in-
ability to capture a viscous resistance in the height growth,
and its inability to account for a fracture toughness in the
lateral direction. As follows from [14], the EP3D model is
able to accurately describe blade-like fractures that prop-
agate either in the viscous or toughness regime, while the
intermediate regime was not analyzed. To fill this gap, this
study aims to incorporate the viscous-to-toughness prop-
agation regime into the EP3D model and to compare the
results to the fully planar HF simulator ILSA [15].

This paper is organized as follows. First, the EP3D
model is briefly described in Section 2. Then, Sec-
tion 3 outlines the asymptotic solution that is required to
incorporate the viscous-to-toughness transition propaga-
tion regime into the EP3D model. After that, Section 4
presents the results of a comparison between the EP3D
model and the fully planar ILSA simulator. Finally, Sec-
tion 5 summarizes the results.

2. ENHANCED PSEUDO-3D (EP3D) MODEL

This section aims to briefly describe the EP3D model [14].
The EP3D model considers a fracture that propagates in a
vertical plane, and is suppressed by two symmetric stress
barriers located outside of the reservoir layer with thick-
ness H , see Fig. 1. Key assumptions of the EP3D model
include: i) uniform pressure over each vertical cross-
section, and ii) fracture width variation in each vertical
cross-section is approximated by the plane strain solution.
For this study, it is also assumed that there is no leak-off.
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Figure 1: Schematics of an EP3D fracture.

With the aforementioned assumptions, the fracture

opening can be written as (see [16, 14])
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ν2) is the plane strain Young’s modulus, KIc is the frac-
ture toughness, ∆σ is the magnitude of the stress barriers,
H is the thickness of the reservoir layer, and h is the frac-
ture height. Note that the x dependence in (1) comes from
the variation of fracture height h(x). The EP3D model can
be effectively formulated in terms of the effective width,
defined as
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In this case, equation (1) can be integrated to obtain
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Relation (3) can be inverted to find h(w̄), which allows
us to find the fracture height (and consequently w(x, z)
through (1)) knowing w̄(x). It should be noted here that
formulas (1) and (3) apply only in the regions with h>H ,
i.e. when there is height growth through the stress barri-
ers. In situations when h < H , equations (1) and (3) are
replaced with
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where the latter is obtained using the analytic solution
for a radial fracture propagating in the toughness regime.
Here l is the fracture half-length and χ =

√
h2 − 4z2 as

defined earlier.
Given the fact that the pressure is uniform in each ver-

tical cross-section, the lubrication equation can be inte-
grated over the vertical coordinate to obtain
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where the averaged flux is given by
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Here Q0 is the total fluid volume pumped into the fracture
per unit time, µ′ = 12µ, where µ is the fracturing fluid
viscosity, and p is the fluid pressure.

To obtain the fluid pressure, the classical P3D
model [16] uses the plane strain pressure, which is given
by

pps = ∆σ

[
1+

√
2

πH

KIc

∆σ

√
H

h
− 2

π
arcsin

(H
h

)]
. (7)



In contrast, EP3D utilizes non-local elasticity, for which
the fluid pressure is given by

p(x) = −E
′
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where equation (1) is used to calculate fracture opening.
A similar two-dimensional elasticity integral (8) is used
in the fully planar 3D fracture simulator ILSA [8] to cal-
culate fluid pressure. For the purpose of fast evaluation
of the two-dimensional integral (8), the fracture opening
in each vertical cross-section is approximated by two el-
lipses. Then, the integral over the vertical coordinate z′

can be evaluated analytically. This procedure reduces the
numerical evaluation of the two-dimensional integral to
two one-dimensional integrals, and the whole problem be-
comes one-dimensional as well. See more details in [14].

The fracture opening (1) features the fracture tough-
ness and clearly represents the solution corresponding to
the toughness regime. In situations when the fracture
toughness is small, or zero, this solution becomes inaccu-
rate. To incorporate viscous height growth approximately
using the toughness solution (1) an apparent toughness is
introduced. This apparent toughness introduces a resis-
tance that matches the corresponding resistance due to the
viscous dissipation near the fracture tip. In this case, the
apparent toughness mimics the viscous resistance in the
vertical direction and controls the vertical height growth.
More details can be found in [14].

To effectively solve the problem under consideration
numerically, a scaled spatial coordinate is introduced as
x = l(t)ξ, 0 6 ξ 6 1. In this case equation (5) can be
rewritten as
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where V = dl/dt is the velocity of the fracture tip. In the
numerical scheme, the spatial coordinate ξ is discretized
using a uniform grid. Likewise, w̄ is defined on the set
of discretized spatial points. Central differences are used
to discretize the flux derivative in (9) and the pressure
derivative in (6), the trapezoidal rule is used to evaluate
the integral in (6), and a backward difference is used to
approximate the time derivative in (9). It should also be
noted that the fracture height and fracture opening are cal-
culated using (3) and (1) or (4) for given values of w̄. The
displacement discontinuity method is used to calculate the
pressure via an approximation of (8) (see the discussion
above). Since the displacement discontinuity method does
not give an accurate result for the tip element, the fluid
pressure at the tip is treated as an unknown. To compen-
sate for the introduction of the new degree of freedom,
the fracture velocity V is calculated assuming that the so-
lution at the tip follows the asymptotic solution for the

KGD fracture, see e.g. [8, 15]. In situations when there is
no fracture toughness, the fracture velocity V is calculated
using the viscous asymptotic solution

V =
E′

µ′
w(∆ξ)3

β3m(l∆ξ)2
, (10)

where βm = 21/3 · 35/6, w(∆ξ) is the fracture opening at
z = 0 for the penultimate node, and l∆ξ is the distance
between two nodes. In situations when the fracture tough-
ness is significant, and the hydraulic fracture propagates
in the toughness regime, the velocity is adjusted in a way
that the toughness propagation criterion holds for the last
element, namely

w(∆ξ) =

√
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E′
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l∆ξ. (11)

Once the tip velocity is calculated, the discretized nonlin-
ear equation (9) is solved iteratively for w̄. Then, using
the same value of the tip velocity, the fracture length is
updated.

As discussed in [14], the EP3D model described above
shows good agreement with the reference ILSA solution
in situations when the fracture propagates in either the
viscous or the toughness regime. However, the original
EP3D model switches between the viscous asymptotic so-
lution (10) and the toughness asymptotic solution (11)
for the intermediate regime. This leads to inaccuracies
and non-smooth fracture growth in situations when the
fracture propagates in the intermediate regime. To ad-
dress this issue, this study aims to incorporate the viscous-
to-toughness intermediate regime of propagation into the
EP3D model. This will make EP3D model even more ac-
curate, in which case the corresponding HF simulator can
produce reliable and, at the same time, rapid results.

3. INCORPORATING VISCOUS-TO-TOUGHNESS
INTERMEDIATE REGIME OF PROPAGATION

The asymptotic solutions used in (10) and (11) originate
from the solution for the semi-infinite KGD fracture prop-
agating with the velocity V and represent two limiting
cases of no fracture toughness and no fluid viscosity. An
intermediate regime of propagation for the semi-infinite
fracture, where both fracture toughness and fluid viscos-
ity affect the solution, is analyzed in [17]. The solution
for the fracture opening of the semi-infinite KGD fracture
propagating with the velocity V , written in dimensionless
form, is given by

ŵ = Ω̂(ξ̂). (12)

Here the scaled fracture opening ŵ and the scaled spatial
coordinate ξ̂ are

ŵ =
E′3µ′V

K ′4
w, ξ̂ =

E′4µ′2V 2

K ′6
s,



where w denotes fracture opening, s is the co-ordinate
along the fracture that originates at the tip, K ′ =√

32/πKIc is the scaled fracture toughness,E′ = E/(1−
ν2) is the plane strain Young’s modulus, µ′ = 12µ is
a scaled fluid viscosity, and V is the crack tip veloc-
ity. Fig. 2 shows the solution (12), calculated numeri-
cally in [17]. The function Ω̂(ξ̂) has two asymptotes. In
situations when ξ̂ is small, Ω̂(ξ̂) ≈ ξ̂1/2, which corre-
sponds to the toughness asymptote (11). Situations when
ξ̂ is large correspond to the viscous asymptote (10) and
Ω̂(ξ̂) ≈ βmξ̂2/3.
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Figure 2: Function Ω̂(ξ̂) (12) calculated numerically
(markers) and the two asymptotes, namely, Ω̂(ξ̂) = ξ̂1/2

for ξ̂ → 0 (dashed red line) and Ω̂(ξ̂)=βmξ̂
2/3 for ξ̂ →∞

(dashed blue line).

To be able to find the velocity of propagation for a
given fracture width and the distance from the tip, it is
useful to introduce a different scaling, so that
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in which case (12) can be rewritten as

V̂

β3mK̂
4

= Ω̂
( V̂ 2

β6mK̂
6

)
. (13)

By introducing the function Ω̄(ξ̂) = ξ̂−1/2Ω̂(ξ̂), equa-
tion (13) can be solved for V̂ as

V̂ = β3mK̂
3
√

Ω̄−1
(
(K̂)−1

)
= V̂MK(K̂). (14)

One possibility to calculate the scaled fracture velocity V̂
is to precompute the function VMK(K̂) and use it to eval-
uate V̂ . However, since the EP3D model already utilizes
multiple approximations aimed to increase computational
efficiency, we are going to introduce an approximation for
the function V̂MK(K̂) in (14) as well. To this end, let us
approximate V̂MK(K̂) by

V̂MK(K̂) ≈ 1− K̂p1

1 + p2K̂p1
, (15)

where p1 and p2 are two parameters. By minimizing the
L2 error between the numerically calculated V̂MK(K̂) and
the approximation (15), it is found that p1 = 3.0077 and
p2 = 0.1572 correspond to the minimum L2 error whose
magnitude is O(10−3). Note that the clues to the func-
tional form of (15) are obtained by analyzing the asymp-
totic behaviour of V̂MK(K̂) at K̂ ≈ 0 (which corresponds
to the viscous regime) and K̂ ≈ 1 (which corresponds
to the toughness regime), which is performed by includ-
ing the second order terms in the asymptotic expansion of
Ω̂(ξ̂) for ξ̂ → 0 and ξ̂ → ∞, see [15]. For complete-
ness, it is noted that K̂ > 1 corresponds to the case when
the stress intensity factor is smaller than KIc, in which
case the fracture does not propagate. In this situation, (15)
should be complemented by V̂MK(K̂) = 0 for K̂ > 1.
As an illustration, Fig. 3 plots the numerically calculated
V̂MK(K̂) (markers) and the approximation given by (15)
(solid line).
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Figure 3: Variation of the function V̂MK(K̂) (14) calcu-
lated numerically (markers) and the approximation given
by (15) (solid line).

Finally, to implement the intermediate propagation
regime into the EP3D HF simulator, one needs to replace
the subroutine for calculating the fracture velocity (see
equations (10) and (11)) with the following expression

V = VM max

{
1− K̂p1

1 + p2K̂p1
, 0

}
. (16)

Here VM represents the velocity that correspond to the vis-
cous solution, while K̂ is scaled fracture toughess, namely

VM =
E′

µ′
w(∆ξ)3

β3m(l∆ξ)2
, K̂ =

K ′(l∆ξ)1/2

E′w(∆ξ)
.

As before, w(∆ξ) denotes the fracture opening of the
penultimate element, and l∆ξ is the distance between
neighbouring elements.



4. RESULTS AND DISCUSSION

This section compares the results obtained using the EP3D
model with the intermediate (or MK) asymptotic solution
described in the previous section to the reference solu-
tion. The reference solution is obtained using the Implicit
Level Set Algorithm (ILSA) scheme [8, 15]. The param-
eters for the computation are chosen as H = 0.05 m,
µ = 30.2 Pa·s, ν = 0.4, E = 3.3 GPa, Q0 = 1.7 mm3/s,
∆σ = 4.3 MPa. The rock is assumed impermeable in
both models (i.e. no leak-off). Different values of fracture
toughness are considered. Fig. 4 compares the footprints
obtained using ILSA and EP3D for K ′ = 0 (blue lines),
K ′ = 1.75 MPa·m1/2 (magenta lines), and K ′ = 3.0
MPa·m1/2 (red lines) at different time instants t = 200 s,
t = 401 s, and t = 604 s. Note that K ′ =

√
32/πKIc.

As can be seen from the figure, the EP3D model is ca-
pable of approximating the reference ILSA solution ac-
curately for different values of fracture toughness. It is
important to note that ξ̂ ≈ 3 × 10−5 and K̂ ≈ 0.94 for
K ′ = 1.75 MPa·m1/2, which corresponds to the interme-
diate regime (see discussion about regimes classification
below). Curves with K ′ = 3.0 MPa·m1/2 correspond to
the toughness regime with ξ̂ ≈ 5.5× 10−7 and K̂ ≈ 0.99.
While data withK ′ = 0 corresponds to the viscous regime
with ξ̂ =∞ and K̂ = 0.
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Figure 4: Comparison between fracture footprints calcu-
lated using the EP3D and ILSA simulators for different
values of fracture toughness sampled at different time in-
stants.

To quantify the effect of the appropriate asymptotic
solution on the accuracy, Fig. 5 compares the half-lengths
l calculated using ILSA and EP3D at t= 604 s for differ-
ent values of the fracture toughness K ′. The blue markers

represent the original EP3D model, where the simulator
used a switch between viscous and toughness asymptotic
solutions, while the red markers correspond to the EP3D
model for which intermediate asymptotic solution is used.
Fig. 5 shows that the intermediate asymptote noticeably
affects the solution when 1.25 < K ′ < 2.5. This corre-
sponds to 2.6×10−6<ξ̂<2.7×10−4 and 0.86<K̂<0.98.
This result is somewhat counterintuitive, because Figs. 2
and 3 show that the transition zone should approximately
be 10−4 < ξ̂ < 10−2 and 0.4 < K̂ < 0.8. One possi-
ble explanation is that VM in (16) is proportional to the
cube of the fracture width. In this situation, even moder-
ate variations of V̂MK can be compensated by relatively
small changes of the fracture width. However, when V̂MK

becomes small, the effect becomes more pronounced and
the transition regime occurs. To support this hypothe-
sis, it is noted that the values 0.86 < K̂ < 0.98 corre-
spond to 0.37 < (V̂MK)1/3< 0.7. In this case, it is con-
venient to identify the intermediate regime by the values
of (V̂MK)1/3. Small values of (V̂MK)1/3 correspond to
the toughness regime, values that are (V̂MK)1/3 ≈ 0.5
correspond to the intermediate regime, while values of
(V̂MK)1/3 that are close to one represent the viscous
regime of propagation. Note that K̂ ≈ 0.94 corresponds
to (V̂MK)1/3=0.53, which, according to the adopted def-
inition, corresponds to the intermediate regime. Fig. 5 also
shows that the use of the appropriate asymptotic solution
decreases the discrepancy with the reference solution by
more than a factor of two. In addition to that, the use of
the MK asymptote does not affect the computational time,
and produces smoother fracture growth through the tran-
sition zone. It should also be noted that the discrepancy
between EP3D and ILSA results does not vanish for the
viscous and toughness regimes because the EP3D model
utilizes multiple approximations, that affect overall accu-
racy, but, at the same time, drastically increase the com-
putational efficiency.
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Figure 5: Fracture length discrepancy between EP3D and
ILSA results for t= 604 s versus K ′. Blue markers cor-
respond to the EP3D which switches between viscous and
toughness asymptotic solutions, while red markers repre-
sent results of the EP3D that uses the MK asymptote.



5. SUMMARY

The goal of this study is to augment EP3D model with
the viscous-to-toughness asymptotic solution, which in-
creases the accuracy of the model predictions in the transi-
tion regime. Firstly, the EP3D model, which accounts for
non-local elasticity and viscous height growth (no leak-
off), is briefly described. Since the EP3D model utilizes
the asymptotic solution for the tip element to determine
fracture propagation velocity, it is necessary to include the
appropriate asymptotic solution. In particular, this asymp-
totic solution captures the transition from the viscous to
the toughness regime of propagation. To increase the com-
putational efficiency, the fracture velocity, that is calcu-
lated numerically using the asymptotic solution, is approx-
imated by an analytical formula. It is shown that the error
induced by the approximation is O(10−3). The predic-
tions of the EP3D model with the new asymptotic solu-
tion are compared to the reference ILSA solution, where
the latter is a fully planar HF simulator. It is shown that
the fracture footprints agree well for a range of values of
fracture toughness, which represent: the viscous, tough-
ness, and intermediate regimes of propagation. Finally, it
is also shown that the use of the appropriate asymptotic
solution decreases the discrepancy between the EP3D and
ILSA results by more than a factor of two, and, at the same
time, does not affect the computational efficiency of the
EP3D model.
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