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ABSTRACT: Recent analytic work (Peirce and Detournay, 2022a) has established the tip asymptotics for receding hydraulic
fractures that close due to leak-off to the permeable rock. This asymptotic result enabled the development of rigorous numerical
schemes to explore the recession dynamics of hydraulic fractures that develop in a state of plane strain (Peirce and Detournay,
2022b) and radially symmetrically (Peirce, 2022). These detailed studies enabled the identification (Peirce and Detournay, 2022c)
of the so-called Sunset Solution, which is a similarity solution that emerges close to the ultimate collapse of the fracture. The
asymptotic analysis performed in (Peirce and Detournay, 2022c) establishes that the existence of the sunset solution is due to a
fundamental decoupling of the kinematics from the dynamics in the governing equations, which leads to a robust way to measure
the Carter leak-off coefficient from the rate of change in the fracture aperture at the wellbore. These results were established
assuming that no fluid is leaking from the closed section of the fracture. In this paper, we explore the viability of the procedure
to estimate the Carter leak-off coefficient using the sunset solution when the fracture is assumed to close on proppant that is filled
with fluid upon closure and which continues to leak off and exchange fluid with the open portions of the fracture.

1 INTRODUCTION

The diagnostic fracture injection test (DFIT) is used in
petroleum engineering to assess the minimum in situ
stress, Carter’s leak-off coefficient, and other reservoir pa-
rameters. The test consists of monitoring the well pressure
during injection of fluid over a time long enough to create
a hydraulic fracture, as well as after shut-in of the well.
Interpretation of the pressure decline that follows the end
of pumping was pioneered by Nolte (1979, 1986). His
original analysis relies on two main assumptions: (i) the
fracture stiffness remains constant after shut-in until the
fracture completely closes and (ii) Carter’s leak-off coeffi-
cient 𝐶𝐿 is a constant. In Nolte’s analysis, the coefficient
𝐶𝐿 is interpreted from the pressure decline following the
sudden drop of pressure observed when the well is shut-in,
by expressing the declining pressure as a linear function of
𝐺 (Δ𝑡), which is a function of Δ𝑡 - the time elapsed since
shut-in divided by the shut-in time 𝑡𝑠 (Nolte, 1979, 1986).

This function is constructed on the assumption that the
fracture growth during injection follows a power law of
time. However, if the amount of fluid lost by leak-off dur-
ing the propagation phase can be neglected, relative to the
fracture volume, the 𝐺-function simplifies to 𝐺 ∼ 1/

√
Δ𝑡.

This method to determine 𝐶𝐿 also requires an estimate of
the fracture stiffness, a parameter that reflects the shape
and dimension of the fracture as well as the elastic mod-
ulus of the formation. It should be noted, however, that a
constant stiffness is predicated on assuming that the frac-
ture remains everywhere open until it fully closes, a hy-
pothesis that is not supported by numerical simulations
(Wang and Sharma, 2017a). Motivated to relax some of
the assumptions at the root of the original analysis, sev-
eral researchers have published amendments to Nolte’s in-
terpretation of the pressure decline (McClure et al., 2016;
Wang and Sharma, 2017b; Soliman et al., 2005).

The work presented in this paper to estimate 𝐶𝐿 departs



from these analyses in two aspects. First, it relies on the
measurement of the fracture aperture at the wellbore. Sec-
ond, it is grounded on the recognition that in the last stage
of closure, there is decoupling of the kinematics from
the dynamics in the governing equations, with the con-
sequence that the rate of change of the fracture aperture is
simply balanced by the leak-off rate. This feature of the
fracture response in the final stage of closure implies that
the only information needed to determine 𝐶𝐿 is the evo-
lution of the fracture aperture at the wellbore. This result
has been proved rigorously for a penny-shaped and a KGD
hydraulic fracture (Peirce and Detournay, 2022c), but on
the assumption that there is no residual aperture (and thus
no residual hydraulic conductivity) in the closed section of
the fracture, so that fluid can only leak-off from the open
part of the fracture. In reality, the fracture closes on prop-
pant filled with fluid upon closure and the closed sections
continue to leak-off and exchange fluid with the open por-
tions of the fracture. This paper explores, via numerical
simulations with the code Planar3D (Siebrits and Peirce,
2002; Peirce and Siebrits, 2001a,b), the reliability of di-
rectly estimating the Carter leak-off coefficient using the
proposed approach despite the presence of proppant in the
fracture.

2 MATHEMATICAL MODEL

2.1. Governing equations
The following assumptions are made in the model: (i) The
fracture is assumed to be embedded in a linear elastic solid
characterized by the Young’s modulus 𝐸 and Poisson’s ra-
tio 𝜈; (ii) Fluid within the fracture is assumed to be in-
compressible and Newtonian with a dynamic viscosity 𝜇
while flow is assumed to be laminar and governed by lu-
brication theory; (iii) We consider the post shut-in dynam-
ics of a fracture that recedes due to leak-off. By reces-
sion we mean that the fracture is closing on previously
created solid surfaces at the tip; (iv) Though we primar-
ily focus on recession, the solution at any instant depends,
through the leak-off term, on the entire history of the frac-
ture evolution from its initiation including the creation of
new fracture surface. Processes that affect this history are
the rate of injection 𝑄0 of a viscous fluid and the fracture
the fracture toughness 𝐾𝐼𝑐, which is assumed to modulate
the mode I fracture growth according to LEFM. These lat-
ter parameters determine the state of the fracture before
recession starts and must be specified for completeness
when presenting results.

The primary unknowns for this recession problem are the
fracture aperture 𝑤, the fluid pressure 𝑝 𝑓 or the net pres-
sure 𝑝 = 𝑝 𝑓 −𝜎0, where 𝜎0 is the confining stress, and the
fracture radius 𝑅(𝑡), which depend on the Young’s mod-

ulus 𝐸 , Poisson’s ratio 𝜈, toughness 𝐾𝐼𝑐 of the solid, dy-
namic viscosity 𝜇 of the fluid, and Carter’s leak-off coeffi-
cient 𝐶𝐿 . To keep the equations uncluttered by numerical
factors, we introduce the alternate parameters

𝐸 ′ =
𝐸

1− 𝜈2 , 𝐾 ′ = 4
(

2
𝜋

)1/2
𝐾𝐼𝑐, 𝜇′ = 12𝜇, 𝐶′ = 2𝐶𝐿

(1)

Though we have also derived the analogous solution for
a symmetric linear fracture in a state of plane strain, for
the analysis presented here, we will be restricted to a radi-
ally symmetric fracture, for which the radial coordinate 𝑟
is confined to the interval 𝑟 ∈ (0, 𝑅(𝑡)). For the purposes
of asymptotic analysis we also make use of a correspond-
ing tip-based coordinate 𝑟 (see figure 1). In the analy-
sis presented, it is useful to define a stretched coordinate
𝑠 = 𝑟/𝑅(𝑡) and the complementary stretched coordinate
centered on the tip 𝑠 = 1− 𝑠. For the analysis of recession
presented here, we only assume that the leak-off is de-
scribed by a regular function of position and time 𝑔(𝑟, 𝑡),
which does not depend on the particular form of leak-off
function and does not affect the singularity of the stress
field at the fracture tip. Though the asymptotic analysis
and sunset solution do not rely on the form the of leak-off
function, we will demonstrate how the solution obtained
can be used to estimate the leak-off coefficient if Carter
leak-off is assumed, in which case 𝑔 is given by

𝑔 =
𝐶′√︁

𝑡 − 𝑡0(𝑟, 𝑡)
(2)

where 𝑡0(𝑟, 𝑡) is the first exposure time to the fracturing
fluid of a fixed point on the fracture wall that is located at
𝑟 at time 𝑡. The leak-off term has a square root singularity
at the tip if the fracture is propagating 𝑉 > 0, but is finite
if the fracture has arrested or is receding 𝑉 ≤ 0.

2.2. Receding tip asymptote
By combining Poiseuille’s law and the continuity equa-
tion, we obtain the following lubrication asymptotic rela-
tion valid in the tip region 𝑠≪ 1:

𝜕�̂�

𝜕𝑡
+

¤𝑅
𝑅

𝜕�̂�

𝜕𝑠
∼ 1
𝑅2

𝜕

𝜕𝑠

(
�̂�3

𝜇′
𝜕𝑝

𝜕𝑠

)
− �̂�, (3)

where the tip velocity ¤𝑅 = 𝑉 (𝑡) is negative during reces-
sion and �̂�(𝑠, 𝑡) is the leak-off rate. After arrest, and cer-
tainly during recession, �̂� is no longer singular as it was
during propagation, and becomes more spatially uniform
in the tip region, so, as time progresses, it is appropriate to
assume that �̂�(𝑠, 𝑡) ∼ �̂�0(𝑡). Though the analysis presented
here applies to a radial fracture, it can be shown (Peirce
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Fig. 1: Schematic of a radial hydraulic fracture that was induced
to propagate by the injection of a viscous fluid at a rate 𝑄0 and
which is currently receding with speed V<0.

and Detournay, 2008) that the same asymptote will ap-
ply to any planar hydraulic fracture with a smooth fracture
front.

We consider power-law asymptotic solutions for the frac-
ture aperture in the tip region of the form

�̂�
𝑠→0∼ 𝐴(𝑡)𝑠𝜆, 1

2
< 𝜆 ≤ 1 (4)

The lower bound restriction on 𝜆 is required to ensure that
the elastic energy release rate at the crack tip is zero for a
receding fracture. The dominant behavior of the elasticity
equation relating the net fluid pressure 𝑝 to the fracture
aperture �̂� in the tip region can be shown (Peirce and De-
tournay, 2022c) to reduce to a singular integral equation
with a Cauchy kernel involving 𝜕�̂�

𝜕𝑠
, which, for the power

law aperture (4), has a leading behavior of the form

𝑝 ∼
{

𝐴𝐸′𝜆
4𝑅 cot(𝜋𝜆) 𝑠𝜆−1 +𝐶, 1

2 < 𝜆 < 1
𝐴𝐸′

4𝜋𝑅 ln 𝑠+𝐶, 𝜆 = 1, (5)

where use has been made of the following identity (Peirce
and Detournay, 2022c)

𝑎∫
0

𝑠𝜅

𝑠− �̂� 𝑑𝑠 =
{
−𝜋 cot(𝜋𝜅) �̂�𝜅 +𝐶, −1 < 𝜅 ∉ Z+

−�̂�𝜅 log �̂� +𝐶, 𝜅 ∈ Z+ (6)

where 𝜅 = 𝜆 − 1, Z+ = {0,1, . . .}, and 𝐶 signifies that the
next term is a constant, which captures the distance infor-
mation in the integral implied by 𝑎.

Combining (3), (4), and (5) the coupled lubrication and
elasticity equations reduce to the following asymptotic re-
lation

¤𝐴𝑠𝜆+
¤𝑅
𝑅
𝐴𝜆𝑠𝜆−1 ∼ 𝐸

′𝐴4

𝜇′𝑅3 𝜆(𝜆−1) (𝜆− 1
2
) cot(𝜋𝜆) 𝑠4𝜆−3− �̂�0(𝑡)

(7)
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Fig. 2: Receding fracture solution (black) approaches the self-
similar sunset solution (dashed red) as 𝑡→ 𝑡𝑐

We note from (7) that if 𝜆 > 1, the power law (4) cannot
satisfy the lubrication and elasticity equations simultane-
ously - whence the upper bound restriction on 𝜆 in (4).
Moreover, for recession ¤𝑅 < 0, so if we assume 1

2 < 𝜆 < 1
then a dominant balance with �̂�0(𝑡) is not possible since
𝑠𝜆−1 will become infinite. Thus, the only admissible bal-
ance is between the second and last terms in (7), which
yields the linear asymptote 𝜆 = 1 and positive aperture fac-
tor 𝐴 = −𝑅�̂�0(𝑡)/ ¤𝑅, so that we obtain the linear receding
asymptote:

�̂� ∼ �̂�0
𝑅�� ¤𝑅�� 𝑠 = �̂�0�� ¤𝑅��𝑟, and 𝑝 ∼ �̂�0𝐸

′

4𝜋
�� ¤𝑅�� ln𝑟 (8)

We also note that the first and third terms (7) match at the
next order.

2.3. The sunset solution
For the numerical modeling of propagating hydraulic frac-
tures, it has been demonstrated that making use of the
tip asymptote can provide highly accurate solutions on
extremely coarse meshes (Peirce and Detournay, 2008;
Lecampion et al., 2013; Peirce, 2015; Dontsov and Peirce,
2017). Additionally, making use of the recession asymp-
tote (8), it is possible to devise a rigorous and efficient
numerical scheme (Peirce, 2022) that is able to capture
the propagation, arrest, and recession of a post shut-in de-
flating hydraulic fracture. In figure 2, the black curves
represent the receding fracture solution corresponding to
the following values of the dimensionless parameters:

𝜙𝑉 =

(
𝐸′21𝜇′5𝐶′10𝑄0𝑡𝑠

𝐾 ′26

) 9
65
= 2 and 𝜔 =

(
𝐶′18𝐸′4𝑡7𝑠
𝜇′4𝑄6

0

)1/7
= 10−6,

where 𝑡𝑠 is the shut-in time. We observe that as the re-
ceding fracture approaches the collapse time 𝑡𝑐, the spa-
tial variation of the fracture aperture becomes self-similar,



while the fracture radius 𝑅 and aperture at the wellbore
both approach power laws. To investigate the nature of this
self-similar solution, we define the reverse time 𝑡′ = 𝑡𝑐 − 𝑡
with reference to the collapse time and observe that close
to collapse, the time 𝑡 is assumed to be sufficiently more
advanced than the leak-off trigger times active in the col-
lapsing fracture, that the leak-off term may be replaced by
the constant 𝑔0.

We therefore look for a similarity solution to this “grow-
ing" (since ¤𝑅(𝑡′) > 0) hydraulic fracture driven by an in-
flux of fluid from a constant distributed source in terms of
𝑠 = 𝑟/𝑅(𝑡′) by assuming a solution of the form

𝑤(𝑠, 𝑡′) = 𝑡′𝛼𝑊 (𝑠), 𝑝(𝑠, 𝑡′) = 𝑡′𝛽𝑃(𝑠), 𝑅(𝑡′) = Λ𝑡′𝛾 (9)

Matching the rate of change in volume of the fracture to
the leak-off rate ¤𝑉𝑐 = (𝛼+2𝛾) 𝜋Λ2𝑡′𝛼+2𝛾−1�̄� ∼ 𝑔0𝜋Λ

2𝑡′2𝛾 ,

where �̄� =

1∫
0
𝑊 (𝑠)𝑠𝑑𝑠, we conclude that

𝛼 = 1 and𝑊 =
𝑔0

1+2𝛾
(10)

Now in terms of the tip-centered stretched coordinate 𝑠
we observe 𝑤(𝑠, 𝑡′) = �̂�(𝑠, 𝑡′) = 𝑡′𝑊 (𝑠) = 𝑡′𝑊 (1− 𝑠) and,
because of the linear asymptote in (8), we assume a Taylor
expansion for𝑊 about 𝑠 = 1 in powers of 𝑠 of the form

�̂�(𝑠, 𝑡′) = 𝑡′
∞∑︁
𝑛=1

(−1)𝑛𝑤𝑛
𝑛!

𝑠𝑛 (11)

where 𝑤𝑛 = 𝑑𝑛𝑊
𝑑𝑠𝑛

��
𝑠=1 and 𝑤0 =𝑊 (1) = 0. Now combining

(11) and (5) and using the identity (6), we obtain

𝑝 ∼ 𝐸 ′𝑡′1−𝛾

4𝜋Λ

∞∑︁
𝑛=1

(−1)𝑛𝑤𝑛
(𝑛−1)! �̂�

𝑛−1 log �̂�, (12)

Comparing (12) and (9)𝑏 we observe that

𝛽 = 1−𝛾 (13)

Moreover, using (11) and (12), we observe that the leading
behavior of the flux gradient is of the form

1
𝑅2

𝜕

𝜕𝑠

(
𝑤3

𝜇′
𝜕𝑝

𝜕𝑠

)
∼ 𝐸 ′𝑡′4−3𝛾

2𝜋𝜇′Λ3 𝑤
4
1𝑠 (14)

Since the fracture accelerates as it approaches collapse,
it follows that 𝛾 < 1 so that 𝑡′4−3𝛾 ≪ 1 for 𝑡′ ≪ 1, and
therefore the flux gradient term on the right side of (3) be-
comes subdominant to the other three terms. Thus, in the
limit 𝑡′ ≪ 1, there is a complete decoupling of dynamics

from kinematics and (3) is reduced to a purely kinematic
condition balancing fracture deflation to fluid loss.

Substituting the expansion (11) into the first two terms
on the left of (3), collecting powers, and equating the re-
sult to the leak-off term −�̂�, it can be shown that there
exist a countable infinity of solutions corresponding to
𝛾 being the reciprocals of the integers 𝑁 ≥ 2, i.e. 𝛾 =

1/2,1/3, . . .1/𝑁 . . .. Now since the spatial gradient of
these solutions at the fracture tip 𝑠 = 0 increases with 𝑁 ,
it follows that the solution corresponding to 𝛾 = 1/2 = 𝛽

is the last admissible shape before the fracture approaches
closure. Thus, the so-called sunset solution is a second
degree polynomial of the form

𝑤(𝑠, 𝑡′) = 𝑔0𝑡
′
(
1− 𝑠2

)
, 𝑠 = 𝑟/𝑅, 𝑅 = Λ𝑡′1/2. (15)

A consequence of the fundamental decoupling of dynam-
ics from kinematics is that the aperture 𝑤 only depends on
the leak-off rate 𝑔0 ≈𝐶′/√𝑡𝑐. Combining this with (15), it
follows that the rate of change of the aperture at the well-
bore (𝑠 = 0) as the fracture approaches collapse, yields the
following estimate for 𝐶′:

𝐶′ ∼ 𝑔0
√
𝑡𝑐 ∼

𝑑𝑤

𝑑𝑡′

����
𝑠=0

√
𝑡𝑐 (16)

2.4. Residual width and modeling recession using a
width constraint

Having derived the tip asymptote and the sunset solution
we now discuss the numerical modeling of leak-off-driven
recession by the introduction of a width constraint. For the
theoretical results discussed above, the process of reces-
sion envisaged the fracture closing on previously created
solid surfaces at the tip. For the analysis, we assumed
that the fracture aperture was zero in the closed regions;
however, the results also apply (Peirce and Detournay,
2022a) if, in the closed regions, 𝑤 = 𝑤𝑐, where 𝑤𝑐 > 0
is the residual aperture that may be the result of the frac-
ture closing on proppant or asperities. In this case, the tip
asymptotics and sunset solution now apply to the aperture
difference field 𝑤−𝑤𝑐. Here it has been assumed that the
proppant or asperities are restricted to a constant aperture
constraint. The fact that the tip asymptote and sunset solu-
tion both apply to a situation in which recession involves a
fracture closing on a residual aperture opens the possibil-
ity of modeling recession by means of a minimum width
constraint. Indeed, this has been how recession has tradi-
tionally been modeled (Adachi et al., 2007). However, the
absence of reference solutions for recession made it diffi-
cult to determine how the magnitude of 𝑤𝑐 impacts the nu-
merical results. The recent development of the tip asymp-
tote (Peirce and Detournay, 2022a) and the reference so-



lutions (Peirce, 2022), obtained from rigorous numerical
schemes based on this asymptote, have made it possible to
calibrate width constraint recession models (Talebkeikhah
et al., 2024). This latter study also established the impor-
tant result that even when a width constraint is used to
model recession, the sunset solution clearly emerges.

The width constraint modeling described above does not
account for the exchange of fluid between the open and
width-constrained parts of the fracture or the leak-off of
fluid from width-constrained regions. In this paper, we
use a model (Adachi et al., 2007) that includes proppant
transport, tip screenout, and closure on proppant for which
the proppant concentration reaches its maximum value
𝑐 = 0.65, as determined by the volume fraction that can
be occupied by a random packing of spheres. The key el-
ements of this model are depicted in figure 3 in which the
proppant-fluid slurry is governed by Poiseuille flow in the
open parts of the fracture. In regions saturated with prop-
pant, i.e., for which 𝑐 = 0.65, a width constraint becomes
active and Darcy flow is used to describe the fluid trans-
port through the interstitial pores formed by the packed
proppant. A fluid exchange is possible across the inter-
face between the open parts of the fracture and those parts
of the fracture for which the fracture surfaces are resting
on the proppant, as denoted by the black vertical line in
the figure. Finally, the fluid leak-off velocity 𝑔 applies in
the open parts of the fracture, while in the propped parts of
the fracture, we assume that the leak-off velocity is 𝜙𝑝𝑔,
where 0 ≤ 𝜙𝑝 ≤ 1 is a parameter we use to be able to iso-
late the effect of leak-off from the propped regions. In
figure 3, and subsequent aperture plots presented below,
we adopt the convention of representing the open parts by
the fluid (shaded green) touching the surfaces of the frac-
ture, while the width constrained regions are represented
by the proppant (shaded brown) touching the surfaces of
the fracture. In the open parts of the fracture, the volume
fraction of proppant in the slurry can be estimated by the
ratio of the smaller brown shaded areas to those shaded
green. Conversely, in the propped regions, the amount of
fluid trapped in the proppant can be estimated from the
ratio of the smaller green shaded areas to those shaded
brown.

3 RESULTS

In this section, we present results from simulations that
make use of the width constraint model described in sub-
section 2.4. To introduce increasing levels of complexity
in the models, we start with a radially symmetric fracture
geometry, followed by fractures that develop asymmetri-
cally due to jumps in the confining stress field 𝜎0 across
horizontal interfaces. We assume that the fracture falls

Poiseuille flow
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Fig. 3: Schematic of a fracture in which there is Poiseuille slurry
flow that transitions to Darcy flow through the porous proppant
in width-constrained regions associated with tip screenout.

within the 𝑥 − 𝑦 plane and is symmetric about the vertical
𝑦-axis, which coincides with the wellbore. For the geome-
tries with vertical asymmetry, we introduce layers defined
by horizontal interfaces 𝑦𝑖 = 490, 500, 560, 570 m, where
the wellbore is represented by a point source located at
𝑦𝑠 = 531 m. In all cases, clear fluid is injected at a rate
𝑄0 until time 𝑡𝑝 after which a proppant-fluid slurry with
a density 𝜌𝑝 is injected at the same rate until the shut-in
time 𝑡𝑠. Within the proppant-packed regions, a permeabil-
ity 𝑘 𝑝 of loosely packed sand is assumed. In all cases,
results are given for distinct values of the parameter 𝜙𝑝
that controls the amount of leak-off from the propped re-
gions. The particular values of the parameters used in the
simulations are provided in table 1. When there are multi-
ple parameter values required or different parameters used
for the asymmetric cases, the parameter values used for
the radial cases are underlined.

3.1. Radial fractures
Figures 4, 5, and 6 all depict the results for radial fractures
with the same set of basic parameters. The only difference
between these figures is that the proppant leak-off factor
𝜙𝑝 = 0, 0.5, and 1.0, respectively.

On the first row in each of figures 4-6 we plot the value of
𝐶′ used in the simulation (indicated by the black line) as
well as the evolving estimate of 𝐶′ ∼

√
𝑡 𝑑𝑤
𝑑𝑡

provided by
the sunset solution (16) (indicated by the red curve) both
plotted with respect to the left axis; and on the same plot,
but referenced to the right axis, we plot the leak-off veloc-
ity (indicated by the blue curve). We note that this estimate



Table 1: Simulation parameters

Parameter Value

𝐸 (GPa) 38.7
𝑣 0.2

𝐾Ic (MPa·m1/2) 0.01
𝜇 (Pa· s) 1, 5

𝐶𝐿 (m·s−1/2) 2×10−4, 5×10−4

𝑄0 (m3·s−1) 0.053, 0.583
𝜌𝑝 (kg ℓ−1) 0.12
𝑘 𝑝 (m 2) 1×10−10

𝑡𝑝 (𝑠) 1071, 6857
𝑡𝑠 (𝑠) 2145, 10597

𝜎0 (MPa) 35; 40; 43.5; 65
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Fig. 4: Radial fracture, 𝜙𝑝 = 0
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Fig. 5: Radial fracture, 𝜙𝑝 = 0.5
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Fig. 6: Radial fracture, 𝜙𝑝 = 1

Table 2: Sunset solution estimates of 𝐶′

Geometry 𝜙𝑝 Sunset Estimate (m·s−1/2) Actual 𝐶′ (m·s−1/2)

Radial 0 6.13×10−4 4×10−4

0.5 7.12×10−4 4×10−4

1.0 1.0×10−3 4×10−4

Stress contrast 0 1.17×10−3 1×10−3

0.5 1.29×10−3 1×10−3

1.0 1.42×10−3 1×10−3

is only possible post shut-in, i.e. 𝑡 > 𝑡𝑠. We also note that
there is little variation in the leak-off velocity 𝑔 = 𝐶′

√
𝑡−𝑡0

de-
fined in (2). The black symbols indicated on the red curve
correspond to the symbols at the wellbore for each of the
post-shut-in aperture plots provided on the second row.
On the second row in figure 4, we provide snapshots of
the fracture aperture 𝑤 for the radial solution from left to
right: (no symbol) this time step is chosen, sufficiently af-
ter the start of proppant injection 𝑡𝑝 < 𝑡𝑠, that the proppant
has reached the tip and screen-out has started. As a result
of the tip screen-out, the aperture grows significantly as
the fracture radius has ceased to grow but the fluid injec-
tion has continued; (•) just after shut-in the fracture has
receded a little, but the aperture has actually increased rel-
ative to the last sampling; (■) there has been significant
fluid leak-off as is evidenced by the nearly 50% decrease
in the fracture aperture. There has also been a significant
movement of proppant (and fluid) to the tip region as in-
dicated by the increase in the proppant pack; (▲) simi-
lar to the previous time sample, the aperture decreases by
roughly 50% again and even changes concavity, while the
packed region in the tip continues to increase, a trend that
is even more pronounced as 𝜙𝑝 increases.

Since it is closest to the assumptions under which the sun-
set solution was derived, the case 𝜙𝑝 = 0 provides the best



estimate of 𝐶′ using the sunset solution. The asymptotic
estimates of 𝐶′ are summarized in table 2. Because there
is additional leak-off from the propped tip region, which
is not accounted for by the sunset solution, we would ex-
pect the estimate obtained from using the sunset solution
to overestimate the value of 𝐶′. We would expect this
overestimate even when fluid is prevented from leaking
from the propped region by setting 𝜙𝑝 = 0. This overes-
timate of 𝐶′ is caused by fluid from the open portions of
the fracture being transferred to and accumulating within
the proppant-filled tip region, which increases the appar-
ent leak-off. Naturally, as 𝜙𝑝 increases, the overestimate
becomes more pronounced. Indeed, it can be seen from
table 2 that using the sunset solution overestimates 𝐶′ by
a factor of between 1.5−2.5 as 𝜙𝑝 changes from 0 to 1.

3.2. Asymmetry due to a discontinuous 𝜎0
In figures 7-9, we provide results for hydraulic fractures
that are induced to break vertical symmetry by the discon-
tinuous confining stress field 𝜎0 defined in (17). The other
simulation parameters are provided in table 1, in which
the parameter values not underlined are used to distinguish
from the radial cases. The only difference between these
figures is the different values for the proppant leak-off fac-
tor 𝜙𝑝 = 0, 0.5, and 1.0, respectively. For ease of refer-
ence, the confining stress sequence (from bottom to top)
is also provided in the figure captions.

𝜎0 =


35 MPa for 𝑦 < 490

65 MPa for 490 < 𝑦 < 500
35 MPa for 500 < 𝑦 < 560

43.5 MPa for 560 < 𝑦 < 570
35 MPa for 570 < 𝑦

(17)

The data for this case is presented using essentially the
same format as the radial case, except here a complete
𝑦 cross-section is provided rather than, because the sym-
metry of the radial case, it was sufficient to just provide
cross-sections for 0 < 𝑥 < 𝑅(𝑡). As can be seen from these
figures, the larger confining stress 𝜎0 = 65 MPa just below
the source (whose location is indicated in the post-shut-
in aperture plots by the black symbols) stops the fracture
from growing into this region, while the increase in the
confining stress from 𝜎0 = 35 MPa in the injection layer to
𝜎0 = 43.5 MPa in the 10 m layer just above, significantly
reduces the aperture in this layer. As was observed in the
radial cases, post shut-in there is a considerable decrement
in aperture due to leak-off as time progresses and a redis-
tribution of proppant from the open parts of the fracture
to the tip screen-out regions, with a concomitant increase
in the proppant pack. Despite the considerable deviation
from the restrictive conditions under which the sunset so-
lution was derived (both physically because of the prop-

pant transport, tip screen-out, and width constraint model-
ing of deflation-recession, and because of the confining
stress-induced geometric symmetry-breaking), it can be
seen from table 2 that using the sunset solution overes-
timates 𝐶′ by 17 %, 29 %, and 42 % as 𝜙𝑝 assumes the
values 0, 0.5, and 1, respectively.
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Fig. 7: 𝜎0 = 35 : 65 : 35 : 43.5 : 35 MPa, 𝜙𝑝 = 0
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Fig. 8: 𝜎0 = 35 : 65 : 35 : 43.5 : 35 MPa, 𝜙𝑝 = 0.5

CONCLUDING REMARKS

Numerical simulations of a hydraulic fracture during the
phases of fluid injection and shut-in have shown that a
key result of an asymptotics analysis of a receding radial
fracture (Peirce and Detournay, 2022c), namely the de-
coupling of the kinematics and dynamics in the govern-
ing equations before complete closure of the fracture, has
more generality than expected from the assumptions used
to derive this result. This decoupling leads to the impor-
tant practical result that the rate of change of the fracture
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Fig. 9: 𝜎0 = 35 : 65 : 35 : 43.5 : 35 MPa, 𝜙𝑝 = 1

aperture at the wellbore before complete closure, is simply
equal to the leak-off rate. This result was proven on the ba-
sis of a model with a simple geometry (either plane strain
or penny-shaped) built on the assumption that there is no
residual aperture in the closed part of the receding frac-
ture. However, the results of the numerical simulations
presented here indicate that neither the presence of prop-
pant in the fracture (enabling fluid to leak from the closed
section of the fracture into the formation) nor symmetry
breaking of the fracture geometry in the vertical direction
due to jumps in the in-situ stress significantly affect the
balance between the leak-off rate and the rate of change of
the fracture aperture at the wellbore as the fracture is clos-
ing. This feature of the closure response of a hydraulic
fracture therefore appears to be universal and not a con-
sequence of the simplifying assumptions on the basis of
which it was initially derived. This result suggests that the
in-situ leak-off coefficient could be deduced from a mea-
surement of the evolving fracture aperture at the wellbore
during the last stage of closure following shut-in of the
well.
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