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SUMMARY

Evidence of numerical instabilities in two-dimensional time domain direct boundary element methods is
presented. The e!ects of numerical versus analytical integration of spatial integrals on stability are shown,
and two new time-stepping algorithms are introduced and compared to existing formulations. The so-called
new &direct half-step' scheme and the &epsilon' scheme are shown to improve the numerical stability of direct
boundary element methods. Copyright ( 1999 John Wiley & Sons, Ltd.
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INTRODUCTION

Over the past 30 years, a wealth of literature has been published on two-dimensional time domain
elastodynamic direct boundary element methods. The reader is referred to Beskos [1] for an
exhaustive summary of the literature. However, some of the more recent work includes that of
Dominguez [2], Israil and Banerjee [3, 4], and Birgisson and Crouch [5]. Dominguez [2]
presents a two-dimensional formulation that includes isoparametric quadratic elements with
constant variation in tractions and linear variation in displacements with time. Israil and
Banerjee [3, 4] summarize a two-dimensional multi-region transient elastodynamic boundary
element formulation that uses isoparametric quadratic elements and constant and linear tem-
poral variation of tractions and displacements, respectively. Birgisson and Crouch [5] introduce
a general two-dimensional multi-region transient elastodynamic boundary element formulation
using straight-line elements with a piecewise quadratic variation in tractions and displacements
over each element, and piecewise linear variation of time within each time step. All integrations
are performed analytically.
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Unfortunately, there is growing evidence of numerical instabilities in direct elastodynamic
boundary element formulations [2, 6], as well as indirect boundary element methods. Siebrits and
Peirce [7] and Peirce and Siebrits [8, 9] have studied the instability problem in model problems
involving the one-dimensional wave equation and in indirect boundary element methods in
depth. However, the nature of instabilities in the direct boundary element method has not been
studied in detail previously.

In this paper we show evidence of numerical instabilities in time domain direct elastodynamic
boundary element formulations. We use the insight gained from the stability analysis of indirect
elastodynamic boundary element formulations to propose time-stepping schemes for the direct
boundary element method with substantially improved stability characteristics. The enhanced
stability characteristics of the so-called direct half-step and epsilon schemes are clearly demon-
strated by contrasting their performance with the trapezoidal scheme which is commonly used in
boundary element formulations. We will only discuss two-dimensional problems here, but these
new time-stepping schemes are readily applicable to three-dimensional problems.

In this paper, we "rst observe some typical problems with the stability of the elasto-
dynamic time domain direct boundary element method. We then brie#y summarize the boundary
element equations of elastodynamics, with a description of the typical discretization procedure,
followed by a discussion on the direct half-step and epsilon schemes. In particular, the stability
characteristics of the epsilon scheme are reviewed and compared to the more traditional
trapezoidal scheme. Finally, we contrast the performance of the epsilon and half-step schemes
with the trapezoidal scheme by means of numerical examples, and make some concluding
remarks.

EVIDENCE OF NUMERICAL INSTABILITIES

Relatively few papers provide clear evidence of numerical instabilities in direct boundary element
methods [2, 10, 11], although some hint at the possibility [12}14]. One of the reasons for the lack
of evidence of numerical instabilities in the past has been the very long computer run times and
large disk storage requirements of dynamic boundary element methods. With the advent of more
powerful computers the numerical instability issue has become more noticeable for two reasons.
First, more time steps can be calculated. Second, more complicated geometries and loading
con"gurations can be modeled, leading to numerical instabilities that corrupt the transient
results.

The time-marching direct boundary element formulations presented by Mansur [12] and
Antes [13] for two-dimensional problems illustrate increased oscillations at late times, indicating
potential instabilities in some of their results. Fukui [10] notes that his numerical scheme is
unstable for smaller time increments. Manolis et al. [14] present a three-dimensional time domain
direct boundary element method, with results for less than 25 time steps. This scheme uses
repeated averaging in time &for added accuracy' of the method, and thus hints at the possibility of
numerical problems. Tian [11] also notes numerical instabilities in his direct boundary element
simulator (DBEM2), which uses piecewise linear in time and piecewise quadratic in space
functional variations.

To further examine the occurrence of numerical instabilities in recently developed elasto-
dynamic direct time domain boundary element formulations, a number of simpli"ed problems
were studied. Two recently published direct boundary element simulators were used in this
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Figure 1. Suddenly loaded cylindrical cavity

study*QUADPLET [2], which uses numerical integrations for the spatial integrals, and a two-
dimensional computer simulator, called DABEMs [5], in which all integrations are performed
analytically. Both simulators use piecewise quadratic spatial elements, and QUADPLET uses
either piecewise constant or linear temporal elements, whereas DABEMs uses piecewise linear
temporal elements only.

The "rst problem examined, shown in Figure 1, is the response of a cylindrical cavity to
a suddenly applied pressure (the so-called Selberg problem). The cavity has radius R and the
applied loading is given by p(t)"p

0
H (t), where p

0
/G"10~3, and G is the shear modulus. The

mass density of the surrounding domain is o"2700 kg/m3, the compressional wave velocity is
c
1
"5367 m/s, and the shear wave velocity is c

2
"3287 m/s. These properties correspond to

a Poisson's ratio of l"0)2, and a shear modulus of G"29)17 GPa. The time step *t is given in
terms of a dimensionless parameter

Q
1
"

c
1
*t

a
1

(1)

where a
1
is the element half-length. The boundary of the cavity is discretized into 16 elements and

the number of time steps N
t
is 3000. Figure 2 shows the calculated radial displacements plotted

against the normalized time c
1
t/R. The results from QUADPLET [2] show signs of instability at

a normalized time of c
1
t/R"150, whereas the results from DABEMs [5] do not show any signs

of instability during the 3000 time step run.
The second problem, shown in Figure 3, is a modi"ed Selberg problem, in which only one-half

of the cavity is loaded. The geometry, number of elements, and material constants are the same as
in the Selberg problem discussed previously, except that the number of time steps is now
N

t
"2500. As shown in Figure 4, the instability observed in QUADPLET [2] now starts at

a normalized time of about c
1
t/R"30. Again, the results from DABEMs [5] show no sign of

instability during the 2500 time step run.
These results indicate that the use of analytical integration schemes may signi"cantly improve

the stability of elastodynamic boundary element methods. One possible explanation for the
apparently superior stability properties of analytically integrated boundary element formulations
is the way in which a sudden change in displacement or stress, generated when a wave front cuts
partially through an element, is handled numerically. These cases require careful evaluation,
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Figure 2. Radial displacement at the wall of a cylindrical cavity

Figure 3. Partially loaded cylindrical cavity

because an in#uence coe$cient is still generated in these cases, and if these partial in#uence
factors are ignored, they will tend to lead to both the accumulation of round-o! errors and
a gradual loss of causality in the solution. In DABEMs, causality is ensured by using variable
integral limits, described in detail by Siebrits and Crouch [15], so that integrations are performed
only over the dynamically active parts of each element. However, in numerical integration
formulations, the in#uence of these partial in#uence factors is either ignored or the element in
question is divided into many small sub-elements, followed by a determination of the optimal
number of Gauss points per sub-element as discussed by Israil and Banerjee [3, 4]. If an
inadequate number of sub-elements or Gauss points are used, then errors due to small violations
in causality and round-o! will accumulate, resulting in numerical instabilities.

Another point of interest is that, in the two-dimensional fundamental solution of elasto-
dynamics, the dynamic e!ects do not cease after the shear wave arrival, as is the case in three
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Figure 4. Radial displacement at the wall of a partially loaded cylindrical cavity

Figure 5. Two cylindrical cavities in an in"nite domain

dimensions, since wave e!ects continue to arrive from all points along the in"nitely long
out-of-plane integrated direction. An inaccurate accounting for this large time e!ect in a numer-
ical integration scheme leads to the accumulation of numerical errors as pointed out by
Dominguez [2]. Some of the solutions to this problem have included the use of complicated
normalization schemes to minimize the accumulation of round-o! errors at large times [2], or
changing the fundamental solution to converge to the static solution at large times [3, 4].

Similarly, the use of analytical integration may minimize the accumulation of round-o! errors
at large times, as indicated by the two example problems discussed previously. However,
instabilities are observed in the case of more complicated problems, such as the problem shown in
Figure 5, consisting of two cylindrical cavities in an in"nite domain, with one cavity subjected to
a sudden pressurization given by p(t)"p

0
H(t), whereas the other cavity remains unloaded. As in

the Selberg problem discussed previously, each cavity is discretized into 16 elements, and the
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Figure 6. Hoop stresses at point &a'

shear modulus and Poisson's ratio are the same as for the two previously discussed examples,
whereas now Q

1
"0)45, and the number of time steps is N

t
"500.

Figure 6 shows the normalized hoop stress at point &a' (Figure 5). The time history results show
clear signs of instability at approximately c

1
t/R"20. To evaluate the e!ect of di!erent time step

sizes on the stability of the two cavities, a series of results were obtained for Q
1
ranging from 0)2 to

1)2, in increments of 0)1. In all cases, instabilities were observed, leading to the conclusion that,
even though the use of analytical integration helps the stability of elastodynamic problems
signi"cantly, it is insu$cient to prevent instabilities for moderately complicated problems, such as
the two-cavity problem.

IMPROVED DIRECT BOUNDARY ELEMENT FORMULATIONS

Boundary integral formulations

The time domain elastodynamic boundary integral equations in the time domain can be
derived for two-dimensional solids by combining the solution to the governing di!erential
equations of motion (i.e. the fundamental solution of elastodynamics) due to an applied line force
with Gra$'s [16] dynamic reciprocal theorem. In the absence of body forces, and given zero
initial conditions, the resulting integral formulation for a body with a boundary S is as follows:

a(m )u
k
(m, t)"P

S

;
ik
(x, t ; m, 0) * t

i
(x, q) ds(x )!P

S

¹
ik
(x, t ; m, 0) * u

i
(x, q) ds (x ) (2)

where the symbol * denotes the time convolution operator, ;
ik
(x , t ; m ; q) is the kth displacement

component at the receiving point x at time t due to a unit line load in the ith direction, which was
applied at time t"0; and ¹

ik
(x , t ; m ; q) is the corresponding kth traction component at the
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receiving point x, applied at time t"0, and "nally a (m ) is de"ned as

a (m )"G
0, m N<
1, m3<

(3)

in which< denotes the domain of interest. Both;
ik

and ¹
ik

are given in Eringen and Suhubi [17].
To facilitate the numerical implementation of (2), it is assumed that m lies outside the domain<,

resulting in

P
S

;
ik
(x, t; m, 0) * t

i
(x, q) ds (x )"P

S

¹
ik
(x, t ; m, 0) * u

i
(x, q) ds(x ) (4)

This formulation allows for the integrals to be evaluated analytically before m is allowed to
approach the boundary, S.

The numerical implementation of (4) requires approximation of boundary "eld variables in
both time and space, by dividing the boundary into N straight-line or curved elements, and the
time interval from time 0 to the evaluation time t is divided into m intervals of duration *t,
resulting in

m
+
k/1

N
+
b/1

P
Sb

;m~k`1
ik * tk

i
dS

b
"

m
+
k/1

N
+
b/1

P
Sb

¹m~k`1
ik * uk

i
dS

b
(5)

where the loading point m and the receiving point x have been omitted for simplicity, dS
b
relates to

the spatial integration of the bth boundary element, and tk
i
and uk

i
are the boundary tractions and

displacements over the time interval (k!1)*t to k*t.
The temporal integrals can be performed analytically [2, 5]. The spatial integrations are often

evaluated numerically [2, 3], especially in the case of higher-order geometrical and functional
variations over each element. In the case where each element is assumed to be a straight line, these
integrals can also be carried out analytically [5].

¹emporal and spatial integrations

Because the true temporal and spatial distributions for the tractions and displacements in (4)
are not known a priori, it is necessary to assume a functional variation in time and space for the
boundary tractions and displacements, before the integrals in (5) can be evaluated. The temporal
variation within each time step is generally assumed to be either constant or linear. The spatial
variation of displacements and tractions over each element is assumed to be constant, linear,
quadratic, etc. The displacements and tractions are approximated as

u
i
(x, tk)"uk

i
/ (tk)h (S

b
) (6)

and

t
i
(x, tk)"tk

i
/(tk)h(S

b
) (7)

where / (tk) and h (S
b
) are the assumed time and space interpolation functions, uk

i
and tk

i
are the

unknown displacements and tractions at discrete time (tk) and boundary element b. Substituting
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Figure 7. Piecewise linear time variation with triangular hat functions

(6) and (7) into (5) results in

m
+
k/1

N
+
b/1

P
Sb

/ (tk)h (S
b
);m~k`1

ik
tk
i
dS

b
"

m
+
k/1

N
+
b/1

P
Sb

/ (tk)h (S
b
)¹m~k`1

ik
uk
i
dS

b
(8)

The temporal integrations in (8) can be approximated by various schemes discussed in detail by
Peirce and Siebrits [8, 9]. However, the trapezoidal rule is used in most elastodynamic boundary
element formulations. In this case we assume a piecewise linear time variation for the boundary
displacements and tractions, resulting in f (t)"H(t) (t/*t). The time integrations can then be
performed for the special case u

i
(x, tk) (t/*t)uk

i
h (S

"
) and case t

i
(x, tk)"(t/*t) tk

i
h(S

b
). Three of these

functions can then be staggered to obtain a &hat' function at each time step, from which the
piecewise linear time variation can be constructed. Figure 7 shows the &hat' functions involved in
this approach. The combination of the three linear functions of form H(t) (t/*t) results in

u
i
(x, tk)"CH (t!tk~1)

qk~1

*t
!2H(t!tk)

tk

*t
#H(t !tk`1)

qk`1

*t D uk
i
h (S

b
) (9)

where tk"k*t, and qk"t!tk and H(t) denotes the heaviside function. A similar equation can
also be obtained for the tractions.

The spatial integrations in (8) can be performed either numerically or analytically as discussed
by Dominguez [2] and Birgisson and Crouch [5]. The spatial shape functions in (8) can be of any
order, such as piecewise constant, linear, or quadratic. However, in higher order formulations the
variation in boundary displacements and tractions across the element is typically assumed to be
quadratic. In the case of numerical integration schemes the boundary element is often assumed to
be curved [2, 3], whereas in analytical integration schemes the boundary elements are assumed to
consist of straight-line segments so that the integrals are tractable.

It is very important to account adequately for the sharp spatial variations in displacements and
stresses at wavefronts. These variations in boundary parameters are a function of the time history
of loading, as well as the causality property of the fundamental solution of elastodynamics, which
dictates that a receiver point cannot feel any dynamic e!ects from a source point before the
compressional wave arrives at the receiver point. As discussed previously, an important bene"t of
using analytical integration is that variable integral limits can be used to ensure that integrations
are only performed over the dynamically active parts of each element [5, 15], resulting in
solutions that are both causal and highly accurate.
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Discretization of boundary integrals

The discretization of (8) is primarily dictated by the type of temporal integration scheme used,
as summarized by Peirce and Siebrits [8, 9] for indirect boundary element methods. In the
following sections, a similar overview is given for the direct boundary element method. For
simplicity, the discussion is restricted to traction boundary value problems, even though the
solution procedure can easily be applied to displacement or mixed boundary value problems.

¹rapezoidal scheme

The trapezoidal scheme summarized in (9), combined with the discretization of the time and
space integrals in (8) leads to a system of time-marching algebraic equations of the form

T
0
u
m
"

m
+
k/0

U
k
t
m~k

!

m
+
k/1

T
k
u
m~k

(10)

where m represents the current time step number. The terms inside the summation signs represent
the time history of the boundary displacements and tractions. The vectors u

m~k
and t

m~k
repre-

sent the nodal displacements and tractions at time (m!k)*t, and the matrices T
k

and U
k

are
the traction and displacement in#uence coe$cient matrices, respectively, at time k*t. In general,
the matrices T

k
and U

k
are fully populated. It is clear that the unknown displacements u

m
at the

current time step m (when k"0) are obtained via a convolution between the known coe$cients
and known quantities from all previous times in the two-dimensional case. The basis functions for
the trapezoidal scheme are shown in Figure 8.

Direct half-step scheme

The so-called direct half-step scheme essentially consists of a two-part time-stepping scheme,
where some of the in#uence coe$cients are calculated at a full time step, and alternate ones are
calculated at half time steps. The system of equations can be written as

Th
0
u
2m~1

#

m~1
+
k/0

Th
2m~2k~1

u
2k
"

2m~1
+
k/0

Uh
m~k

t
k

(11)

Tf
0
u
2m

#Tf
1
u
2m~1

m~1
+
k/0

Tf
2m~2k

u
2k
"

2m
+
k/0

Uh
m~k

t
k

where h implies a half step and f implies a full step. This scheme is a variation of the half-step
scheme developed by Peirce and Siebrits [8]. The di!erence is that the time history traction terms

Figure 8. Basis functions for the trapezoidal scheme
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Figure 9. Basis functions for the direct half-step scheme

on the right-hand side of (11) are calculated by the trapezoidal scheme, but are now applied at
every half-step, rather than the full time step, as in the original trapezoidal scheme. The basis
functions for the direct half-step scheme are shown in Figure 9.

The direct half-step scheme improves the stability properties of the system of equations because
it ensures ampli"ed diagonal terms in the in#uence coe$cient matrices while maintaining
consistency [8]. However, the scheme only improves the stability properties of the direct
boundary element methods for traction boundary value problems. In the case of displacement
boundary value problems, the half-step scheme will not improve the stability of the method
because of the nature of the in#uence coe$cients as a function of time.

The improved stability characteristics of the half-step scheme for traction boundary value
problems can be explained in the following way. The stress and displacement self-e!ect in#uence
coe$cients are of order O (1) and O(*t) in the direct boundary element method. This means that
the magnitude of the displacement self-e!ect in#uence coe$cient is halved if the time step is
halved. The stress self-e!ect is una!ected by the time step. However, it is divided by the
displacement self-e!ect when solving for the unknown tractions, with the resultant e!ect of
doubling the combined self-e!ect term. This doubling of the leading terms implies that the
diagonal entries in the self-e!ect matrix are doubled in magnitude, which improves the stability
properties of the system of the equations.

Epsilon (e-) scheme

The e-scheme is a slight variation on the trapezoidal scheme, and trivial to implement. The hat
function at the current time step is adjusted by a small amount, e*t, as shown in Figure 10. The
e!ect of the introduction of this arti"cial perturbation in the shape function is to increase
the magnitude of the diagonal terms in the in#uence coe$cient &self-e!ect'matrix. An increase in
the magnitude of the diagonal term implies an improvement in the conditioning number of the
matrix, which implies improved stability of the system. This has been extensively documented by
Peirce and Siebrits [8] for indirect boundary element methods.

In the indirect boundary element methods, this scheme causes an undesirable time shift in the
numerical results. However, in the direct boundary element methods, no shift is observed in the
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Figure 10. Basis functions for the (e-) scheme

results as will be seen in Section 4. The displacement and stress in#uence coe$cient matrices tend
to cancel out any potential shifts with respect to each other.

STABILITY OF TIME-STEPPING SCHEMES

Illustration of stability characteristics via a test problem

In order to gain some insight into the stability properties of the trapezoidal scheme and the way
in which the e-scheme enhances the stability of the time-stepping process, we consider the
following simple demonstration involving the traction in#uences along the centerline (x"0,
0)y) due to a horizontal boundary element of width 2a located at the origin. We consider the
traction in#uence due to a displacement "eld u that has the same spatial variation as the
quadratic basis function centered on the middle of the sending element and which has been
excited by a string of pulses such as those shown in Figures 8 and 10. In Figure 11 we plot the
traction in#uences due to the string of pulses that go to make up the trapezoidal scheme as well as
a similar set of pulses for the e-scheme. All the tractions in this plot have been normalized with
respect to the self-e!ect of the trapezoidal scheme, i.e. the traction in#uence at the centre of the
source element due to a displacement excitation comprising the "rst quadratic-linear space-time
basis function in the trapezoidal sequence.

We observe that the traction in#uences due to the trapezoidal scheme can be larger at elements
that are located away from the sending element. The implication of this is that if a second element
were located at the peak y/2a+0)12, of the trapezoidal in#uence curve shown in Figure 11, then
a positive feed-back situation can result in which an initial disturbance starting at one of the two
elements will be ampli"ed as it is re#ected back and forth between the two elements. This will
inevitably lead to instability. We observe that the peaks in the trapezoidal in#uence curve decay
as the observation points are moved away from the sending element. We notice that at other than
the receiving points in the immediate neighbourhood of the peak y/2a+0)12, the subsequent
peaks are all lower than the self-e!ect. Thus one could imagine trying to devise a strategy to
stabilize a boundary element discretization in which one limited the spatial separation between
any two sending and receiving pairs to be greater than 0)12 element widths. The self-e!ect in this
situation would be larger than the e!ect on any one of the receiving elements. However, the fact
that the self-e!ect is larger than any one of the remote in#uences does not guarantee stability
either. Indeed, one could imagine a discretization in which a sequence of receiving elements were
located at the peaks of the sequence of trapezoidal wave fronts shown in Figure 11. In this case,
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Figure 11. Traction in#uence curves for the trapezoidal and epsilon (e-) schemes

the total energy re#ected back to the sending element by the receiving elements in response to the
initial sending element will exceed the energy that was put into the system initially, and an
instability would result. We also note from the highly oscillatory nature of the trapezoidal plot
(Figure 11) that we can expect that the stability properties of a particular discretization will
depend strongly on whether the receiving elements fall in the troughs or close to the peaks of the
in#uence curve of a given sending element. For a given spatial discretization, if we change the time
step we can expect the elements to move from troughs to peaks and back again, which explains
the sort of intermittent instability properties observed in time domain dynamic boundary element
discretizations [8, 9].

The traction in#uences for the e-scheme have a larger self-e!ect, while the tractions that
a remote receiving element would experience are essentially the same as those that would have
been generated by the trapezoidal scheme, but which have been shifted by a distance e*t. As the
parameter e is increased, the e-scheme self-e!ect will be enhanced, while the peaks of the receiving
element in#uence functions will be shifted down the envelope formed by the traction in#uence
functions for the trapezoidal scheme. Thus the stability of any spatial discretization can be
substantially enhanced by means of the e-scheme. For the indirect boundary element method, in
which the boundary integral equation involves only one integral, the e-scheme discretization of
this integral leads to an undesirable shift in the results. For the direct boundary element method,
in which the boundary integral equation involves two integrals, the e-scheme discretization of
both of these integrals compensates for any possible shift in the solution and no drift in the
solution is observed.

Stability analysis

Although the e-scheme is expected to have substantially enhanced stability characteristics, all
of the time-stepping methods outlined earlier could possibly be unstable given an unfortunate
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combination of spatial and temporal discretizations. Therefore, it is desirable to have a means of
analysing a particular discretization in order to be able to tell a priori if stability can be
guaranteed. For domain discretization methods, such as the "nite di!erence and "nite element
methods, simple criteria exist based on bounds on the maximum eigenvalues of the discretized
spatial operator and the size of the time step. However, the situation for discretized boundary
integral equations is quite di!erent as can be seen from the framework for analysing discretized
boundary element equations proposed in [8, 9].

In this section we brie#y summarize the stability analysis presented in [8] for a model problem
comprising the solution of the integral equation

u(x, t)"
1

2c P
t

0
P

x`c(t~r)

x~c(t~r)

f (m, q) dmdq (12)

which represents the solution to the one-dimensional wave equation

L2u
Lt2

!c2
L2u
Lx2

"f (x, t) (13)

and discuss how the results can be used to predict the stability characteristics of the direct
boundary element method.

For simpli"cation, we consider a uniform piecewise constant spatial discretization and trapez-
oidal and e-scheme time discretizations of integral equation (12). By means of a spatial Fourier
transform and a Z-transform in time, it is possible to determine the rate at which errors will grow
or decay for a given discretization, and hence the numerical stability characteristics of the
solution [8, 9]. The stability of the constant in space trapezoidal in time discretization of (12) in
the case Q

1
"1)0 is determined by the zeros of the so-called transfer function J (z), where the z is

the Z-transform variable. We note that, for each value of the spatial Fourier transform variable h,
J(z) has one unstable root at z+!3)732, one stable root at z+0)268, and a complex conjugate
pair of roots that are marginally stable so that J (h) factors as follows:

(z!e*a(h)) (z!e~*a(h)) (z#3)732) (z!0)268) (14)

Thus even for this simple model problem the standard trapezoidal scheme turns out to be
unstable. A similar analysis for an implicit scheme in which 1)0)Q

1
)2)0 shows that as h varies

from n to 0 the zero of J (z) with the larger magnitude changes from being unstable at !3)8 to
being stable at !0)2. Since there are unstable zeros for at least one of the possible values of the
parameter h, the trapezoidal discretization scheme is unstable in spite of the fact that the time
stepping scheme is implicit.

Since both the explicit and implicit trapezoidal schemes were unstable, we investigated the
e-scheme to see if it yielded improved stability characteristics for this model problem. We note
that the e-scheme can be regarded as a perturbation to the trapezoidal scheme which reduces to
the constant/linear scheme in the special case e"0. In the special case Q

1
"1)0, e)0)5, the

transfer function Je (z) for the e-scheme has a root structure that is similar to that for the
trapezoidal scheme in the case Q

1
"1)0. In particular, for small values of e, the scheme has

a single unstable zero. Increasing the parameter e brings the unstable zero closer to the unit disc,
until it "nally falls within the unit disc for e*0)4. For an implicit situation in which Q

1
"2)0,

e)0)5, the zeros of the transfer function Je (z) of the e-scheme were shown to have a similar
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Figure 12. Normalized hoop stress at point &a'

structure to those for zeros closer to the unit disc until they "nally fall within the unit disc for
e'0)366. Thus the e-scheme stabilizes the time stepping process as will be seen for the numerical
experiments on more general initial boundary value problems presented in the next section.

The analysis presented in [8] clearly illustrates the stabilizing e!ect of the e scheme. In order to
extend the analysis to more general elastodynamic problems the procedure outlined in [8] should
be followed.

PERFORMANCE OF NEW TIME-STEPPING SCHEMES

Direct half-step scheme

To evaluate the e!ectiveness of the direct half-step scheme, the two cavity problem shown in
Figure 5 is revisited. Each cavity is again discretized into 16 elements, and the material properties
and loading history of the pressurized cavity are as before, with the exception that the number of
time steps is N

t
"700.

Figure 12 shows the normalized hoop phh/p at point &a' (Figure 5) versus normalized time c
1
t/R.

The time history of results shows clear signs of instability beyond normalized time c
1
t/R"40,

which is a signi"cant improvement over the results obtained from the trapezoidal scheme (where
instabilities were observed beyond c

1
t/R"20), shown in Figure 6 and discussed previously.

However, the direct half-step scheme is not su$cient to remove all signs of instabilities for the
two-cavity problem.

To evaluate the accuracy of the direct half-step scheme, the "rst part of the normalized hoop
stress time history is plotted in Figure 13 against results obtained with the traditional trapezoidal
scheme. The di!erences between the two time histories are negligible, leading to the conclusion
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Figure 13. Comparison between the direct half-step and trapezoidal schemes

that the half-step scheme has no adverse e!ects on the accuracy of the results, and may in fact
improve them in some cases as discussed by Siebrits and Peirce [7] and Peirce and Siebrits [8, 9]
for indirect boundary element methods.

Epsilon (e-) scheme

The two-cavity problem shown in Figure 5 is again used to evaluate the e!ectiveness of the
e-scheme. During the course of this study, the authors found that the problem presented in
Figure 5 was an excellent &check' on the performance of stability schemes for elastodynamic
boundary element methods. This problem encapsulates a number of factors that are common in
more complicated problems, such as multiple surfaces, intensive re#ective wave behaviour, and
a severe test of the causality condition in the unloaded portion of the problem. For the evaluation
of the e-scheme, each cavity is discretized into 16 elements, and the material properties and
loading history of the pressurized cavity are unchanged, with the exception that the number of
time steps is N

t
"700, and the value for e is varied from 0)20 to 0)40. Figures 14(a) and (b) show

the results for each e value in terms of normalized hoop stress phh/p at point &a' (Figure 5) versus
normalized time c

1
t/R. Figure 14(a) for e"0)2 shows clear signs of instability. For e"0)4, the

instability has disappeared, as shown in Figure 14(b). Note that Figure 14(b) shows results to
2000 time steps. Also, even though the exact value of e required for achieving stability is problem
dependent, as discussed previously, we consistently found that e*0)4 always resulted in stable
results for all problems tested.

To evaluate the e!ect of di!erent choices of time step on the stability of the case with e"0)4,
Q

1
was varied between 0)2 and 1)2 in increments of 0)1, for N

t
"1000. Figure 15 shows the results

for Q
1
"1)2. The rest of the results also showed no signs of instabilities.

Since it is known that the e-scheme tends to cause a shift in the time history results for indirect
time domain boundary element methods [7}9] it is of interest to evaluate the accuracy of the
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Figure 14(a). Normalized hoop stress at point &a' for e"0)2.

Figure 14(b). Normalized hoop stress at point &a' for e"0)4 and N
t
"2000

e-scheme for a relatively large value of e, such as e"0)4. Figure 16 shows a comparison between
the trapezoidal scheme and the e-scheme for e"0)4. The di!erence in results is negligible. Hence,
it can be concluded that the e-scheme has greatly enhanced stability characteristics, and is as
accurate as the traditional trapezoidal scheme.
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Figure 15. Normalized hoop stress at point &a' for e"0)4 and Q
1
"1)2

Figure 16. Comparison between the epsilon (e-) and trapezoidal schemes

CONCLUSIONS

We have shown evidence of numerical instabilities in the direct boundary element method at late
times for simple geometric con"gurations. We have shown that, as the loading or geometric
con"gurations are made more intricate, numerical instabilities are manifested earlier. The results
presented in this paper show that higher-order spatial analytical integration schemes tend to
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minimize the occurrence of numerical instabilities in the direct boundary element method. We
have introduced and demonstrated two new time-stepping algorithms that improve the stability
properties of direct boundary element methods. The direct half-step scheme improves the
numerical stability of the system but instabilities can still develop at later times. The e-scheme
greatly improves the stability of the direct boundary element method, and, with a su$ciently
large choice in the value of e, no evidence of numerical instabilities is evident, even after a large
number of time steps. In addition, this scheme is trivial to implement in any direct boundary
element scheme.
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