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In this paper we investigate the blowup property of solutions to the equation
u, = du+ f(u{xq, £})),

where x, is a fixed point in the domain, We show that under certain conditions the
solution blows up in finite time. Moreover, we prove that the sct of all blowup
points is the whole region. Furthermore, the growth rate of solutions near the
blowup time is also derived. Finally, the results are generalized to the following
nonlocal reaction-diffusion cquation

u,=du+ J. S(u) dx. T 1992 Academic Press, Inc.
[+]

1. INTRODUCTION

This paper deals with the following diffusion equation with localized
reaction,

u, = Au + f(u(xq, t)), in QO (1.1)
subject to either the Cauchy data
u(x, 0)=uy(x), xeQ, (1.2)
or the initial and the boundary (Dirichlet or Neumann type) conditions,
u(x,1)=0, or  uyx,)=0,0nS;=5x[0,T], (1.3)
u(x,0)=up(x), ong, (1.4)

* Current address: Department of Mathematics, University of Toronto, Toronto, Ontario
MS5S 1A1, Canada.

313
0022-247X/92 $5.00

Copytight T 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.



314 CHADAM, PEIRCE, AND YIN

where Q,=Q2x(0,T], 2 is cither R” for the Cauchy problem or a
bounded domain in R" with smooth boundary S=0Q while x, is a fixed
interior point of 2 and u, = du/oN is the outward normal derivative at the
boundary S. In the sequel for convenience we shall simply call the Cauchy,
initial-Dirichlet, or initial-Neumann problem as (PC), (PD), or (PN),
respectively.

Equation (1.1) describes some physical phenomena in which the non-
linear reaction in a dynamical system takes place only at a single (or some-
times several) site(s). As an cxample, the influence of defect structures on
a catalytic surface can be modelled by a similar equation. The reader can
consult [15, 3] for the physical derivation. The additional motivation for
our study comes from parabolic problems. In (4], the authors transformed
a large class of parabolic inverse problems into the so-called nonclassical
equation

w,=a(u, u,, u(xp, 1), 4 (xg, 1)) i+ b, u, u(xq, 1), 1 (x0, 1)).

If we use the finite differcnce quotient to approximate the derivative
u,(xy, t), one obtains the same type of equation as (1.1). In the present
work we are interested in the theoretical analysis, especially the blowup
property of the solution. It will be seen that under the conditions similar
to those for a standard reaction-diffusion equation,

u,=Adu+ f(u), (1.5)

the solution blows up at a finite time. On the other hand, there are some
other interesting properties which are different from the solution of a
standard reaction-diffusion equation.

It is known (cf. Friedman and McLeod [7]) that under the certain mild
restrictions on f(s) the set of all blowup points for the solution of (1.5) is
compact. Furthermore, in a symmetric space region, under some additional
restrictions, the blowup occurs only at a single point (cf. Bebernes er al.
[1], Friedman and McLeod [7], Weissler [ 18-19]). However, this is not
true for our problem (PC), (PD), or (PN). We will show that the blowup
set is the whole region. To understand the results, we consider the problem
in one space dimension:

u, =+ f(u(xg, 1)), (x, 1) e (0, 1} x(0, T,], (1.6)
1, (0, )=ul,1)=0, 1e(0, Ty ], (1.7)
u(x, 0) = ug(x), xe [0, 1] (1.8)

Assume u(x, t) blows up at a point. Let 7' be the blowup time. If we
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differentiate the equation (1.6) with respect to x and denote u,(x, ) by
v(x, t), then for any T, < T, v(x, ) satisfics

V=0 (x,2)e (0, 1)x (0, Ty],
(0, 1) =v(1, 1)=0, te(0, T,],
(0, 1) = ug(x), xe[0, 1]

The maximum principle indicates that v(x, ¢) is uniformly bounded on
[0, 1] [0, Ty] (the bound is independent of T,). If u(x, r) is uniformly
bounded at some point y* e [0, 1] for all 1€ [0, T,], we have

u(x, )y=u(y*, t)+ r o(y, 1) dy.
o

That is, u(x, ) would be uniformly bounded for any (x,t}e[0,1]x
[0, T, ). Consequently, limr, _, 7 |ull (o, exists and is finite. It follows that
we can extend our solution beyond T, which contradicts the definition
of T.

It is worth noting that there is a certain connection between the localized
reaction-diffusion equation (1.1) and the following nonlocal equation

u,=Au+j fu(x, 1)) dx. (19)
e}
The mean value theorem for integrals implies that

J, e, 0) dx= fluer, )12,

where x* € 2. However, in this case the point x* =x*(?) is a function of
the time variable. Equation (1.9) in some sense is equivalent to an equation
with localized reaction along a (unknown) curve x = x*(1).

The argument we use to prove the blowup property is based on the
comparison principle. The key point is to construct a suitable comparison
function. For the problems (PN) and (PC), this argument allows us to
eliminate the assumption of the convexity on f{s), which is essential in
proving the finite time blowup to (1.5). Morcover, using this argument, we
can deal with a much more general nonlinear reaction-diffusion (possibly
degenerate) equation

u,— aij(x’ Ly, ux) “x,x, =f(u)» (1.]0)

where the matrix (a,) is only assumed to be positive semi-definite. From
this viewpoint, we also improve the classical results on the blowup
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property. By employing some powerful properties of the fundamental solu-
tion and Green’s function along with the particular structure of Eq. (1.1),
we are able to show the solution blows up everywhere. Morcover, we also
derive the growth rate of the solution near the blowup time.

Section 2 deals with the local solvability and the finite time blowup. In
Section 3, we shall give the profile of solutions near the blowup time.
Finally, we briefly present some results for Eq. (1.9) in Section 4. All the
notations used in this paper are standard.

2. LocaL ExisTeENCE aAxD FiNITE TiME BLowup

Throughout this paper the following basic conditions are always
assumed:

(HB) The function f(s)e C*R) and f(5)=0; uy(x)eC2**(2) is
nonnegative and bounded.

The following consistency conditions hold: for (PD), uy(x)=0; and for
(PN), ugn(x)=0 on the boundary S.
We begin with the local solvability.

THEOREM 2.1. Under the hypothesis (HB), each of the problems (PC),
(PD), and (PN) admits a unique classical solution for some T,>0.
Moreover, the solutions are nonnegative.

Proof. The local existence can be obtained by means of a fixed point
theorem (cf. [4]). The nonnegativity of the solutions follows from the
maximum principle (see Lemma 2.1 below for details).

Let T be the maximal value such that the problem (PC), (PD), or (PN)
is solvable on [0, T). If T= +oc then we have a global solution, otherwise,
as we shall now prove,

lim [lu(x, 1)jlo= <.
1T
Indeed, if T<oo and M=Ilim,_ ;lu(x, t)|o is finite, then we use
L -estimates to yield
) flall wi! <CM.
The interpolation inequality with p > n + 2 implies

"“llcl LY X3 oall(oﬂ S C(M).
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Thus, we apply the Schauder estimate to deduce
llull c2+ 21402 g,y < C(M).

Therefore, we can apply the local existence result to extend the solution
to a larger interval [T, T+6] with some 6>0, which contradicts the
definition of T.

The interesting question is what conditions ensure that the solution
blows up at a finite time. It turns out the conditions are similar or weaker
to those for a regular reaction-diffusion equation (1.5) if such a property
holds. Here we will use a new approach to prove this property. We first
need the following version of the maximum principle which will be used in
the sequel.

LemMa 2.1 (The Maximum Principle). Ler u(x, t) be a classical solution
of the problem

u,— duz c(x, 1) u(x,, t), inQy,
u(x, 1)=0 or uy(x,1)=0, (x,1)e S,
u(x,0)=0, xe

If0<ge(x, 1)< g, then
u(x, )20, forall (x,1)eQ;.

Proof. The proof is similar to the classical case. We omit it.

LeMMAa 2.2 (The Maximum Principle for the Cauchy Problem). Let
u(x, t) be a solution of the Cauchy problem

u,—Au?c(x, t) u(x09 t)’ in QT=R”X(0’ ﬂs (2'])
u(x,0)=0, xeR" 2.2)
Then u(x, t)=0 for all (x,t)e Q.

Proof. Although one can still use the method in [9] to show the result,
here we give an alternative proof. Let uy(x) be the initial value and m(x, ¢)
the compensation function which needs to be added to the right-hand
side of (2.1) to convert it to an equation. By the representation of the
fundamental solution, u(x, 1) can be expressed by

u(x, 1) = L I(x, y; 1,0) ug(y) dy

[ | My 0l O utxo, D+ mly, ] dydr. (23)
OYR
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Let
h.,(z)=[ r(x,, y;z,O)uo(y)dy+H Mxo, vi 1, 7Y m(y, 7) dy dr.
R” 0 R

It is clear that hy(¢) is nonnegative since wy(x) and m(x, 1) as well as the
fundamental solution are nonnegative.
Define the operator B from C[0, T]) to C[0, 7] as

Bh(1)= J: J-m [(xg, ¥; 8, 7) ey, )] A(T) dy dr.

We first evaluate u(x, 1) at x=x, in (2.3) and then regard it as an integral
equation for u(x,, t). Then for small r we have the Neumann series

x

ulxo, )= Y B™hq(1),
n=0
where B®hy(1) = ho(1) and B+ Vhy(1)= B[B"ho(1)]), n=1, 2, ....

As I'(x, y;1,7)>0 and c(x, 1)20, mathematical induction implies
B™ho(1) 2 0. 1t follows that u(x,, £} 0. Substituting this inequality into
the expression (2.3) we see that u(x, 1) 0 for all xe and 7 on a small
interval. Finally, we can repeat the above procedure to obtain the desired
result for the whole interval.

Now we investigate the blowup property. For the problems (PN) and
(PC), we assume

(HNC) Assume f’(s}>0, and j"‘o (1/f(s)) ds < o for some z,>0. If
f10)>0, we allow z,=0.

THEOREM 2.2. Let u(x, 1} be the solution of the Cauchy problem (PC) or
the initial-Neumann problem (PN). Under the conditions (HB) and (HNC),
the solution u(x, t} will blow up at a finite time, provided that uy(x) > z,.

Proof. We first consider the Neumann problem (PN). We neced to
construct a suitable comparison function which blows up at a finite time.
To this end, we consider the auxiliary problem

v'(s)=f(v(s)) 20
v(0)=z4>0.

The assumption (HNC) ensures that v(s) is monotone increasing and
blows up at a finite time =j'°o° (1/1(s)) ds. We denote this number by S,,.
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Define W(x, t)=u(x, t)— v(t), for xe 2 and 1€ [0, T (T < S,). Then in
O, W(x, t) satisfies

W, =AW = flu(x,, 1)) - v'(1)

= flu(xo, 1)) — f(v(1))
=c(f) W(xo, 1),

where c(t)={g f'(zu(xq, 1)+ (1 —z) v(1)) dz is nonnegative and bounded

while the bound depends on the upper bound of T and the known data. On

the lateral boundary S, Wy(x, 1) =0. Moreover, W(x, 0) =uy(x)—2z4=0.

The maximum principle (Lemma 2.1) implies W(x, ) =0 for all (x, 1)e 0.
Since T < §, is arbitrary, we conclude that

u(x, ty2v(1), forall (x,1)eQx[0,S,).

Therefore, u(x, t) must blow up at a finite time.
For the Cauchy problem (PC), we can take the same comparison
function as above and use Lemma 2.2 to obtain the resuit.

Next we consider the initial-Dirichlet problem (PD). In this case, the
comparison function is not easy to find because of the boundary condition.
We will therefore require the convexity of f(s).

(HD) In addition to the assumption (HNC), f(s) is assumed to be
convex.

THeoREM 2.3. Under the condition (HD), the solution of (PD) blows up
at a finite time if ug(x) is sufficiently large in a neighborhood of x,.

Proof. Without loss of generality, we may assume x, is the origin. Let
B,(0) be the ball centered at the origin with the radius p>0 such that
B,(0) = 2. Consider an auxiliary problem,

v,—dv=f(v(0,1)), in B,(0)x(0,T], (24)
v(x, 1)=0, (x, t)edB,(0)x (0, T], (2.5)
v(x, 0) = py(x), xeQ, (2.6)

where vo(x) is a nonnegative smooth function which is less than uy(x)
on B,(0). We assert that on B,(0)x (0, T, u(x, 1) = v(x, ¢). Indeed, since
u(x, t)20 on @, and f'(s)20, the maximum principle (Lemma 2.1)
implies our assertion.

We now show that v(x, 1) blows up at a finite time. This is:the following
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LEMMA. If vo(x)=vo(r) is symmetric and vy(r)<O0, then the problem
(2.4)-(2.6) admits a local solution v(x, t) which is symmeiric in the space
variable, ie., v(x, t)=uv(r,t) and v(r, 1)<0 for any (r,1)e (0, p)x (0, T).
Moreover, v(r, t) blows up at a finite time if vy(x) is large enough.

Proof. The local solvability is standard. Let U(r, 1)=v,(r, ), we see
that U(r, t) satisfies

-1
U'_[Lr_u"'u’] =0, O0<r<p, 01T,

r

U(o, 1)=0, g Ulp, )+ U,(p, 1) = —f(1(0, 1)), 0<1<T,

Ur,0)=10%(r), 0r<p.

The strong maximum principle implies U(r, t)=¢,(r, 1) <0.
To show that s(r, 1) blows up at a finite time, we note that ¢(r, 1) <0
from which it follows that

S(v(0, 1)) = f(v(r, t)) forall (r,1)e B,(0)x (0, T].

Now we replace f(v(0, 7)) in the right-hand side of (2.4) by f(v(r, 7)) and
denote the corresponding solution by V{(r, 7). It is well known (cf. [1,7])
that the blowup for the solution ¥{(x, ¢} occurs at a finite time. Next since
Jo(r, D)< f(v(0, 1)), the comparison principle gives v(r, 2)2 V(r, t) and
hence v(r, 1) blows up at a finite time. This completes our proof of the
Lemma.

Finally, to finish our proof of the theorem, we let uy(x) be large enough
such that ug(x)2 ve(r) on B,(0). Then wu(x, 1) = V(r, 1) on B,(0)x (0, T]
and then u(x, t) will blow up in finite time.

Using the technique of the paper [12], one can improve the result of
Theorem 2.3 by being more specific about the size of uy(x) sufficient to
ensure the blowup. Indeed, let us define w(x) to be the solution to the
problem

Aw+1=0, in 2, 2.7)
w(x) =0, in 092, (2.8)

Then the nonnegative steady state solutions to (2.4)-(2.6) are given by
u(x) = aw(x), where « satisfies

l.'x=f(aw(x)). 2.9)

Depending upon f, xo, and ©, Eq. (29) may have two roots, x, > 2,20,
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one root %, =0, or no roots (cf. [12]). If (2.9) has no roots or if uy(x)>
a,w(x), then the solution to (PD) blows up at a finite time (cf. [13]).
Hence, we have

CoroLLARY 24. If Eq. (29) has no roots or uy(x)>o,w(x), then the

finite time blowup occurs, where o, is the largest root of (2.9) while w(x) is
the solution of (2.7)-(2.8).

Remark 1. The method used in proving Theorem 2.3 also works for the
problem (PC) or (PN). However, the previous approach docs not require
the convexity of f(s).

Remark 2. The results in Theorem 2.2 are clearly valid for Eq. (1.10)
with Cauchy data or initial-Neumann conditions. However, this can not
be generalized to the initial-Dirichlet conditions. In [8], Friedman and
McLeod proved that the problem

u,=ulu, + —a<x<a,0<tgT,
u(—a, t)=u(a, t)=0, 0<i1<T,

u(x, 0) = uy(x), —a<x<a,

admits a global solution without size restriction on uy(x) if a <n/2.

3. PROFILE OF SOLUTIONS NEAR THE BLowuUP TIME

This section concerns the set of blowup points and the growth rate of the
solution as ¢ tends to the blowup time. Throughout this section let T
denote the blowup time. The heat operator (or a general linear parabolic
operator) will be denoted by L. A point (x, T) is said to be a blowup point
if there exists a sequence (x,, {,) (¢,< T) which converges to (x, T) as n
goes to oo such that

lim u(x,,t,)=00.

n— PO

We denote the set of all blowup points by B.

THEOREM 3.1. For the Cauchy problem (PC), B=R". For the initial-
Neumann problem (PN) and the initial-Dirichlet problem (PD), B= .

Proof. First of all we claim that x, must be a blowup point. Otherwise,
u(xo, T) is bounded, and so is f(u(xy, }). As before the L -estimate and
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the Schauder estimate imply that u(x, T)e C2**(§2). The local solvability

indicates that we can extend our solution beyond T, which is a contradic-
tion. For the Cauchy problem, the solution can be represented by

ue)={ Gy O uohdy+ [ [ Ix, yi0,2) flutxo, o) dy e
(3.1)

We claim that

tim [ fu(xo, 7)) de = ao. (32)
t-T Y0

To prove the above assertion, we note by a direct calculation that

lx—yl?

l n
Imr(x, )’;',t)dy='[m[m] CXP{— P }d)’=c‘o,

where ¢, is a positive constant. It follows that

ur, 0= 106y 6,0 uop) dy+co [ flulxg, )de. (33)
R 0
Since u(x,, t) tends to oo as ¢ approaches T, hence
’
lim I S(u(xg, 7)) dr=o00.
—+TJg

Moreover, the equality (3.3) implies that for any xe 2 = R",

lim u(x, t)= oo,
=T

i.c., u(x, r) blows up on the whole space R".
For the initial-Neumann problem, we again use Green’s representation
(cf. [6, p. 694]) to obtain

u(x, 1) = L G(x, y, 1) ug(y) dy
+ j’ [ 6teyt=0) flxo, N dyd,  (n0€Q@r  (34)
0 Q

where G(x, y;1—1) is Green's function associated with the operator L
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(see [6] for its construction and its properties). Moreover, the function
G(x, y; t — 1) posesses the properties

G(x, y;1—7)20 and I G(x, y: 1) dy=1.
2
Using the above properties, we have
]
u(e, =[ Gx, y, O ualy)dy + | flulxo, 1)) d.
Q 0
As for the Cauchy problem, we can show the final integral in the above
expression tends to oo as 7 goes to T. It follows that for any xe @2, u(x, 1)
must tend to infinity as ¢ approachs to 7.
To prove the last result, let G(x, y; 1, t) be Green's function associated

with the operator L along with the null Dirichlet boundary condition.
Then for any T, < T the solution can be written as

u(x, 1)= J;) G(x, y, t) up(y) dy

!
+[ [ 6o yit=n) flulxo, N dyds,  (x,0)€0r. (35)
[VRg 4
As with the preceding argument, we intend to show that
14
I Slu(xg, 1)) dr = © as T
0
For Green’s function G(x, y; 1, ) we have the estimate

— wl?
IG(x, 3 1, T)| < C(t—=1) " exp {_c lxr _{I }

From the expression (3.5), we first evaluate u(x, 1) at x, and then calculate
the integration to obtain

w(xg, t) SJ'Q G(x, y, t) ug(y) dy + CJ;:f(u(x(,, 7)) dr,

where C is a positive constant which depends on the upper bound of T,
and the known data. Since x, is a blowup point, it follows that

lim j F(t(xo, 7)) dt = co.
t—T Y9

The rest of the proof is similar to that in [1, Theorem'4.1]. Thus, B= (.
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The remaining part of this section deals with the growth rate of the solu-
tion near the blowup time. The method is based on the maximum principle
and similar to [2, 7].

THEOREM 3.2. For the solution u(x, t) of problem (PD) or (PN),

Ur(r) < f(U(1)),
where U(t)=max g u(x, 1).

Proof. First of all, the maximum principle indicates that u(x, ¢) can
not achieve a positive maximum on the lateral boundary S,. Note that
Su(xy, 1)) < f(U(1)). The rest of the proof is exactly the same as in [7].
We omit it here.

To obtain an upper bound of the solution, we need the following
LemMa 3.1.  Assume that the initial value uy(x) satisfies
ditg(x) 20, (3.6)
then for any (x,1)e Qr, (To< T),
u(x, t)=0.
Proof. Let v(x, t)=u,x, t). It is easy to see that v(x, 1) satisfics
v, =Av + f'(u(x,, 1)) t(x,, {), inQr,,
vy=0 or ox, 1)=0, (x,1)e S,
v(x, 0) = dug(x) + fuo(x,)).

The maximum principle implies that v(x, 1) 2 0.

THEOREM 3.3. For the solution of the problem (PN), under the assump-
tion of Lemma 3.1 we have

u(x, 1) 2 3 f(u(xo, 1)), in particular, i'(1) 2 1 f(h(1)), 01 < T,

where h(t) = u(xg, t).

Proof. The proof is analogous to [7]. Let W(x, 1)=u,— 3 f(u(x,, 1)).
Then W(x, t) satisfies

W, — dW =1 £ (u(xo, 1)) (o, 1) 20,
Wy(x, 1)=0, (x,1)e Sy
W(x,0)= dug(x) + 5 f(ug(x)),  xeQ.
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Hence, the desired inequality follows from the strong maximum principle.

As a direct consequence, we have:

COROLLARY 3.1. Under the assumptions (HB), (HNC), and (3.6), let
u(x, 1) be the solution to the problem (PN) and let the function h(t) be
defined as in Theorem 3.3. If f(s)=e¢’, then

2
< — ’ .
h(t)\ln(T_’), Jorany 1e(0,7T)

For f(s)=(s+ )" withp>1 and .20, then

. 29 17
)+ 2< 7— " Jorany 1e(0,T),

where g=t/(p—1).

Remark. For the solution of (PD), the growth rate near the blowup
time is an open question.

4, A NONLOCAL PROBLEM

In this section we briefly generalize some results obtained in the
preceding sections to the following nonlocal probiem:

w,= Au+ j f(ulx, ) dx, inQ; (4.1)

2
uN(x1 !)=09 (x, ')EST’ (4-2)
u(x, 0) =uy(x), xeQ. (4.3)

For the local existence we refer to [5]. Here we give an alternative proof
for the blowup property of solutions. We assume

f(s)=20, f(s)=0, and  f(s)is convex, Jwﬁds< 0.

Moreover, we assume [, #o(x) dx>0.

TueoreM 4.1, Under the above assumptions, the solution of (4.1)-(4.3)
blows up at a finite time.
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Proof. Let

1
h(t)=@ nu(x, 1) dx, te(0, 7).

We integrate Eq. (4.1) over 2 (o obtain

()=
=1 Lf(u(x, 1)) dx.

Jensen’s inequality yields

j )y de=1Q) fh(n)),  te[0, T).
2

It follows that
()= f(h(r)), te [0, 7).

Hence T< |57, (1/f(s)) ds and the theorem is proved.

If we replace the Neumann boundary condition (4.2) by the Dirichlet
condition,

u(x, 1)=0, (x,t)eS. (4.4)

The blowup property can be shown by an analogous argument to that for
a regular reaction-diffusion equation.

THEOREM 4.2. Under the conditions of Theorem 4.1, the solution of (4.1),
(4.3)-(4.4) blows up at a finite time if uy(x) is sufficiently large.

Proof. Let ¢(x) be the normalized first eigenfunction of the eigenvalue
problem

—A¢(.\7)=;.¢(.Y), in Qa
d(x)=0, xefd.

We multiply Eq. (4.1) by ¢(x) and then integrate over Q to have
a()+ia0)z | fl)ds,
2

where a(1) = [gq u(x, 1) ¢(x) dx>0.
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Jensen’s inequality implies
j fu) dx 2 12| f(lQI j " dx).
Let C, be the maximum of ¢(x) on €. Then
a(t)<C, j- u dx.
2
Since f{s) is nondecreasing, we find

(1 L, )21 (o)

It follows that

a)+ia()z IQIf(C 7] a(t)).

Consequently, when a(0) is large enough, a(z) blows up at a finite time.
This completes our proof.

THEOREM 4.3. For the problems (PD) and (PN), the blowup sets B= Q.

This can be shown exactly as Theorem 3.4. Under certain additional
conditions, we can also deduce the growth rate of the solution near the
blowup time. -
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