
1. INTRODUCTION 

Horizontal wells frequently have a significant number of 

nonproducing perforation clusters in a given stage due to 

variations in the reservoir properties and the phenomenon 

of stress shadowing, in which the confining stress induced 

by the outer fractures in a stage serves to inhibit the 

growth of the inner fractures. It is thus desirable to 

develop computational tools that can analyze such 

situations to determine the optimal choice of engineering 

parameters to mitigate the effect of stress shadowing and 

reservoir heterogeneity. A complete model of this 

situation requires a fully coupled 3D simulator that can 

model curving HF that simultaneously propagate in a 

heterogeneous solid medium. Thus far, models of this 

situation have been restricted to homogeneous media 

involving pseudo-3D approximations that can admit 

curving cracks (Kresse et al., 2013), 2D-axisymmetric HF 

that are assumed to grow in parallel planes (Lecampion 

and Desroches, 2015) or arbitrarily shaped HF that are 

assumed to grow in parallel planes (Bunger and Peirce, 

2014; Peirce and Bunger, 2015).  

A fully coupled XFEM algorithm has recently been 

developed by the authors (Gordeliy and Peirce, 2013, 

2015) for HF propagation, and applications have been 

restricted to plane strain HF. The work reported in this 

paper describes the development of an axisymmetric 

XFEM code that is able to model multiple interacting 

cracks (which, due to the axisymmetry, will be bowl-

shaped) and which is able to autonomously partition the 

fluid pumped into the horizontal well among the 

developing fractures in the stage under investigation – a 

process we refer to as flow diversion. A number of 

numerical results are presented. The XFEM model 

developed in this paper is compared to a 3D displacement 

discontinuity (DD) model ILSA (Bunger and Peirce, 

2014; Peirce and Bunger, 2015) that is able to model 

multiple planar HFs that are assumed to be propagating in 

parallel planes with flow diversion. To test the validity of 

the algorithm for modeling curving of the fractures due to 

mutual interaction, the XFEM is compared to an 

axisymmetric DD model OribiC (Gordeliy and 

Detournay, 2011), which, in turn, has been validated 

against laboratory experiments for bowl-shaped fractures 

near a free surface (Bunger et al., 2013). Finally, five 
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ABSTRACT: A significant challenge in horizontal well stimulation is the ability to simultaneously generate multiple hydraulic 

fractures (HF) with roughly uniform dimensions within a single stage. When the fractures are relatively close, the outer fractures in a 

stage exert a strong confining stress on the inner fractures, inhibiting their development and the desired uniform growth of fractures 

in the stage. There is thus a need to develop computational tools to analyze this mutual interaction between propagating HF to seek 

designs that can mitigate this inhibition phenomenon which is known as stress shadowing. In this paper, we report the development 

of an axisymmetric extended finite element method (XFEM) that can model multiple simultaneously propagating HF that are able to 

curve (forming bowl-shaped fractures) and which is able to autonomously partition the flux of fluid among the HF in the stage. To 

test the flux partitioning algorithm, we compare the XFEM code to a parallel planar displacement discontinuity (DD) code. To test 

the HF curving due to mutual interaction, we compare the XFEM to an axisymmetric DD code, which can model two symmetric 

fractures that can curve due to mutual interaction. Finally, we describe an experiment in which five mutually interacting HF with flux 

partitioning are allowed to curve, and we compare the results to the case in which the five HF are constrained to develop in distinct 

parallel planes. 

 

 



mutually interacting HF with flux diversion are allowed 

to curve, and the results are compared with the situation 

in which the five fractures are constrained to develop in 

distinct parallel planes.  

  

The remainder of the paper is organized as follows: in 

section 2, we describe the model, including the governing 

equations for fluid flow and elasticity; in section 3, we 

briefly describe the XFEM model and provide the 

numerical results; in section 4, we make some concluding 

remarks. 

2. MODEL DESCRIPTION 

We consider a horizontal well drilled in the direction of 

the minimum horizontal stress 𝜎ℎ. We assume that the 

elastic parameters (Young’s modulus 𝐸 and Poisson’s 

ratio 𝜈) and the in-situ stress components (minimum 

horizontal stress 𝜎ℎ and the maximum horizontal stress 

𝜎𝐻, which is assumed to be equal to the vertical stress 

component) are constant in the radial direction orthogonal 

to the wellbore. This assumption allows us to restrict 

ourselves to fractures that grow in an axisymmetric 

fashion away from the horizontal wellbore. The fracture 

growth is assumed to be driven by a Newtonian fluid of 

dynamic viscosity 𝜇 from an injection point located at the 

center of the axisymmetric fracture. This point source 

represents a perforation cluster in a multistage hydraulic 

fracturing treatment. The fluid is pumped in the wellbore 

at a constant volumetric injection rate 𝑄0. In multistage 

hydraulic fracturing, multiple fractures are propagated 

simultaneously in each stage. These fractures are assumed 

to affect each other elastically in the rock-mass and 

hydraulically within the wellbore. We model both of these 

interactions. The elastic interaction is modeled by the 

domain-based extended finite element method (XFEM) 

and the hydraulic interaction is modeled by a fluid flux-

splitting algorithm. The fractures are allowed to curve due 

to their mutual elastic interaction. The curving of an 

axisymmetric fracture results in a bowl-shaped fracture.  

2.1. Elasticity 
The balance of forces is given by the following 

equilibrium equation: 

 ∇ ⋅ 𝛔 + 𝒇 = 𝟎  (1) 

in which 𝒇 is the body force and 𝛔 represents the stress 

field in the domain, which is related to the strain tensor 

𝜺(𝒖) through the following constitutive relation 

 𝝈 = 𝒞: 𝛆(𝒖)  (2) 

The strain tensor 𝜺(𝒖) is related to the displacement field 

𝒖 by the following relation: 

 𝛆(𝒖) =
1

2
(∇𝒖 + (∇𝒖)𝑇)  (3) 

The displacement 𝒖 and the stress field 𝛔 are the primary 

elastic unknowns defined in Cartesian coordinates by 

components 𝑢𝑖 and 𝜎𝑖𝑗. In Eqs. (1) and (2), tensile stresses 

are assumed to be positive; however, we switch to a 

positive compressive stress convention in the following 

for convenience. The fracture opening is represented by 

the normal displacement jump across the fracture faces: 

 ⟦𝒖⟧ ⋅ 𝒏 = (𝒖+ − 𝒖−) ⋅ 𝒏 = 𝑤  (4) 

2.2. Fluid Flow 
We neglect the fluid compressibility with respect to the 

fracture compliance. The mass balance is then reduced 

only to the volume balance given by the continuity 

equation 

 
𝜕𝑤

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑠
(𝑟𝑞) = 0  (5) 

where 𝑟 is the radial coordinate along the radius of the 

axisymmetric fractures, and 𝑠 is the arc-length coordinate 

along the one-dimensional representation of an 

axisymmetric fracture in the (𝑟, 𝑧) axes. The fluid flux 𝑞 

inside the fracture follows Poiseuille’s law, under the 

hypothesis of low Reynold’s number flow that is assumed 

in lubrication theory. Poiseuille’s law relates the variation 

of the fracture width 𝑤 and the pressure gradient 
𝜕𝑝

𝜕𝑠
 to the 

fluid flux 𝑞  within the fracture: 

 𝑞 = −
𝑤3

𝜇′

𝜕𝑝

𝜕𝑠
 , (6) 

in which 𝜇′ = 12𝜇 where 𝜇 is the dynamic fluid viscosity. 

A fluid lag may develop between the fluid front and the 

fracture front during the hydraulic fracturing process. The 

timescale associated with the development of such a lag 

is given by: 𝑡 =
𝐸2𝜇′

(1−𝜈2)2𝜎0
3 (Bunger, 2005; Gordeliy and 

Detournay, 2011), where 𝜎0 is the confining stress. This 

timescale is inversely proportional to 𝜎0
3. Accordingly, 

we can ignore the fluid lag due to the high confining stress 

normally encountered in deep formations. The 

appropriate boundary conditions at the fracture tip 

(Detournay and Peirce, 2014) are that the fluid flux and 

the fracture width are thus assumed to vanish: 

 𝑤(𝑟) = 0, 𝑞(𝑟) = 0 (7) 

where 𝑟 = 𝑅𝑖 and 𝑅𝑖 is the radius of fracture 𝑖. At the 

fracture inlet, pressure continuity is ensured by 

considering the fluid pressure 𝑝𝑓 at the fracture inlet to 

equal the wellbore pressure 𝑝𝑤𝑏, i.e., 



 𝑝𝑓(𝑟 = 0) = 𝑝𝑤𝑏  (8) 

We ignore the pressure drop at the inlet due to perforation 

friction. 

2.3. Multiple Fracture Initiation and Propagation 
During the initial fracture propagation, the energy 

dissipation in breaking the rock is less than the energy 

dissipated in pushing the viscous fluid through the 

fracture. Fracture propagation under this condition is 

called viscosity-dominated fracture propagation. We take 

the analytical solution for the viscosity-dominated 

fracture propagation (𝑀 vertex solution) for the penny-

shaped fracture in an infinite medium (Savitski and 

Detournay, 1999) as the initial solution. In the case of 

multiple axisymmetric fracture propagation, the fluid flux 

into each fracture, which is typically different for each 

fracture in a stage, is found by an iterative procedure such 

that the pressure at each fracture inlet is equal to the 

wellbore pressure and the sum of all the fluxes going into 

each fracture 𝑞𝑖 is equal to the total flux 𝑄0 pumped into 

the wellbore, i.e.,  

 ∑𝑞𝑖 = 𝑄0  (9) 

Finally, the initial pressure and width distribution inside 

each fracture is assumed to satisfy the corresponding 𝑀 

vertex solution. 

3. NUMERICAL SCHEME 

We use the mixed hybrid XFEM scheme developed by 

(Gordeliy and Peirce, 2013; Abbas et al., 2014) to solve 

for the fluid flow and elastic deformations in a coupled 

manner. The elastic effects of the fracture are given by the 

XFEM formulation (Fries and Belytschko, 2010) that 

represents the discontinuous and singular fields in the 

finite element mesh. In the current application, we 

consider the fluid front to coincide with the fracture front, 

which results in a singular pressure field near the fracture 

tip. This creates considerable challenges for computing 

the fracture opening using only the fluid pressure (the so-

called Neumann to Dirichlet map). For this purpose, the 

fracture is divided into two regions. The first is the larger 

region away from the crack tip, in which we solve for the 

fracture width assuming a prescribed fluid pressure 

boundary condition. The second is the tip region, in which 

the fracture width asymptote acts as a boundary condition 

on the fracture width and is prescribed according to the 

applicable tip asymptote. The discretized weak form for 

the XFEM is described in detail for the plane-strain case 

by Gordeliy and Peirce (2015). In the current application, 

additional terms that represent the hoop stress and strain 

are added to the weak form. Integration of the weak form 

involves multiplying the integrands by a 2𝜋𝑟 factor to 

account for the axisymmetric formulation.  

The fluid flow Eqs.(5) and (6) are discretized using the 

finite volume scheme described in Gordeliy and Peirce 

(2013). The XFEM provides the fracture width in terms 

of a given fluid pressure. This solution is then used to 

eliminate the fracture width from the discretized fluid 

flow equations. These equations are then solved 

iteratively using Newton’s method until the pressure 

converges to an equilibrating fluid pressure in the channel 

region. This pressure is then used in the XFEM scheme to 

provide the corresponding fracture widths. The direction 

of fracture propagation is found through a maximum 

tensile stress condition (Erdogan and Sih, 1963). The 

curved fracture geometry is represented by the hybrid 

explicit-implicit crack description of Fries and Baydoun 

(2012). 

During the fracture propagation, the fracture front is 

located using the implicit level set algorithm (ILSA) 

(Peirce and Detournay, 2008) in which the viscous tip 

asymptote of Desroches, et al. (1994) is used to determine 

the fracture tip position that is consistent with a weak-

form tip width asymptote and a pressure field that satisfies 

local volume balance. 

In the following, we validate the fluid flux diversion 

algorithm with an existing ILSA simulator that can treat 

multiple simultaneously evolving and interacting 

hydraulic fractures that are assumed to be propagating in 

distinct parallel planes.  We also validate the fracture 

curving component of the XFEM algorithm using the DD-

based algorithm OribiC, which was designed to model 

radially symmetric bowl-shaped fractures. Finally, we 

study the combined effect of flow diversion and fracture 

curving on the propagation of five equally spaced 

fractures.  

3.1. Validation of Flow Diversion 
First we validate our algorithm for flow diversion. We use 

a test case from Bunger and Peirce (2014) involving the 

simultaneous propagation of five parallel radial planar 

fractures with automatic flow rate diversion. The 

following parameters for the simulation were used: 𝐸 =

9.5 GPa, 𝜈 = 0.2, 𝜇 = 1 Pa.s, 𝑄0 = 0.1 m3/s, 𝐻 = 30 m 

and 𝜎𝑧𝑧
0 = 70 MPa. Here 𝐻 represents the uniform 

distance between the fractures, and 𝜎𝑧𝑧
0  is the confining 

stress on each fracture. The fractures affect each other 

through stress shadowing, which is why the outer 

fractures outgrow the inner fractures. This is visible in the 

Figure 1. The solid lines represent the results of Bunger 

and Peirce (2014), and the dashed lines represent the 

XFEM results. It can be seen that the fracture length 

growth and the stress shadow effect are accurately 

modeled by the XFEM.    



 

Figure 1: Evolution of normalized fracture radius vs. time for the outer 

fracture 1 and the inner fractures 2 and 3. We only show the first two 

fractures and the middle fracture due to the symmetry of the problem. 

Figure 2 shows the evolution of the fracture width at the 

inlet from Bunger and Peirce (2014) compared with the 

XFEM results. The results from the two algorithms have 

some initial discrepancy due to slightly different initial 

conditions, but they rapidly converge and show close 

agreement. Finally, in Figure 3, we see that the flow rates 

entering each fracture show close agreement between the 

two algorithms. Although there is some difference 

between the results from both methods, the relative 

difference is less than 5%. This verifies the validity of the 

flow-diversion algorithm used for the XFEM multiple 

fracture simulation. 

 

Figure 2: Evolution of fracture width for the outer fracture 1 and the 

inner fractures 2 and 3. 

 

Figure 3: Fluid flux entering each fracture in time. 

3.2. Validation of the Fracture Curving Algorithm 
In this section, we consider two interacting fractures to 

validate the implementation of the nonplanar fracture 

propagation in the coupled XFEM model. We compare 

the results of the present model with the results of an 

algorithm OribiC (Bunger et al., 2013) based on the 

axisymmetric displacement discontinuity method 

(Gordeliy and Detournay, 2011). The implementation of 

OribiC used in (Bunger et al., 2013) included a single 

fracture with fluid lag, and the fracture propagation was 

modeled according to a mixed-mode propagation 

criterion based on the values of the mode 𝐼 and 𝐼𝐼 stress 

intensity factors and the fracture toughness 𝐾𝐼𝑐 -

consistent with the maximum tensile stress criterion of 

(Erdogan and Sih, 1963). To model interacting nonplanar 

fractures propagating in the viscosity-dominated regime 

in the present paper, we modified OribiC to include two 

symmetric bowl-shaped fractures completely filled with 

the fluid and with an enforced fracture propagation 

condition corresponding to the viscous tip asymptote of 

(Desroches et al. 1994). The direction of fracture 

propagation was determined according to the maximum 

tensile stress criterion of (Erdogan and Sih, 1963).  

 

Figure 4: Trajectories of two interacting bowl-shaped fractures. The 

fractures are shown in the cylindrical coordinates (𝑟, 𝑧), where the z-

axis is the axis of symmetry. 



The XFEM and OribiC models were used to simulate the 

propagation of two bowl-shaped fractures initiated a 

distance 30 m apart (Figure 4). The two fractures were 

initiated as flat, parallel, and radial with radii 5.4 m and 

set to the M-vertex solution (Savitski and Detournay, 

1999). Because the fractures were assumed to propagate 

in the viscosity-dominated regime, the fracture toughness 

was not involved in the simulations. The far-field 

axisymmetric confining stresses in the cylindrical 

coordinate axes (𝑟, 𝑧) were set to 𝜎𝑟𝑟 = 𝜎𝑧𝑧 = 70 MPa, 

and the properties of the rock were Young’s modulus 𝐸 =
9.5 GPa and Poisson’s ratio 𝜈 = 0.2. The viscosity of the 

injected fluid and the total injection rate were set, 

correspondingly, to 𝜇 = 1 Pa.s and 𝑄0 = 0.1 m3/s. In 

OribiC, we used axisymmetric displacement discontinuity 

elements of uniform length 0.075 m [in (𝑟, 𝑧) axes]; the 

fracture was extended by one element at each step, and 

the corresponding time step was determined from the 

propagation condition. In the XFEM, the size of the finite 

elements in the radial direction was set to 0.3 m, and a 

uniform time step of 0.7355 s was used. 

 

Figure 5: Evolution of fracture radii for two interacting bowl-shaped 

fractures. 

Figure 4 shows the trajectories of the two interacting 

bowl-shaped fractures obtained from the two models. 

Figure 5–Figure 7 show the evolution of the fracture 

radius, fracture width at the wellbore inlet, and the fluid 

pressure at the wellbore inlet for each fracture. The inlet 

fluid pressure was obtained by extrapolation of nodal 

pressures to the wellbore wall. Figure 8 shows the profile 

of the fluid pressure in each of the fractures at time 𝑡 =
 99 s. In these figures, fracture 1 and fracture 2 refer to 

the fracture initiated at 𝑧 =  15 m and at 𝑧 =  −15 m, 

respectively.

 

Figure 6: Inlet crack width for two interacting bowl-shaped fractures. 

 
The results of the two models agree well. A small 

discrepancy in the inlet crack width (Figure 6) and in the 

wellbore pressure (the inlet fluid pressure in Figure 7) 

can be due to the different levels of discretization of the 

fractures in each model. In particular, in the XFEM, the 

fracture surface near the wellbore was discretized into 

elements of length 0.3 m (consistent with the finite 

element size in the radial direction), which is four times 

larger than the element size of 0.075 m used in OribiC. 

Despite the small discrepancy in the wellbore pressures in 

Figure 7, in Figure 8 the XFEM fluid pressures within 

the fractures are close to the OribiC results.   

 

Figure 7: Inlet fluid pressure for two interacting bowl-shaped 

fractures. 



 

Figure 8: Profile of fluid pressure in each fracture at time t = 99 s. 

3.3. Effect of Curving and Flow Diversion 
Finally, we investigate the effect of fracture curving on 

fracturing parameters. We want to quantify the effect of 

fracture curving on the critical hydraulic fracturing 

variables, namely, the fracture opening at the inlet, the 

pressure at the fracture inlet, and the fluid flux entering 

each fracture. Here we present results from two numerical 

experiments. In each we consider two different cases with 

the same parameters. The only difference is that in the 

first case we allow the fractures to curve with automatic 

flow diversion and in the second case we do not allow the 

fracture curving. We allow the fractures to grow up to 1.5 

times the distance between the fractures and monitor the 

effect on the fracture characteristics.  

In the first experiment, we consider the following 

parameters: Young’s modulus 𝐸 = 9.5 GPa, Poisson’s 

ratio 𝜈 = 0.2, dynamic fluid viscosity 𝜇 = 1 Pa.s, total 

injection rate in the wellbore 𝑄0 = 0.1 m3/s, distance 

between fractures 𝐻 = 10 m, minimum horizontal stress 

acting normal to the initial fracture plane 𝜎𝑧𝑧
0 = 70 MPa 

and the radial stress acting in the initial fracture plane  

𝜎𝑟𝑟
0 = 72 MPa. The fracture path for all five fractures is 

shown in Figure 9 for the case of curving fractures. It is 

shown that the external fractures grow more than the 

internal fractures. The fractures next to the outer fractures 

are curved slightly inwards due to the strong stress 

shadow interaction with the outer fractures.  

 

Figure 9: Fracture propagation path for five fractures with curving 

and flow diversion. 

Figure 10–Figure 13 show the effect of fracture curving 

versus no curving (“flat”) on the fracture length, inlet flow 

rate, fracture width at the inlet and the inlet pressure. We 

only show the first two fractures and the middle fracture 

due to the symmetry of the problem. It can be seen that 

there is no significant effect of fracture curving on the 

fracture length. Similarly, there is no significant 

difference in the inlet flow rate, the fracture width, or the 

inlet pressure due to fracture curving. This shows that 

ignoring the fracture curving due to the stress shadow 

does not cause a significant error in the hydraulic 

fracturing diagnostics in conditions of this example due to 

the little curving observed. 

 

 
Figure 10: Fracture length vs. time for the flat fractures and the 

curving fractures. 



 
Figure 11: Inlet flow rate for the curving fractures and the flat 

fractures. 

 
Figure 12: Fracture width at the inlet for curved fractures and the 

flat fractures. 

 
Figure 13: Fluid pressure at the inlet for curved fractures and the flat 

fractures. 

In the second experiment, we use the same parameters as 

before except for the total injection rate 𝑄0 = 0.05 m3/s 

and the in situ stress with an isotropic confining stress 

condition, i.e. 𝜎𝑧𝑧
0 = 𝜎𝑟𝑟

0 = 70 MPa (no difference 

between the radial and the normal horizontal stress acting 

on the initial fracture plane). The resulting fracture paths 

in Figure 14 show more pronounced fracture curving in 

this case. As a result of this there are more pronounced 

effects on the fracture lengths. As shown in Figure 15, the 

internal fractures in the case of flat fractures have smaller 

lengths than the corresponding curving fractures. This 

results in pronounced effects in the inlet flow rate 

distribution as well as the pressure and fracture width at 

the fracture inlet as shown in Figure 16, Figure 17 and 

Figure 18 respectively. So, taking the fracture curving 

into account changes the basic hydraulic fracturing 

diagnostics.  

 

Figure 14: Fracture propagation path for five fractures with curving 

and flow diversion (isotropic confining stress). 

 

Figure 15: Fracture length vs. time for the flat fractures and the 

curving fractures (isotropic confining stress). 



 

Figure 16: Inlet flow rate for the curving fractures and the flat 

fractures (isotropic confining stress). 

 

Figure 17: Fracture width at the inlet for curved fractures and the flat 

fractures (isotropic confining stress). 

 

Figure 18: Fluid pressure at the inlet for curved fractures and the flat 

fractures (isotropic confining stress). 

 

 

4. CONCLUSIONS 

We have described an axisymmetric XFEM algorithm 

with fully coupled fluid flow and elastic deformation with 

an implicit level set scheme to locate the fracture free 

boundary to satisfy the so-called 𝑀-vertex tip asymptote 

for propagation in the viscosity-dominated regime. The 

algorithm is able to model curving 3D cracks by 

advancing the fracture in a direction given by the 

maximum tensile stress at the fracture tip. By means of a 

specialized iterative procedure, the algorithm is able to 

autonomously partition the flux of fluid among the 

fractures in a given stage under the constraint that the 

fluid pressure is the same at the intersection of each of the 

fractures and the wellbore. 

The XFEM model produced results that showed close 

agreement to those of a 3D DD model ILSA (Bunger and 

Peirce, 2014; Peirce and Bunger, 2015) that is able to 

model multiple planar HFs that are assumed to be 

propagating in parallel planes with flow diversion. The 

capacity of the XFEM model to capture fracture curving 

due to mutual interaction and flux diversion was 

compared to an axisymmetric DD model OribiC. The two 

models produced results that were in close agreement. 

Finally, the XFEM model was used to compare the 

solutions for five propagating HF in which the fractures 

were allowed to curve with those in which the fractures 

were constrained to remain parallel. In the first case, the 

field variables such as the fracture length, inlet fracture 

width, inlet flux, and wellbore pressure showed little 

difference between the planar fractures and those that 

were allowed to curve while in the second case, with 

isotropic confining stresses, the field variables were 

affected more significantly due to the fracture curving. 

This calls for a detailed study into various parameters 

involved in fracture curving and how those parameters 

affect the field variables. This will be the topic of a future 

paper where the present XFEM model will be used to 

explore in detail the possible conditions under which 

fracture curving becomes important. 
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