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Abstract We derive a novel integral equation relating the fluid pressure in a finger-
like hydraulic fracture to the fracture width. By means of an asymptotic analysis in
the small height to length ratio limit we are able to establish the action of the integral
operator for receiving points that lie within three distinct regions: (1) an outer
expansion region in which the dimensionless pressure is shown to be equal to the
dimensionless width plus a small correction term that involves the second derivative
of the width, which accounts for the nonlocal effects of the integral operator. The
leading order term in this expansion is the classic local elasticity equation in the PKN
model that is widely used in the oil and gas industry; (2) an inner expansion region
close to the fracture tip within which the action of the elastic integral operator is
shown to be the same as that of a finite Hilbert transform associated with a state of
plane strain. This result will enable pressure singularities and stress intensity factors
to be incorporated into analytic models of these finger-like fractures in order to
model the effect of material toughness; (3) an intermediate region within which the
action of the Fredholm integral operator of the first kind is reduced to a second
kind operator in which the integral term appears as a small perturbation which
is associated with a convergent Neumann series. These results are important for
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deriving analytic models of finger-like hydraulic fractures that are consistent with
linear elastic fracture mechanics.
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1 Introduction

Hydraulic fracturing is a process by which a fracture is propagated in a brittle
material by forcing a viscous fluid into the fracture. Such a physical process occurs
both naturally and by human intervention. Examples of natural hydraulic fractures
occur when pressurized magma forces the formation of fractures in the earth’s
crust [1–3]. The deliberate generation of hydraulic fractures is typically achieved by
injecting a viscous fluid into a small section of a bore-hole under a sufficiently high
pressure to overcome the tensile strength of the rock as well as the far-field minimum
principal geological stress. As a result, a fracture surface, which is typically assumed
to be planar, develops in a direction perpendicular to the far-field minimum principal
geological stress. Hydraulic fracturing is routinely used by field engineers in the oil
and gas recovery industry to induce fractures in reservoirs in order to substantially
enhance the flow of hydrocarbons [4–7]. Hydraulic fracturing has more recently been
used in the mining industry to introduce large fractures in brittle rock to achieve more
predictable and stable “caving” of the ore-body – a procedure by which large volumes
of rock in the roof of a mining excavation are induced to fall into the excavation for
later processing [8, 9]. Environmental engineers have also used hydraulic fracturing
to isolate toxic substances by injecting impermeable materials into fractures [10–12].
In all these processes, it is desirable to be able to predict the evolution of the fracture
surface under known stress and geological conditions in order to avoid undesirable
fracture penetration of environmentally sensitive regions.

Because of the sedimentary genesis of the elastic medium as well as that of
the ambient geological stress field, the elastic medium is typically considered to be
layered with piecewise constant elastic moduli, while the ambient geological stresses
are also considered to be piecewise constant. The geometry of a hydraulic fracture
as it evolves is strongly modulated by the changes of the elastic moduli between
the layers and the jumps in the confining geological stresses that work to resist the
formation of new fracture surface. Indeed, a typical example of the influence of
the geological conditions is the formation of finger-like fractures. Such a finger-like
fracture is typically caused by the containment of the evolving fracture to a single,
low confinement, sedimentary layer by the existence of two high confinement layers
that straddle the layer in which the fracture is propagating. These finger-like fractures
are of considerable practical interest and serve as a strong motivation for the analysis
presented in this paper.

The governing equations for the evolution of a fluid-driven fracture couple the
Reynolds’ lubrication equation, which expresses the conservation of fluid volume to
the three-dimensional (3D) equilibrium and elastic stress-strain partial differential
equations, that in this case can be reduced to a (2D) boundary integral equation
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expressing the balance of forces between the fluid pressure, the geological stresses,
and the elastic response of the rockmass. The footprint of the fracture at any time is
not known a priori, which means that the fracture’s perimeter needs to be determined
as part of the problem. In order to determine the location of the fracture region as
the fracture evolves, an additional propagation condition is required. This condition,
from linear elastic fracture mechanics, requires that the stress intensity at each point
on the tip of a propagating fracture is equal to the so-called fracture toughness of the
material in which that portion of the fracture tip finds itself.

The existing model for such finger-like fractures, named the PKN model after the
initial researchers that developed it (see [13, 14]), assumes that the fracture is much
longer than it is high and that the width (i.e., crack opening displacement) is slowly
varying along the length of the fracture. As a result, a state of plane strain is assumed
to apply within any vertical cross-section perpendicular to the length of the fracture
(see Fig. 1). Because the vertical movement of fluid within such a cross-section is
minimal, the pressure within the cross-section can be assumed to be constant, which
implies that the shape of the width profile is going to be elliptical. Integrating this
width over the cross-section, yields a local equation which relates the pressure to
the average width via a constant stiffness multiplier. This local elasticity equation
has been coupled to the fluid flow equation so that the governing equation for the
evolution of a finger-like hydraulic fracture is a degenerate parabolic equation of the
form found in models of porous media. This approximate local elasticity equation
ignores the nonlocal effects of width variations along the length of the fracture in
the elasticity boundary integral equation. Because the width is zero at the tip of the
fracture, the PKN fluid pressure must also approach zero at the tip. This is a serious

Fig. 1 Problem description
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flaw in the PKN model since the regular tip pressure makes it impossible to define
a stress intensity factor, which renders the model incapable of representing fracture
propagation in a medium with a non-zero toughness for example.

In this paper we will describe an asymptotic analysis, in the small aspect ratio
(height/length) limit, of a 2D elastic boundary integral equation for a planar fracture
having a rectangular footprint. This analysis focuses only on the elasticity equations
and reserves an analysis of the fully coupled hydraulic fracture equations for a later
study. The objective of this paper is to reduce the 2D integral equation, which is
only amenable to computationally intensive numerical solution, to a simplified 1D
integral equation suitable to analysis as well as rapid numerical solution. Further
asymptotic analysis of this 1D integral equation for points remote from the tip yields,
as the leading term of an “outer expansion,” the same local elasticity equation as that
used in the PKN model plus a small correction term involving the second derivative
of the fracture width. An asymptotic analysis of the 1D integral equation for points
that are close to the tip yields an “inner expansion,” which demonstrates that the
action of the non-local elasticity operator is, to leading order, the same as the Finite
Hilbert Transform associated with a state of plane strain. These analyses establish:
(1) that the interval of applicability of the PKN approximation only includes points
that are remote from the tip; (2) the appropriate correction terms to the outer
expansion; and (3) the appropriate inner expansion which applies close to the tip. In
order to complete the tools that are required for a matched asymptotic analysis, we
require a characterization of the action of the 1D integral equation in an intermediate
region which connects the inner solution to the outer solution. In particular, we
establish that the action of the elastic Fredholm integral operator of the first kind
is reduced to a second kind operator in which the integral term appears as a small
perturbation. The perturbation structure of this second kind integral operator will
lead to a convergent Neumann series solution.

The asymptotic analysis presented in this paper provides a rigorous justification
for the PKN local equation. It also provides the fundamental formulae required for a
matched asymptotic analysis of the fully coupled elasticity and lubrication equations
to yield a complete asymptotic solution in which the effects of pressure singularities
and fracture toughness may be included. The inclusion of this singular behavior
has hitherto been missing in the analysis of finger-like fractures and is required to
determine the appropriate growth conditions at the propagating fracture front.

In Section 2, we describe the classical PKN model. In Section 3, we present
the 2D elasticity integral equation that incorporates the nonlocal effect of width
variations across the length of the fracture. Assuming a constant pressure in vertical
cross-sections for which the width profile is elliptic, we reduce the 2D hypersingular
integral equation to a 1D integral equation involving a kernel that is expressed in
terms of complete elliptic integrals having a Cauchy-type singularity. In Section 4,
we present the asymptotic analysis of the 1D integral equation to establish the
reduction of the action of this integral operator to local pressure-width equations or
to Fredholm integral operators of the second kind in which the integral terms appear
as small perturbations. In this analysis three separate expansions outer, inner, and
intermediate are shown to be valid in three distinct regions relative to the fracture
tips. In Section 5, we provide some concluding remarks. Detailed expressions for
some of the integrals required in the asymptotic analysis are provided in appendices
A, B, and C.
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2 The “Classical” PKN Model

The “classical” PKN model for hydraulic fracturing [13–15] is depicted in Fig. 1: a
hydraulic fracture propagates and is fully contained within a layer of constant thick-
ness 2H. The model assumes that the fracture propagates only along the x-axis
(i.e., no height-growth is allowed). In the PKN model, the following assumptions
are made: (1) that the fracture length is much greater than its height; and (2) that the
fracture width varies slowly along the propagation axis of the fracture. From these
two assumptions, it is concluded that an approximate state of plane strain prevails
in planes that are perpendicular to the propagation axis. The fluid pressure within
such a vertical cross-section is approximately constant which, along with the plane
strain assumption, leads to the conclusion that the shape of the fracture in any such
cross-section is elliptical.

We define wo(x, t) to be the maximum width or opening of the fracture at any
point having a coordinate x. The PKN model assumes that the fracture tip propagates
as a “sharp front,” and that the length of the fracture at any given time t is given by
�(t). The net fluid pressure inside the fracture is defined as p(x, t) = pf(x, t) − σo,
with pf being the absolute fluid pressure and σo the minimum in situ or confining
stress acting perpendicular to the plane of the fracture. The elastic properties of the
rock (which is assumed to be a homogeneous, isotropic, linear elastic material) are
defined by its Young’s modulus E, and Poisson’s ratio ν.

Assuming that the width is slowly varying across the length of the fracture, Perkins
and Kern [13, 14] concluded that the nonlocal elasticity equation reduces to a local
operator of the form

p = E′

4H
wo, (1)

where E′ = E/(1 − ν2) is the plane-strain Young’s modulus.
The solution wo must fulfill the following conditions: (1) it must be a symmetric,

continuous and smooth function; (2) it must achieve a maximum at the inlet (x = 0);
and (3) it should be zero at the tips (x = ±�). Furthermore, we assume that the tip
should be blunt (i.e., should not have a cusp), and that the asymptotic behavior of wo

in the vicinity of the tip is given by

wo ∼
(

1 ∓ x
�

)α

, x → ±�, (2)

where 0 < α < 1 is an exponent to be determined (α must be less than 1 in order to
ensure the tip bluntness). Due to the local nature of the elasticity equation (1), which
will be made clearer in the analysis that follows, the near-tip behavior of the net fluid
pressure must be identical, i.e.,

p ∼
(

1 ∓ x
�

)α

, x → ±�.

3 Formulation of the New Non-Local Elasticity Equation

The use of the local elasticity equation (1) greatly simplifies the PKN model, hence
its great popularity in the oil and gas industry. However, it is this same feature which
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makes the PKN model an “artifact” that does not fit within the rigorous theory of
linear elastic fracture mechanics: the locality of the elasticity equation implies a zero
pressure boundary condition at the advancing fracture tip. This boundary condition
makes it impossible, for example, to define a “stress intensity factor” for the PKN
model. This limitation constrains the application of the model to situations in which
the toughness of the rock is negligible.

In this paper, we propose a new non-local formulation of the elasticity equation
for the PKN model. To this end, we start from the general expression for the elasticity
equation of a planar fracture, which is given by the hypersingular integral (e.g., [16])

p(x, y) = − lim
z→0+

E′

8π

∫

S
= w(xo, yo)[

(xo − x)2 + (yo − y)2 + z2
]3/2 dS, (3)

where S is the footprint of the fracture in the x-y plane, E′ is the plane strain elastic
modulus, p is the net pressure, w is the fracture width at any point (x, y) ∈ S, and
the symbol

∫= indicates that the hypersingular integral has to be interpreted as the
Hadamard finite part [17]. We will retain two assumptions of the original PKN model:
(1) the shape of any vertical cross section is elliptical, i.e.,

w(x, y) = wo(x)

√
1 − y2

H2
; (4)

and (2) the fluid pressure within any such cross section is constant, i.e., the fluid
pressure does not depend on the y coordinate. With these two assumptions, we can
rewrite (3) as

p(x) = − E′

8π

∫ �

−�

= wo(xo)

∫ H

−H

√
1 − y2

o/H2

[
(xo − x)2 + y2

o

]3/2 dyo dxo. (5)

(Notice that the inner integral is not hypersingular in y any more.) Let us now
introduce the following scaling

β = H
�

, ξ = x
�
, η = y

�
, 
 = wo

w∗
, � = p

H
E′w∗

, (6)

where w∗ is the proper lengthscale for the fracture width (which we will leave
undefined). With this scaling, (5) reduces to

�(ξ) = − β

8π

∫ 1

−1
= 
(ξo)

∫ β

−β

√
1 − η2

o/β
2

[
(ξo − ξ)2 + η2

o

]3/2 dηo dξo. (7)

The inner integral in (7) can be evaluated in closed-form to yield

�(ξ) = 1

π

∫ 1

−1
= 
(ξo)

|ξo − ξ |
[

K
(

− β2

(ξo − ξ)2

)
− E

(
− β2

(ξo − ξ)2

)]
dξo, (8)
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where K(·) and E(·) represent the complete elliptic integrals1 of the first and
second kind, respectively (e.g., [18]). Integrating by parts, we can reduce (8) to the
following form:

�(ξ) = − 1

π

∫ 1

−1
− 
′(ξo) G(ξ, ξo; β) dξo (9)

where the kernel G is defined as

G(ξ, ξo; β) = sgn(ξo − ξ)

√
1 + β2

(ξo − ξ)2
E

(
β2

(ξo − ξ)2 + β2

)
, (10)

with sgn(·) representing the sign of the argument and ()′ indicating derivative with
respect to the argument. Notice that the integral above is not hypersingular anymore,
but just singular in the Cauchy Principal Value sense, whence the symbol

∫− in (9).
In deriving the above, we have assumed that 
(ξ = ±1) = 0 and that 
 (the

dimensionless fracture opening) is a positive, symmetric (even) function which is
sufficiently smooth in ξ ∈ (−1, 1) that the integral in (9) exists. We also introduce
the additional assumption that the fracture tips are blunt, i.e., that the asymptotic
behavior of the function 
 close to the tips is of the form 
 ∼ (1 ∓ ξ)α , ξ → ±1, with
0 < α < 1.

4 Asymptotic Analysis of the New Elasticity Equation

4.1 Asymptotic Expansions of the Elasticity Kernel

In this section, we perform an asymptotic analysis of the elasticity equation (9)
assuming the dimensionless ratio β = H/� � 1 . The reason for selecting β as our
small parameter comes naturally from the fact that we are considering the case of a
PKN-type fracture, which is characterized by such a small aspect ratio.

If we define ρ = |ξo − ξ | /β, the kernel G can be expressed as

G(ρ) = 1

ρ

√
ρ2 + 1 E

(
1

ρ2 + 1

)
. (11)

Performing asymptotic expansions for small2 and large values of ρ, we obtain

G(ρ) ∼ 1

ρ
− 1

2
ρ ln ρ +

(
1

4
+ ln 2

)
ρ + O(ρ3 ln ρ), ρ � 1, (12)

and

G(ρ) ∼ π

2

[
1 + 1

4
ρ−2 − 3

64
ρ−4

]
+ O(ρ−6), ρ 	 1. (13)

1Notice that for the arguments of the complete elliptic integrals we are using the convention used in

[18], i.e., K(m) = ∫ π/2
0

(
1 − m sin2 θ

)−1/2
dθ and E(m) = ∫ π/2

0

(
1 − m sin2 θ

)1/2
dθ .

2Expansion (12) can be obtained from the identity E(z) = 1
2

[
Q−1/2(2z − 1) − Q1/2(2z − 1)

]
, where

Qν(·) is the Legendre function of the second kind, of degree ν [19].
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Fig. 2 Plot of the kernel G(ρ)

(solid line) versus
ρ = |ξo − ξ | /β. The
asymptotic expansions (12)
(dotted line to the left) and (13)
(dashed line to the right) are
plotted for comparison. The
first terms of both expansions
are also plotted

These expansions, when truncated after the third term, are actually valid up to
ρ ∼ 1. Figure 2 shows a comparison between the exact kernel and the two expan-
sions. Figure 3 shows the relative error between the expansions and the exact kernel.
For both truncated expansions, the relative error at ρ = 1 is about 1%. (In these
plots, the complete elliptic integral of the second kind was computed using the
software MathematicaTM, version 4.1 [© 1988–2000 Wolfram Research].)

The above results allow us to reach very interesting conclusions. From (12) and
Fig. 2, it is quite clear that within a region ξo ∈ [ξ − β/10, ξ + β/10], the behavior
of the elastic kernel is practically dominated by the term 1/ρ = β/ |ξo − ξ |, which
we know to be the classical plane-strain singularity of the elasticity kernel. For
|ξo − ξ | � 10β, on the other hand, we have that the kernel starts to be dominated
by a constant term, i.e., we start to recover the “classical” PKN behavior, in the sense
of a local dependency between pressure and width.

Due to expected singularities of the fracture opening gradient 
′ at the fracture
tips (recall that we are assuming that 
 ∼ (1 ∓ ξ)α as ξ → ±1, with 0 < α < 1),
special care has to be given to the analysis of (9) in the vicinity of the tips. For
this reason, we have sub-divided the present analysis into three parts, that we call
“outer,” “intermediate” and “inner.”

Fig. 3 Plot of relative error for
the asymptotic expansions (12)
(dotted line) and (13) (dashed
line), versus ρ = |ξo − ξ | /β.
Both expansions are truncated
at the third term
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4.2 Outer Expansion

Let us first consider the case of a point ξ located “away from the tips,” which we
define as |ξ | < 1 − β. For this case, we divide the problem domain [−1, 1] into the
following sectors:

where δ1 and δ2 are positive numbers, defined such that the following asymptotic
behavior for 
 is valid


(ξo) ∼ A(1 + ξo)
α, ξo ∈ [−1, ξ − δ1], (14a)


(ξo) ∼ A(1 − ξo)
α, ξo ∈ [ξ + δ2, 1]. (14b)

In the region defined by ξo ∈ [ξ − δ1, ξ + δ2], on the other hand, we assume that the
gradient 
′ can be approximated using a Taylor series expansion, i.e.,


′(ξo) ∼ 
′(ξ) + (ξo − ξ)
′′(ξ) + 1

2
(ξo − ξ)2 
′′′(ξ) + ..., ξo ∈ [ξ − δ1, ξ + δ2]. (15)

The expansions (12) and (13) indicate that we can divide the integral in (9) into
three regions: a Cauchy Principal Value region ξo ∈ [ξ − β, ξ + β], within which we
can approximate the kernel using the expansion (12), and two other regions defined
by ξo ∈ [−1, ξ − β] and ξo ∈ [ξ + β, 1], within which the kernel can be approximated
using the expansion (13). Proceeding in this way (9) can be expressed in the form:

�(ξ ;β) = 1

2
[
(ξ − β) + 
(ξ + β)] +

∫ ξ+β

ξ−β

− 
′(ξo) G1(ξ, ξo) dξo

+ β2

[∫ ξ−β

−1

′(ξo) G2(ξ, ξo)dξo −

∫ 1

ξ+β


′(ξo) G2(ξ, ξo) dξo

]
, (16)

with the kernels G1 and G2 defined as

G1(ξ, ξo) = − 1

π

[
β

ξo − ξ
− 1

2β
(ξo − ξ) ln

∣∣∣∣
ξo − ξ

β

∣∣∣∣ + 1

β

(
1
4 + ln 2

)
(ξo − ξ)

]
, (17a)

G2(ξ, ξo) = 1

8

[
1

(ξo − ξ)2 − 3β2

16 (ξo − ξ)4

]
. (17b)

We first notice that if β � 1 and [ξ − β, ξ + β] ⊂ [ξ − δ1, ξ + δ2], it is valid to
approximate the first term in (16) as follows:

1

2
[
(ξ − β) + 
(ξ + β)] � 
(ξ) + 1

2
β2 
′′(ξ). (18)

Let us define the integrals IOUT
1 and IOUT

2 as

IOUT
1 (ξ ;β) =

∫ ξ+β

ξ−β

− 
′(ξo) G1(ξ, ξo) dξo, (19a)

IOUT
2 (ξ ;β) = β2

[∫ ξ−β

−1

′(ξo) G2(ξ, ξo) dξo −

∫ 1

ξ+β


′(ξo) G2(ξ, ξo) dξo

]
. (19b)
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Provided β � 1 and assuming that the interval [ξ − β, ξ + β] is completely con-
tained within the interval [ξ − δ1, ξ + δ2], integration of IOUT

1 yields (for details, see
Appendix A)

IOUT
1 (ξ ;β) = −β2

π

(
41

18
+ 2

3
ln 2

)

′′(ξ) + O(β4), |ξ | < 1 − β. (20)

This is the correction coming from inside the Cauchy principal value region,
dominated by the asymptote (12). For IOUT

2 , on the other hand, let us define

IOUT
2 (ξ ; β) = 1

8
β2 IOUT

21 (ξ ; β) − 3

128
β4 IOUT

22 (ξ ;β), (21)

with IOUT
21 and IOUT

22 given by

IOUT
21 (ξ ;β) = A α

∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)2 dξo +
∫ ξ−β

ξ−δ1


′(ξo)

(ξo − ξ)2 dξo

−
∫ ξ+δ2

ξ+β


′(ξo)

(ξo − ξ)2 dξo + A α

∫ 1

ξ+δ2

(1 − ξo)
α−1

(ξo − ξ)2 dξo, (22a)

IOUT
22 (ξ ;β) = A α

∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)4 dξo +
∫ ξ−β

ξ−δ1


′(ξo)

(ξo − ξ)4 dξo

−
∫ ξ+δ2

ξ+β


′(ξo)

(ξo − ξ)4 dξo + A α

∫ 1

ξ+δ2

(1 − ξo)
α−1

(ξo − ξ)4 dξo. (22b)

Let us first focus on IOUT
21 . The first and last integrals in (22a) can be evaluated in

closed form to yield:

∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)2 dξo = (1 + ξ − δ1)
α

δ1(1 + ξ)

[
1 +

(
1 − α

α

)
2F1

(
1, 1;α + 1; 1 − 1 + ξ

δ1

)]
,

(23a)

∫ 1

ξ+δ2

(1 − ξo)
α−1

(ξo − ξ)2 dξo = (1 − ξ − δ2)
α

δ2(1 − ξ)

[
1 +

(
1 − α

α

)
2F1

(
1, 1;α + 1; 1 − 1 − ξ

δ2

)]
,

(23b)

where 2F1 (·, ·; ·; ·) is Gauss’ hypergeometric function [18]. Let us now define the
numbers ε1 and ε2 in the following way

ε1 = δ1

1 + ξ
, ε2 = δ2

1 − ξ
,

such that ε1 < 1 and ε2 < 1. Expanding the results in (23) in terms of small ε1 and ε2,
we obtain

∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)2 dξo ∼ 1

ε1
(1 + ξ)α−2 + φ(α) (1 + ξ)α−2 + O(ε1), (24a)

∫ 1

ξ+δ2

(1 − ξo)
α−1

(ξo − ξ)2 dξo ∼ 1

ε2
(1 − ξ)α−2 + φ(α) (1 − ξ)α−2 + O(ε2), (24b)
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where the coefficient φ is defined as

φ(α) = (α − 1)(γ + ψ(α)) − α, (25)

with ψ(·) being the digamma function [18], and γ � 0.577216 is Euler’s constant.
Notice that we can re-write the above results in the following form

∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)2 dξo ∼ φ(α) (1 + ξ)α−2 + 1

αA
g11(ξ ;α, δ1) + O(ε1), (26a)

∫ 1

ξ+δ2

(1 − ξo)
α−1

(ξo − ξ)2 dξo ∼ φ(α) (1 − ξ)α−2 + 1

αA
g12(ξ ;α, δ2) + O(ε2), (26b)

with g11 and g12 being functions that depend upon δ1 and δ2, respectively.
The second and third integrals in (22a) can be approximated using the Taylor

series expansion for 
′. For the first integral, we find

∫ ξ−β

ξ−δ1


′(ξo)

(ξo − ξ)2 dξo ∼ 
′(ξ)

∫ ξ−β

ξ−δ1

dξo

(ξo − ξ)2 + 
′′(ξ)

∫ ξ−β

ξ−δ1

dξo

ξo − ξ
+ ...

which yields

∫ ξ−β

ξ−δ1


′(ξo)

(ξo − ξ)2 dξo ∼ 1

β

′(ξ) + ln β 
′′(ξ) − 1

2
β 
′′′(ξ) − g11(ξ ; α, δ1) + O(β ln β).

(27)

The function g11 above is the same one that appears in the expansion (26a). Recall
that δ1 and δ2 are arbitrary parameters, whose purpose is to identify the regions
within which both the Taylor series expansion, and the near-tip asymptotic behaviors
of 
′ overlap. In other words, these numbers are introduced just to mark the
boundaries between two distinct expansion regions. Thus both δ1 and δ2 can be
considered as artificial parameters, and the final result of the integral should not
depend on either value. Hence, for the asymptotic expansion to be valid, we require
that g11 and g12 cancel out when adding all the components of the integral. This can
be verified by direct computation.

The same procedure can be repeated for the third integral, in which case we find

∫ ξ+δ2

ξ+β


′(ξo)

(ξo − ξ)2 dξo ∼ 1

β

′(ξ) − ln β 
′′(ξ) − 1

2
β 
′′′(ξ) + g12(ξ ;α, δ2) + O(β ln β),

(28)

where again, g12 is the same function that appears in (26b). Combining (26), (27) and
(28) according to (22a), we finally obtain

IOUT
21 (ξ ; β) ∼ 2 ln β 
′′(ξ) + α A φ(α)

[
(1 + ξ)α−2 + (1 − ξ)α−2

] + O(β). (29)
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A similar procedure can be used to determine the asymptotic expansion in β for
IOUT

22 [as defined in (22b)]. In general, we can express

∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)4 dξo ∼ f21(ξ ;α) + 1

αA
g21(ξ ;α, δ1) + O(ε1),

∫ 1

ξ+δ2

(1 − ξo)
α−1

(ξo − ξ)4 dξo ∼ f22(ξ ;α) + 1

αA
g22(ξ ;α, δ2) + O(ε2).

(We leave f21 and f22 undefined for reasons that will become clear later.) Also,
we obtain

∫ ξ−β

ξ−δ1


′(ξo)

(ξo − ξ)4 dξo ∼ 1

3β3

′(ξ) − 1

2β2

′′(ξ) + 1

2β

′′′(ξ) − g21(ξ ; α, δ1) + O(ln β),

∫ ξ+δ2

ξ+β


′(ξo)

(ξo − ξ)4 dξo ∼ 1

3β3

′(ξ) + 1

2β2

′′(ξ) + 1

2β

′′′(ξ) + g22(ξ ; α, δ2) + O(ln β),

from which we obtain

IOUT
22 (ξ ; β) ∼ − 1

β2

′′(ξ) + αA

[
f21(ξ ;α) + f22(ξ ;α)

] + O(ln β). (30)

Combination of (29) and (30) according to (21) yields, after truncating terms of order
higher than β2,

IOUT
2 (ξ ;β) = −1

4
β2 ln β 
′′(ξ) + 67

128
β2 
′′(ξ)

+1

8
β2 α A φ(α)

[
(1 + ξ)α−2 + (1 − ξ)α−2

]
. (31)

Notice that the term αA
[

f21(ξ ; α) + f22(ξ ; α)
]

is not included in the above expan-
sion, as this term is of O(β4). Finally, by combining (18), (20) and (31) according to
(16), we obtain the outer expansion of the elastic integral equation (9), which is valid
in the regions remote from the tip:

�OUT(ξ ;β) = 
(ξ) + 1

4
β2 ln β 
′′(ξ) + β2

[
67

128
− 1

π

(
41

18
+ 2

3
ln 2

)]

′′(ξ)

+ 1

8
β2 α A φ(α)

[
(1 + ξ)α−2 + (1 − ξ)α−2] + O(β), |ξ | < 1 − β. (32)

We observe that equating �OUT to the first order term in (32) yields the dimen-
sionless form of the PKN local elasticity equation (1). The subsequent terms in the
expansion represent the correction to the PKN elasticity equation in which the higher
derivatives of 
 account for the nonlocal effects due to the variations in the width.
When combined with the fluid flow equation this correction, involving the second
order derivatives of 
, will change the hydraulic fracture evolution equation from a
porous medium equation to a fourth order partial differential equation multiplied by
the small parameter β2 ln β. Investigating the properties of this equation are beyond
the scope of this paper.

A plot comparing the asymptotic expansion in (32) with a numerical evaluation of
the elasticity integral equation (9) is shown in Fig. 4. To generate this plot, we have
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Fig. 4 Plot of the
dimensionless pressure �

calculated numerically from
(9) (dots) versus normalized
distance from the tip
(1 − ξ)/β. Comparison
between �, the outer
expansion (32) (solid line),
and the dimensionless
fracture opening 
 (dashed
line). Results were obtained
using the test function

 = (1 − ξ2)2/3 and β = 0.01

used a “test function” for 
, of the form 
 = (1 − ξ 2)2/3 (i.e., α = 2/3 and A = 22/3).
The calculations were performed using β = 0.01. In this plot, we observe that the
outer expansion has a range of validity of 3β to 100β from the tip (in the plotted
example, 100β corresponds to the fracture inlet, i.e., the center of the fracture). The
divergence of the outer asymptotic expansion as we approach the fracture tip can
be explained by the fact that the Taylor expansion of 
′(ξ) only has a radius of
convergence of |1 − ξ | due to the singularity of 
′(ξ) at the tip ξ = 1. Thus as ξ

approaches the tip, the slow convergence of the Taylor expansion means that many
more terms are required to accurately estimate the integrals IOUT

21 and IOUT
22 . This

is the cause of the loss of accuracy of the three-term expansion �OUT in the region
ξ < 1 − 3β. From Fig. 4 we can see that the leading order term in the outer solution
� ≈ 
 (which is just the classic PKN solution) is valid over the larger interval
1 − β < ξ < 100β than the three-term outer expansion (32). Based on the plots
shown in Fig. 4 it may seem preferable to merely use the leading order term in the
outer expansion. However, if we compare the errors in the one-term and the three-
term outer expansions as shown in Fig. 5, we observe that the three term expansion

Fig. 5 Plot of the relative
difference between
dimensionless net pressure �

and the outer expansion (32)
versus normalized distance
from the tip (1 − ξ)/β (solid
line), compared to the
difference between � and
dimensionless fracture
opening 
 (dashed line).
Results were obtained
using the test function

 = (1 − ξ2)2/3 and β = 0.01
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is indeed more accurate in the region 1 − 3β < ξ < 100β. Thus for leading order
asymptotics, the solution � = 
 can be used over the interval 1 − β < ξ < 100β

and matched to an inner solution at the point ξ = 1 − β. However, for higher order
asymptotics, it will be necessary to introduce an intermediate region 1 − β < ξ < 3β

within which an alternative description of the action of the integral operator is
required. The solution in the intermediate region can then be matched to the higher
order inner and outer solutions at the points 1 − β and 1 − 3β, respectively.

4.3 Inner Expansion

The partition of the integration domain used for the outer expansion is only valid for
|ξ | < 1 − β. It is clear that if ξ is closer than a distance β from either of the fracture
tips, then the principal values in (19a) as derived in Appendix A are no longer valid,
for two reasons: (1) the integration interval losses symmetry with respect to ξ ; and (2)
the approximation of 
′ by a Taylor series expansion may not be applicable because
of the bluntness assumption for 
. In this case, considering for time being only the
right tip ξ = 1, we propose to sub-divide the integration domain in the following way:

Similar to the case of the outer expansion, we postulate that δ1 and δ2 mark the
boundaries in which the asymptotic behaviors described by (14) and (15) are valid.
The region in which the kernel expansion (12) is valid (the Cauchy Principal Value
region) is now given by ξo ∈ [ξ − β, 1]. We can thus define the integral Iin

1 as

Iin
1 (ξ ;β) =

∫ 1

ξ−β

− 
′(ξo) G1(ξ, ξo) dξo, ξ > 1 − β, (33)

and the integral Iin
2 as

Iin
2 (ξ ; β) = 1

2

(ξ − β) + β2

∫ ξ−β

−1

′(ξo) G2(ξ, ξo) dξo, ξ > 1 − β, (34)

with the kernels G1 and G2 as defined in (17). To evaluate Iin
1 , it is easier to first

re-scale the problem in terms of a stretched system of coordinates ξ̂ with origin at
either of the fracture tips, and pointing inwards to the fracture center. Taking the tip
ξ = 1, we define in the usual way

ξ̂ = β−1(1 − ξ).

The region ξ > 1 − β is now defined by ξ̂ < 1. We are also assuming that β is small
enough that [ξ − β, 1] ⊂ [ξ − δ2, 1]. Hence, in the new scaling, and considering (14),
we have 
̂ ∼ A ξ̂ α , ξ̂ → 0. Following this, let us propose the following re-scaling for
both 
 and �


̂(ξ̂ ) = β−α
(ξ), �̂ = β−α�(ξ),
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where α is, in this case, the same exponent that defines the asymptotic behavior of 


near the tips. In this new scaling, (33) can be re-written as follows

J1(ξ̂ ) = α A
π

∫ ξ̂+1

0
− ξ̂ α−1

o

[
1

ξ̂o − ξ̂
− 1

2
(ξ̂o − ξ̂ ) ln |ξ̂o − ξ̂ | + (

1
4 + ln 2

)
(ξ̂o − ξ̂ )

]
dξ̂o,

ξ̂ < 1, (35)

where J1 = β−α Iin
1 . All the integrals in J1 can be calculated in closed-form, and the

results are listed in Appendix B. An expansion of J1(ξ̂ ) for ξ̂ � 1 (i.e., for 1 − ξ � β)
yields

π

α A
J1(ξ̂ ) ∼ π cot πα ξ̂α−1 + λ0 + λ1 ξ̂ + O(ξ̂ α+1), (36)

where the coefficients λ0 and λ1 are given by

λ0 = 1

1 − α
− 1

2(1 + α)2
− 1

1 + α

(
1
4 + ln 2

)
, (37a)

λ1 = −1 − α

α

(
α

2 − α
− 1

2α
− 1

4
− ln 2

)
. (37b)

Notice that the first term of the above expansion represents the known solution for
the case of a semi-infinite fracture in plane-strain, with 
̂ ∼ ξ̂ α [20]. Notice also that
if we return to the original scale, we obtain

π

α A
Iin

1 (ξ ; β) ∼ β π cot πα (1 − ξ)α−1 + βαλ0 + βα−1λ1 (1 − ξ), β−1(1 − ξ) � 1,

(38)
which indicates that the singular (first) term is actually affected by β.

The evaluation of the integral Iin
2 on the other hand, does not require the use of

re-scaling. Indeed, we can express Iin
2 directly as

Iin
2 (ξ ; β) = 1

2

(ξ − β) + 1

8
β2 Iin

21(ξ ;β) − 3

128
β4 Iin

22(ξ ;β), (39)

where Iin
21 and Iin

22 are in this case defined as

Iin
21 =

∫ ξ−β

−1


′(ξo)

(ξo − ξ)2
dξo, Iin

22 =
∫ ξ−β

−1


′(ξo)

(ξo − ξ)4
dξo. (40a)

For Iin
21, we divide the integration interval in the following form

Iin
21(ξ ;β) = α A

∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)2 dξo

+
∫ ξ−δ2

ξ−δ1


′(ξo)

(ξo − ξ)2 dξo − α A
∫ ξ−β

ξ−δ2

(1 − ξo)
α−1

(ξo − ξ)2 dξo. (41)

The first integral is identical to (26a), which implies that:
∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)2 dξo ∼ φ(α) (1 + ξo)
α−2 + 1

α A
g11(ξ ;α, δ1) + O(ε1), (42)
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with φ as defined in (25). For the second integral, we have
∫ ξ−δ2

ξ−δ1


′(ξo)

(ξo − ξ)2 dξo = −g11(ξ ;α, δ1) + g12(ξ ; α, δ2). (43)

The third integral in (41) has to be carefully evaluated. If we “zoom” into the right
tip region, the following picture appears:

which means that for ξ in the inner region, we have that 1 − ξ � ξ − ξo. We can
write

1

(ξo − ξ)2
≡ 1

(1 − ξo)
2
[
1 +

(
1−ξ

1−ξo

)]2 ,

and perform the following expansion

1[
1 +

(
1−ξ

1−ξo

)]2 ∼ 1 − 2

(
1 − ξ

1 − ξo

)
+ 3

(
1 − ξ

1 − ξo

)2

+ O

[(
1 − ξ

1 − ξo

)3
]

,
1 − ξ

1 − ξo
� 1

to obtain
∫ ξ−β

ξ−δ2

(1 − ξo)
α−1

(ξo − ξ)2 dξo ∼ − 1

α − 2
(1 − ξ + β)α−2

+ 2

α − 3
(1 − ξ)(1 − ξ + β)α−3 + ... + 1

αA
g12(ξ ;α, δ2). (44)

However, we also know that 1 − ξ < β � 1. Hence, we can perform another
expansion of the above result for small 1 − ξ , to obtain

∫ ξ−β

ξ−δ2

(1 − ξo)
α−1

(ξo − ξ)2 dξo ∼ − βα−2

α − 2
− βα−3

(
α − 5

α − 3

)
(1 − ξ) + ... + 1

α A
g12(ξ ; α, δ2).

(45)
Combination of the above results yields

Iin
21(ξ ; β) = α A

[
φ(α) (1 + ξo)

α−1 + βα−2

(
1

α − 2

)
+ βα−3

(
α − 5

α − 3

)
(1 − ξ)

]
. (46)

The procedure to follow for Iin
22 is similar. We propose

Iin
22(ξ ;β) = α A

∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)4 dξo

+
∫ ξ−δ2

ξ−δ1


′(ξo)

(ξo − ξ)4 dξo − α A
∫ ξ−β

ξ−δ2

(1 − ξo)
α−1

(ξo − ξ)4 dξo, (47)
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from which we obtain
∫ ξ−δ1

−1

(1 + ξo)
α−1

(ξo − ξ)4 dξo ∼ f21(ξ ;α) + 1

α A
g21(ξ ;α, δ1) + O(ε1), (48a)

∫ ξ−δ2

ξ−δ1


′(ξo)

(ξo − ξ)4 dξo = −g21(ξ ; α, δ1) + g22(ξ ;α, δ2), (48b)

where we leave f21 undefined. To evaluate the third integral in (47), we use

1

(ξo − ξ)4
≡ 1

(1 − ξo)
4
[
1 +

(
1−ξ

1−ξo

)]4 ,

and

1[
1 +

(
1−ξ

1−ξo

)]4 ∼ 1 − 4

(
1 − ξ

1 − ξo

)
+ 10

(
1 − ξ

1 − ξo

)2

+ O

[(
1 − ξ

1 − ξo

)3
]

,
1 − ξ

1 − ξo
� 1,

to obtain
∫ ξ−β

ξ−δ2

(1 − ξo)
α−1

(ξo − ξ)4 dξo ∼ − 1

α − 4
(1 − ξ + β)α−4

+ 4

α − 5
(1 − ξ)(1 − ξ + β)α−5 + ... + 1

αA
g22(ξ ;α, δ2). (49)

Again, we perform an expansion for small 1 − ξ < β, to obtain

∫ ξ−β

ξ−δ2

(1 − ξo)
α−1

(ξo − ξ)4 dξo ∼ − βα−4

α − 4
− βα−5

(
α − 9

α − 5

)
(1 − ξ) + ... + 1

α A
g22(ξ ; α, δ2).

(50)
Combination of the above results yields

Iin
22(ξ ;β) = α A

[
f21(ξ ; α) + βα−4

(
1

α − 4

)
+ βα−5

(
α − 9

α − 5

)
(1 − ξ)

]
. (51)

Considering the definition of Iin
2 given by (39), and making use of the expansion:


(ξ − β) = A(1 − ξ + β)α ∼ A
[
βα + α βα−1(1 − ξ)

]

+O
[
βα−2(1 − ξ)2] , 1 − ξ � β,

we obtain

Iin
2 (ξ ;β) = α A β2φ(α) (1 + ξ)α−2 + A βα

[
1

2
+ α

8(α − 2)
− 3α

128(α − 4)

]

+ α A βα−1

[
1

2
+ 1

8

(
α − 5

α − 3

)
− 3

128

(
α − 9

α − 5

)]
(1 − ξ), (52)

where we have truncated terms of order higher than (1 − ξ)2.
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Combining (38) and (52) we obtain the inner local expansion of the boundary
integral operator in the limit β−1(1 − ξ) → 0:

�in(ξ ;β) = α A β cot πα (1 − ξ)α−1 + βαμ0 + βα−1μ1 (1 − ξ), (53)

where the coefficients μ0 and μ1 are defined as

μ0 = α A
[

λ0

π
+ 1

2α
+ 1

8(α − 2)
− 3

128(α − 4)

]
,

μ1 = α A
[

λ1

π
+ 1

2
+ 1

8

(
α − 5

α − 3

)
− 3

128

(
α − 9

α − 5

)]
.

Equating �in to the leading order term in the expansion demonstrates that the
action of the elasticity integral operator is in this limit the same as the Finite Hilbert
Transform associated with a state of plane strain. In this limit, the state of plane strain
prevails because the receiving point is sufficiently close to the tip x = � that variation
of the solution in the y direction becomes insignificant compared to that in the x
direction. This result is important as it will enable the appropriate stress singularities
to be incorporated into the model in order to treat the propagation of the fracture in
regime in which the toughness is not negligible.

Fig. 6 Plot of the
dimensionless pressure �

calculated numerically from
(9) (dots) versus normalized
distance from the tip
(1 − ξ)/β. Comparison
between �, the inner
expansion (53) (solid line), the
dimensionless fracture opening

 (dashed line), and the first
term of the expansion (dotted
line). Results were obtained
using the test function

 = (1 − ξ2)2/3 and β = 0.01
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A plot of the inner expansion is shown in Fig. 6. Again, this plot was obtained by
using a “test function” 
 = (1 − ξ 2)2/3 and β = 0.01. Notice that the inner expansion
is valid on the interval 1 − β < ξ < 1. We have also plotted the first term of the inner
expansion α A β cot πα (1 − ξ)α−1 (dotted line), which corresponds to the “plane-
strain” pressure singularity [20]. It is evident that the solution starts to converge
towards this term for (1 − ξ) � 10−3β.

4.4 Intermediate Expansions

The outer and inner expansions have been obtained under the assumption that
|ξ | � 1 − β and |ξ | 	 1 − β respectively. From the results presented in Fig. 5 it is
evident that the zeroth order outer expansion � = 
 is valid in the region 1 − β <

ξ < 100β, while the higher order outer expansion (32) is only valid on the smaller
region 1 − 3β < ξ < 100β. Thus in order to achieve a higher order representation
of the solution we require an approximate characterization of the integral operator
(9) in the intermediate interval 1 − 3β < ξ < 1 − β. We subdivide the intermediate
interval into two subintervals 1 − 3β < ξ < 1 − 2β and 1 − 2β < ξ < 1 − β and on
each of these we give distinct approximations to the integral operator defined in (9).

Let us introduce the notation


(ξ) =
⎧⎨
⎩


OUT(ξ), −1 < ξ < 1 − 3β


Int(ξ), 1 − 3β < ξ < 1 − β


in(ξ), 1 − β < ξ < 1.

It is assumed for this section that 
OUT(ξ) and 
in(ξ) are known functions since they
would have been determined by making use of the local equations (32) and (53).

For values of ξ in the range 1 − 3β < ξ < 1 − 2β the following picture applies:

and hence, the expression (16) for �(ξ ;β) can be approximated as follows:

�Int
I (ξ ;β) = 
Int(ξ) + β2

[
1

2
− 1

π

(
41

18
+ 2

3
ln 2

)]
d2

dξ 2

Int(ξ)

+ β4

(
1

24
− 83

450π

)
d4

dξ 4

Int(ξ) + . . . − β2

∫ 1−β

ξ+β

d
dξo


Int(ξo) G2(ξ, ξo) dξo

+ β2
∫ ξ−β

−1

d
dξo


OUT(ξo) G2(ξ, ξo) dξo − β2
∫ 1

1−β

d
dξo


in(ξo) G2(ξ, ξo) dξo.

(54)

We observe that the series expansion terms result from the expansion of the first
term on the right of (16) combined with an approximation of the Cauchy Principal
Value integral

∫ ξ+β

ξ−β
− in which a power series expansion of 
 is assumed. The implicit

assumption in this expansion is that 
 is sufficiently smooth over the transition point
ξ = 1 − 3β for the expansion to be valid. The first integral on the right side of (54)
involves the unknown function 
Int while the last two integrals involve the functions
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OUT and 
in that are both assumed to be known. In the analysis presented in
Sections 4.2 and 4.3 the outer and the inner expansions reduce the integral operator
to local operators. However, in this case the Fredholm integral operator of the
first kind is reduced to an integro-differential operator of the second kind in which
the integral term as well as the differential terms involve small perturbations. A
Neumann type series can therefore be expected to yield a convergent solution. The
remaining integrals in (54) involve quadratures of the known functions 
OUT and 
in

and can be regarded as forcing terms. In the case that 
in is in the form of a power
law (which is to be expected given the inner expansion) an explicit formula for the
last integral in (54) is given in Appendix C.

For values of ξ in the range 1 − 2β < ξ < 1 − β , on the other hand, we have:

and the appropriate expression for �(ξ ; β) is as follows:

�Int
II (ξ ; β) = 1

2

[

Int(ξ − β) + 
in(ξ + β)

]+

+ β2
∫ ξ−β

1−3β

d
dξo


Int(ξo) G2(ξ, ξo) dξo +
∫ ξ+β

ξ−β

− 
′(ξo) G1(ξ, ξo) dξo

+ β2
∫ 1−3β

−1

d
dξo


OUT(ξo) G2(ξ, ξo) dξo − β2
∫ 1

ξ+β

d
dξo


in(ξo) G2(ξ, ξo) dξo.

(55)

Here the Cauchy Principal Value integral can be further decomposed as follows:

∫ ξ+β

ξ−β

− 
′(ξo) G1(ξ, ξo) dξo =
∫ ξ+β

ξ−β

− (

′(ξo) − 
′(ξ)

)
G1(ξ, ξo) dξo

+ 
′(ξ)

∫ ξ+β

ξ−β

− G1(ξ, ξo) dξo

=
∫ ξ+β

ξ−β

− (

′(ξo) − 
′(ξ)

)
G1(ξ, ξo) dξo,

since the kernel function G1(ξ, ξo) is an anti-symmetric function of ξo about the point
ξ. Thus for 1 − 2β < ξ < 1 − β we have:

∫ ξ+β

ξ−β

− 
′(ξo) G1(ξ, ξo) dξo =
∫ 1−β

ξ−β

[
d

dξo

Int(ξo) − d

dξ

Int(ξ)

]
G1(ξ, ξo) dξo

+
∫ ξ+β

1−β

[
d

dξo

in(ξo) − d

dξ

Int(ξ)

]
G1(ξ, ξo) dξo. (56)

Provided 
Int is sufficiently smooth then the first integral is regular, while an explicit
expression for the second integral is given in Appendix C for the case in which 
in is
given by a power law. We observe that provided the first derivatives of 
Int and 
in

are continuous at ξ = 1 − β then the second integral is also finite as ξ → 1 − β.
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Fig. 7 Plot of the
dimensionless pressure �

calculated numerically from
(9) (large dots) versus
normalized distance from the
tip (1 − ξ)/β. Comparison
between �, the intermediate
expansions �Int

I (54) (dashed
line) and �Int

II (55) (solid line),
and the dimensionless fracture
opening 
 � � (dotted line).
Results were obtained using
the test function

 = (1 − ξ2)2/3 and β = 0.01

In Fig. 7 we compare the evaluation of �Int(ξ ;β) using the approximate operators
given by (54) (dashed) and (55) (solid) with a numerical evaluation of the elastic-
ity integral operator (9) (solid circles) as well as the purely local approximation
�Int(ξ ;β) � 
Int(ξ) (dotted) for points ξ in the vicinity of the intermediate region
1 − 3β < ξ < 1 − β. For the purposes of this comparison, we have used the same
test function as was used in the previous sections on the outer and inner expansions.
The values of �Int(ξ ; β), generated by the intermediate approximate operators, show
good agreement with the values from the elasticity operator (9) in the particular
regions in which they are valid and the deviation of the purely local approximation in
this region can be clearly seen. The deviation of the simpler intermediate expansion
(54) from the elasticity operator in the region 1 − 2β < ξ < 1 − β clearly indicates
the necessity of the more complex expansion (55). In Fig. 8 we compare the values
of �Int(ξ ;β) obtained using the outer, inner, and intermediate expansions with those
obtained from the numerical evaluation of the elasticity integral operator (9) and
the purely local approximation �Int(ξ ;β) � 
Int(ξ) on an interval that straddles

Fig. 8 Plot of the
dimensionless pressure �

calculated numerically from
(9) (large dots) versus
normalized distance from the
tip (1 − ξ)/β. Comparison
between �, the inner (small
dashes), the intermediate
expansions �Int

I (54) (dashed
line) and �Int

II (55) (solid line),
the outer (dash-dots)
expansion, and the
dimensionless fracture
opening 
 � � (dotted line).
Results were obtained using
the test function

 = (1 − ξ2)2/3 and β = 0.01
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the intermediate region 1 − 3β < ξ < 1 − β. Each of these expansions accurately
characterizes the action of the elasticity operator (9 ) in their respective intervals
of validity. The error in the purely local approximation �Int(ξ ;β) � 
Int(ξ) can be
clearly seen.

5 Conclusions

The main conclusions of this analysis are the following:

1. A novel consistent formulation of a non-local elasticity equation for finger-like
hydraulic fractures has been introduced. This singular integral equation with a
Cauchy type kernel enables the nonlocal effects of width variations over the
length of a finger-like hydraulic fracture to be incorporated. This model promises
to remedy some serious shortcomings of the classical PKN model, which is
restricted to hydraulic fractures for which the fluid pressure approaches zero at
the tip.

2. An asymptotic analysis of the non-local elasticity equation in the outer region
β � 1 − ξ < 1, reveals that the leading order action of the elasticity operator
equates the dimensionless pressure to the dimensionless width. This result
establishes, in a more rigorous way, the “classical” local elasticity equation of the
PKN model when the aspect ratio of the fracture β = H/� becomes vanishingly
small. We have also obtained the correction terms to the PKN elasticity equation
as a function of β. These correction terms involve higher width derivatives
that account for the nonlocal effects in the elasticity integral equation due to
variations in the width.

3. An asymptotic analysis of the proposed elasticity equation in the near-tip region
1 − ξ < β � 1, reveals that the action of the elasticity integral operator is, in this
limit, the same as the Finite Hilbert Transform associated with a state of plane
strain. Thus we have established the existence of a relatively small region at the
fracture tip, in which fracture opening and pressure are related as in a plane-
strain fracture. As a consequence, if we assume a fracture tip shape of the form
(1 ∓ ξ)α, then pressure singularities of the form (1 ∓ ξ)α−1 are observed near the
tip, as in the case of a plane-strain fracture [20]. This result is important as it will
enable the appropriate stress singularities to be incorporated into the model, for
example, in order to treat the propagation of the fracture in regime in which the
toughness is not negligible.

4. An asymptotic analysis of the non-local elasticity equation in an intermediate
region 1 − 3β < ξ < 1 − β yields two distinct expansions in each of which the
action of the Fredholm integral operator of the first kind is reduced to a
second kind integral equation in which the integral operator terms appear as
small perturbations. These reduced equations will therefore lead to convergent
Neumann series.

5. A test function is used to provide numerical comparisons between the action of
the non-local elasticity operator and that of the outer, the inner, and intermediate
expansions in their various regains of validity. These tests verify the approximate
characterization of the action of the elasticity integral operator by simpler
operators which are either local or are second kind operators with convergent
Neumann series.
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6. The next step in this ongoing project consists of coupling the new elasticity equa-
tion with the rest of the equations of the PKN model (namely, the lubrication and
volume balance equations). We expect that this coupling will yield the correct
shape of the fracture at the near-tip region (i.e., the exponent α). An additional
layer of difficulty that can be foreseen is the fact that, once we start considering a
propagating fracture, the small parameter used for our asymptotic analysis (the
number β) will become a function of time.

7. We also postulate that, due to the fact that the outer solution should correspond
to the “classical” PKN solution (which predicts a regular pressure at the tip), and
that the resultant near-tip or inner behavior of the pressure at the tip is singular,
a boundary layer (the thickness of which has yet to be determined) should form
at the tip region. The thickness of this boundary layer should determine the
relevance of the pressure singularity in the propagation of the fracture.

8. This new formulation of the elasticity equation opens the possibility of adding
other parameters to the PKN model, such as rock toughness, leak-off, fluid lag,
and distance to a free-surface, in a rigorous manner.
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Appendix A: Calculation of Integrals for Outer Expansion

We start with IOUT
1 (ξ ; β), as defined in (19a), which we repeat for convenience

IOUT
1 (ξ ;β) =

∫ ξ+β

ξ−β

− 
′(ξo) G1(ξ, ξo) dξo, (57)

with the kernel G1 being defined in (17a). Recall that we are assuming that 
 (the
dimensionless fracture opening) is an analytic, symmetric (even), positive function in
ξ ∈ [−1, 1], with 
(ξ = ±1) = 0. Let us define

IOUT
11 = −β

π

∫ ξ+β

ξ−β

− 
′(ξo)
dξo

ξo − ξ
, (58a)

IOUT
12 = 1

2πβ

∫ ξ+β

ξ−β

− 
′(ξo) (ξo − ξ) ln
|ξo − ξ |

β
dξo, (58b)

IOUT
13 = − 1

πβ

(
1
4 + ln 2

) ∫ ξ+β

ξ−β


′(ξo) (ξo − ξ) dξo. (58c)

As we are also assuming that [ξ − β, ξ + β] ⊂ [ξ − δ1, ξ + δ2], these integrals can
be evaluated by first performing a Taylor’s series expansion of 
′ around ξo = ξ


′ (ξo) = 
′(ξ) + (ξo − ξ)
′′(ξ) + 1

2
(ξo − ξ)2 
′′′(ξ) + ...
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If we truncate this expansion at the fourth term, and substitute it into the above
integrals, we obtain (taking advantage of the symmetry of the integration interval)

IOUT
11 = − 2

π
β2 
′′(ξ) − β4

9π

(4)(ξ), (59a)

IOUT
12 = − β2

9π

′′(ξ) − β4

150π

(4)(ξ), (59b)

IOUT
13 = − 2

3π

(
1
4 + ln 2

)
β2
′′(ξ) − β4

15π

(4)(ξ). (59c)

Combination of the above results yields

IOUT
1 (ξ ;β) = −β2

π

(
41

18
+ 2

3
ln 2

)

′′(ξ) − β4

π

(
83

450

)

(4)(ξ). (60)

Appendix B: Calculation of Integrals for Inner Expansion

In this appendix, we present the closed form solution for the following integral

J1(ξ̂ )= A α

π

∫ ξ̂+1

0
− ξ̂ α−1

o

[
1

ξ̂o − ξ̂
− 1

2
(ξ̂o − ξ̂ ) ln |ξ̂o − ξ̂ | + (

1
4 + ln 2

)
(ξ̂o−ξ̂ )

]
dξ̂o, ξ̂ <1.

(61)
First, we subdivide J1 into the following parts

J11 =
∫ ξ̂+1

0
− ξ̂ α−1

o
dξ̂o

ξ̂o − ξ̂
, (62a)

J12 =
∫ ξ̂+1

0
− ξ̂ α−1

o (ξ̂o − ξ̂ ) ln |ξ̂o − ξ̂ | dξ̂o, (62b)

J13 =
∫ ξ̂+1

0
ξ̂ α−1

o (ξ̂o − ξ̂ ) dξ̂o. (62c)

Closed-form expressions for each of these integrals are as follows:

J11 = ξ̂ α−1

[
π cot πα + B ξ̂

1+ξ̂

(1 − α, 0)

]
, (63a)

J12 =− 1

α(α+1)

{
ξ̂ α+1

[
π cot πα+B ξ̂

1+ξ̂

(1−α, 0)

]
+(1+ξ̂ )α

[
α2−ξ̂ (1+α(1−α))

α(α+1)

]}
,

(63b)

J13 = 1

α(α + 1)
(α − ξ̂ )(1 + ξ̂ )α. (63c)

where Bφ(ξ)(·, ·) is the incomplete beta function [18]. It is worth mentioning here
that B ξ̂

1+ξ̂

(1 − α, 0) is regular for ξ̂ ≥ 0 , which means that the only singularity in (63)
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is given by the term proportional to ξ̂ α−1. To obtain the asymptotic expansions of
(63) for ξ̂ � 1, we will make use of the following expansion for the incomplete beta
function

B ξ̂

1+ξ̂

(1−α, 0) ∼ 1

1− α
ξ̂ 1−α−

(
1−α

2− α

)
ξ̂ 2−α+ 1

2

(2−α)(1−α)

(3−α)
ξ̂ 3−α+O(ξ̂ 4−α), ξ̂ � 1.

(64)
In this form, we obtain,

J11 ∼ π cot πα ξ̂α−1 + 1

1 − α
−

(
1 − α

2 − α

)
ξ̂ + O(ξ̂ 2), (65a)

J12 ∼ 1

(1 + α)2
+ 1 − α

α2
ξ̂ − π cot πα

α(α + 1)
ξ̂ α+1 + O(ξ̂ 2), (65b)

J13 ∼ − 1

1 + α
+ 1 − α

α
ξ̂ + O(ξ̂ 2). (65c)

Appendix C: Calculation of Integrals for the Intermediate Expansion

In this appendix we provide explicit formulae for the evaluation of integrals for the
intermediate expansion that involve 
in which is assumed to be a power law.

In order to evaluate
∫ 1

1−β
d

dξo

in(ξo) G2(ξ, ξo) dξo in (54) the following formulae

are useful:
∫ 1

1−β

(1 − ξo)
α−1

(ξo − ξ)2 dξo = βα

α
(1 − ξ − β)−2

2F1

(
1, 2;α + 1;− β

1 − ξ − β

)
, (66)

and
∫ 1

1−β

(1−ξo)
α−1

(ξo−ξ)4 dξo

= βα

(1−ξ)4

{
1

α
− β

6(1−ξ − β)3

[
(α(7−α)−18)(1−ξ)2

−β (α (13−2α)−27) (1−ξ)+β2 (α (6−α)−11)+

− (1−α)(2−α)(3−α)

1+α
(1−ξ−β)2

2F1

(
1, 1; α+2;− β

1−ξ−β

)]}
.

(67)

In order to evaluate
∫ 1−β

ξ−β
d

dξo

in G1(ξ, ξo) dξo in (56) the following integrals are

required:

Iin
11 =

∫ ξ+β

1−β

− (1 − ξo)
α−1

ξo − ξ
dξo, (68a)

Iin
12 =

∫ ξ+β

1−β

− (1 − ξo)
α−1(ξo − ξ) ln

∣∣∣∣
ξo − ξ

β

∣∣∣∣ dξo, (68b)

Iin
13 =

∫ ξ+β

1−β

(1 − ξo)
α−1(ξo − ξ) dξo. (68c)
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Closed-form solutions for each of these integrals are as follows:

Iin
11 = − 1

α

[
− βα

1 − ξ − β
2F1

(
1, 1; α + 1; − β

1 − ξ − β

)

+ (1 − ξ − β)α

β
2F1

(
1, 1;α + 1;−1 − ξ − β

β

)]
, (69a)

Iin
12 = 1

α(α + 1)

{
βα+1− (1− ξ − β)α+1− (α + 1)(1 − ξ)α

[
β 3F2

(
1, 1,−α; 2, 2; β

1 − ξ

)

− (1 − ξ − β) 3F2

(
1, 1,−α; 2, 2; 1 − β

1 − ξ

)]
+

+ {−(1 − ξ)α+1 + βα [(α + 1)(1 − ξ) − α β]
}

ln

(
1 − ξ − β

β

)}
,

(69b)

Iin
13 = − 1

α(α + 1)
{(1 − ξ − β)α (1 − ξ + α β) + βα [α β − (α + 1)(1 − ξ)]} , (69c)

where 3F2 (·, ·, ·; ·, ·; ·) is the generalized hypergeometric function. Expansion of
(69a) for β � 1 yields:

Iin
11 ∼ −βα−1

[
ln

(
1 − ξ − β

β

)
+ γ + ψ(α)

]

+ α(1 − α)βα−2

[
ln

(
1 − ξ − β

β

)
+ γ + ψ(α) − 1

]
(1 − ξ − β)

+ 1

α β

[
1 − ξ − β

(1 + α) β
− 1

]
(1 − ξ − β)α, (70)

where γ is Euler’s constant and ψ(·) is the digamma function. Since
∫ ξ+β

1−β
1

ξo−ξ
dξo =

ln
(

1−ξ−β

β

)
we observe that the singular logarithmic terms in (56) will cancel provided

that lim
ξ→(1−β)−

d
dξ


Int(ξ) = d
dξ


in(1 − β).

In order to evaluate
∫ 1
ξ+β

d
dξ


in(ξo) G2(ξ, ξo) dξo in (55) the following formulae
are useful:
∫ 1

ξ+β

(1 − ξo)
α−1

(ξo − ξ)2 dξo = (1 − ξ − β)α

β(1 − ξ)

[
1 +

(
1 − α

α

)
2F1

(
1, 1;α + 1; 1 − 1 − ξ

β

)]
,

(71)

and
∫ 1

ξ+β

(1−ξo)
α−1

(ξo−ξ)4 dξo = 1

3
β−3(1−ξ − β)α−1− 1

6
β−2(α −1)(1−ξ − β)α−2+

+ 1

6
β−1(α−1)(α−2)(1−ξ−β)α−3

[
1− 2F1

(
1, 1; α−2; 1− 1−ξ

β

)]
.

(72)
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