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Abstract

We provide a brief historical background of the development of hydraulic fracturing models for use in the petroleum and other

industries. We discuss scaling laws and the propagation regimes that control the growth of hydraulic fractures from the laboratory to the

field scale. We introduce the mathematical equations and boundary conditions that govern the hydraulic fracturing process, and discuss

numerical implementation issues including: tracking of the fracture footprint, the control of the growth of the hydraulic fracture as a

function of time, coupling of the equations, and time-stepping schemes. We demonstrate the complexity of hydraulic fracturing by means

of an application example based on real data. Finally, we highlight some key areas of research that need to be addressed in order to

improve current models.

r 2006 Elsevier Ltd. All rights reserved.
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Dedicated to Charles Fairhurst in his 75th year. Of
Charles, we can repeat what Ptolemy said about his
great teacher, Hipparchus: ‘‘a labor-loving and truth-
loving man.’’ [1].

1. Introduction

Hydraulic fracturing can be broadly defined as the
process by which a fracture initiates and propagates due to
hydraulic loading (i.e., pressure) applied by a fluid inside
the fracture [1]. Examples and applications of hydraulic
fracturing are abundant in geomechanics. Magma-driven
dykes can be considered as natural examples, usually on
the scale of tens of kilometers [2–4]. On the application
side, fracturing of oil and gas reservoirs using a mixture of
viscous hydraulic fluids and sorted sand (proppant) is the
most commonly used reservoir stimulation technique [31].
Other applications of hydraulic fracturing include the
e front matter r 2006 Elsevier Ltd. All rights reserved.
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disposal of waste drill cuttings underground [5], heat
production from geothermal reservoirs [6], goafing [7] and
fault reactivation [8] in mining, and the measurement of
in situ stresses [108,9].
Even in its most basic form, hydraulic fracturing is a

complicated process to model, as it involves the coupling of at
least three processes: (i) the mechanical deformation induced
by the fluid pressure on the fracture surfaces; (ii) the flow of
fluid within the fracture; and (iii) the fracture propagation.
Usually, the solid (rock) deformation is modeled using the
theory of linear elasticity, which is represented by an integral
equation that determines the non-local relationship between
the fracture width and the fluid pressure. The fluid flow is
modeled using lubrication theory, represented by a non-linear
partial differential equation that relates the fluid flow velocity,
the fracture width and the gradient of pressure. The criterion
for fracture propagation, on the other hand, is usually given
by the conventional energy-release rate approach of linear
elastic fracture mechanics (LEFM) theory (i.e., the fracture
propagates if the stress intensity factor at the tip matches the
rock toughness).
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Additional complications to this already challenging
coupled problem can be easily envisaged by taking into
consideration the conditions in which ‘‘real’’ hydraulic
fractures occur; for example, the presence of layers of
different types of rock (even if these layers are assumed to
be parallel); changes in magnitude and/or orientation of
the in situ confining stresses; the presence of a nearby free
surface (of importance in the modeling of magma-driven
dykes and in caving applications in mining); the leak-off of
fracturing fluid from the fracture to the surrounding rock
(or the invasion of reservoir fluid from the rock into the
fracture), which is a history-dependent process; the effects
of shear and temperature on the fracturing fluid rheology;
the transport of suspended proppant particles within the
fracture (of primary importance for oil and gas reservoir
stimulations), and modeling of fracture recession and
closure (due to termination of pumping, forced flowback,
or rapid geometric changes in one region as fractures
herniate into other lower stress zones).

In this paper, we focus on the modeling of hydraulic
fracturing treatments for the stimulation of hydrocarbon
reservoirs. The reasons are twofold. First, it is the area of
expertise of the authors. Second, over the past 50 years,
most of the research effort in hydraulic fracturing has been
driven by the needs of the petroleum industry. In what
follows, we give a brief historical overview of the
development of hydraulic fracturing simulators for use in
the petroleum industry, introduce the mathematical equa-
tions used to describe the process, discuss numerical
implementation issues, benchmarking of solutions, and
field applications.
2. Historical background

2.1. Techniques and applications of hydraulic fracturing

In the oil and gas industry, hydraulic fracturing began in
the 1930s [10] when Dow Chemical Company discovered
that downhole fluid pressures could be applied to crack and
deform the formation rock, thereby allowing more effective
acid stimulation. Prior to that, a U.S. patent [11] on matrix
acidizing referred to pumping fluid under pressure to force
acid further into the rock.1 In the late 1800s and early
1900s, wells were stimulated using nitro-shot if needed. The
first hydraulic fracturing treatment to stimulate well
production was performed in Kansas in 1947 on a gas
well in the Hugoton field in order to compare with the
current technology of acidizing wells [13].

Today, hydraulic fracturing is used extensively in the
petroleum industry to stimulate oil and gas wells in order
1One of the first recorded applications of both fluid- and air-driven

fracturing for industrial purposes was the quarrying of granite blocks in

the Mount Airy region, North Carolina. A description, circa 1910, can be

found in [12]. The authors acknowledge Andrew Bunger for finding this

possibly oldest reference to an industrial application of hydraulic

fracturing published in a journal.
to increase their productivity. Thousands of treatments are
successfully pumped each year in very diverse geological
settings. For example, treatments are routinely injected in:
low permeability gas fields; weakly consolidated offshore
sediments such as in the Gulf of Mexico; ‘‘soft’’ coal beds
for methane extraction; naturally fractured reservoirs;
and geometrically complex structures such as lenticular
formations.
A ‘‘typical’’ hydraulic fracturing treatment starts with

the creation of an initial path for the fracture. This is
usually achieved by a technique called ‘‘perforation’’ in
which specially designed shaped-charges are blasted on the
wellbore walls with given orientations, perforating the
casing and creating finger-like holes or weak points in the
hydrocarbon-laden formation. A viscous fluid is pumped
inside the wellbore, inducing a steep rise in the pressure
which eventually leads to the initiation of a fracture at the
perforated interval. A ‘‘pad’’ of clean fluid is usually
pumped first, to provide sufficient fracture width for the
proppant that follows. Proppant is injected at a later stage
as a suspension or slurry. The treatment usually takes place
on a time-scale of tens of minutes to a few hours,
depending upon the designed fracture size and volume of
proppant to be placed. At the end of the treatment, when
pumping stops, leak-off of the residual fracturing fluid into
the porous reservoir allows the fracture surfaces to close
onto the proppant pack under the action of the far-field
compressive stresses. A conductive packed conduit is
formed, and there are additional modeling considerations
related to efficient clean-up of the viscous fracturing fluid
out of the fracture to allow the oil and/or gas to flow
productively, as well as issues related to potential unstable
flow-back of proppant and/or reservoir formation particles
into the wellbore.
There is a rising tide of evidence from direct monitoring

of actual field treatments that suggests that the fracture can
grow in a complicated manner, taking advantage of local
heterogeneities, layering, and natural fracture networks in
the reservoir. These factors complicate the design of
treatments and make numerical modeling far more
challenging. Furthermore, many hydraulic fracturing
operations are performed in so-called ‘‘soft’’ formations,
such as weakly consolidated sandstones that are prone to
non-linear mechanical failure—a real challenge for current
models that are based on the principles of LEFM.

2.2. Hydraulic fracturing models

The development of the first simplified theoretical
models started in the 1950s [14–18]. One of the ground-
breaking papers to be published in this area was that of
Perkins and Kern [19] who adapted the classic Sneddon
plane strain crack solution [20] to develop the so-called PK
model (see Fig. 1). Later, Nordgren [21] adapted the PK
model to formulate the PKN model, which included the
effects of fluid loss. Khristianovic and Zheltov [18], and
Geertsma and de Klerk [22] independently developed the
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Fig. 1. Schematic showing PKN fracture geometry.

Fig. 2. Schematic showing KGD fracture geometry.

Fig. 3. Schematic showing radial fracture geometry.
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so-called KGD (plane strain) model (see Fig. 2). The radial
or penny-shaped model (see Fig. 3) with constant fluid
pressure was solved by Sneddon [23]. The problem of a flat
elliptical crack under constant loading (either far-field
stress or internal pressure) was studied by Green and
Sneddon [24].

The PKN model is applicable to long fractures of limited
height and elliptical vertical cross-section, whereas the
KGD model for width calculation is height independent,
and is used for short fractures where plane strain
assumptions are applicable to horizontal sections. The
radial model is applicable in homogeneous reservoir
conditions where the injection region is practically a point
source (e.g., when well orientation is in the direction of the
minimum confining stress or when the fluid is injected from
a short perforated section into a reservoir layer that can be
considered infinite compared to the size of the fracture).
Daneshy [25] extended the KGD model for the case of
power-law fluids, and Spence and Sharp [26] properly
introduced toughness into the model. Variations of the
KGD, PKN and radial models were used routinely for
treatment designs as recently as the 1990s, and are still
sometimes used today, although they have been largely
replaced by the so-called pseudo-3D (P3D) models that are
described in more detail below.

Initially, fracturing treatments consisted of injecting a
small volume of fluid (VOF) to test the integrity of the
wellbore and to ‘‘break-down the formation.’’ This was
followed by several thousand gallons of proppant-laden
slurry. Models were not used in treatment design but
production increases were generally significant, although a
large number of treatments resulted in premature proppant
bridging or ‘‘screen-outs.’’ It was nearly a decade
(1960–1970) before the simple fracture width models
(KGD and PKN) were used to estimate the pad volume
required to obtain adequate fracture width to allow
proppant entry. During this period, Howard and Fast
[27] introduced a method using fracturing fluid loss
parameters to calculate fracture penetration. Simple
computer models were later developed using the KGD
and PKN geometries with proppant transport. These
served as guides in the treatment design and provided a
method to show the sensitivity to critical input parameters
of injection rate, treatment volumes, fluid viscosity and
leak-off, and provided a basis for changing these para-
meters to increase the propped fracture penetration and
also to minimize proppant bridging and screen-outs.
In the mean time, the size of treatments increased

significantly. In the late 1970s, the price of oil and gas
increased, which made it economically viable to exploit low
permeability formations. Some wells required massive
treatments (in the range of hundreds of thousand of
gallons of fluid and up to a million pounds of proppant).
The relative cost of these fracture treatments to the total
well cost increased from 10% to 50%. These large
treatments pointed out the deficiencies in the current
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Fig. 5. Schematic showing cell-based pseudo-3D fracture geometry.

Fig. 6. Schematic showing planar 3D fracture geometry based on moving

mesh system of triangular elements.
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models, and justified more research in fracture modeling.
The existing models were not applicable to layered
reservoirs where the fracture footprint is sensitive to
changes in confining stress across layer interfaces. In such
cases, the prediction of fracture height growth requires
algorithms that can predict the growth of a fracture
through layers containing dissimilar confining stresses.
Thus, for example, Simonson et al. [28] developed a
symmetric three-layer height growth solution to allow
modeling of fracture height as a function of pressure into
zones of higher confining stress. This fundamental im-
provement in the PKN-type models was instrumental in
improving the interpretation of fracturing pressures [29].
Fung et al. [30] extended Simonson et al.’s concept to non-
symmetric multi-layer cases.

P3D models were developed in the 1980s, and extended
the work of Simonson et al. to multiple layers. P3D models
are a crude, yet effective, attempt to capture the physical
behavior of a planar 3D hydraulic fracture at minimal
computational cost. There are two categories: cell-based,
and lumped models [31]. In the lumped approach, the
fracture geometry at each time step consists of two half-
ellipses joined at their centers in the fracture length
direction. The fracture length, top tip (top half-ellipse),
and bottom tip (bottom half-ellipse) are calculated at each
time step (see Fig. 4). Fluid flow follows pre-determined
streamlines from the perforated interval to the edges of the
ellipse (or may even be 1D along the fracture length
direction). In the cell-based approach, the fracture length is
sub-divided into a series of PKN-like cells, each with its
own computed height (see Fig. 5). P3D models are built on
the basic assumption that the reservoir elastic properties
are homogeneous, and averaged over all layers containing
the fracture height. Since confining stress dominates elastic
properties when computing fracture width, this assumption
is reasonable in many cases.

The 1980–2000 period saw the development of planar 3D
(PL3D) models. These models assume that the fracture
footprint and the coupled fluid flow equation are described
by a 2D mesh of cells, typically a moving triangular mesh
[32–36] (see Fig. 6) or a fixed rectangular mesh [37,38] (see
Fig. 7), oriented in a (vertical) plane. The full 3D elasticity
Fig. 4. Schematic showing fracture geometry based on pseudo 3D

lumped elliptical model.

Fig. 7. Schematic showing planar 3D fracture geometry based on regular

(fix) system of quadrangular elements.
equations are used to describe the fracture width as a
function of fluid pressure. PL3D models are more accurate
and computationally far more expensive than P3D ones.
The need for PL3D models arose because there are

specific types of fracture treatments that P3D models are
not suited to model. For example, when the layer confining
stresses vary non-monotonically as a function of depth, or
when unconfined height growth occurs, P3D models tend
to break down numerically. Any layered reservoir that
results in an hour-glass shaped fracture footprint (e.g.,
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Fig. 8. Schematic of a multi-layered reservoir showing footprint of a

planar 3D fracture oriented vertically. In the figure, y1–y6 are layers with

different elastic moduli and Poisson’s ratios.
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where the middle layer of a three-layer system is ‘‘stiffer’’
and more likely to ‘‘pinch’’ the fracture width) is not suited
to a P3D model. In many reservoirs, the pay zones are
located in less competent sandstones, prone to mechanical
failure due to production-induced pore pressure changes.
In such cases, indirect vertical fracturing can be used to
reduce the risk of sanding. The perforated interval is
selected to be in an adjacent more competent layer. The
fracture initiates in this layer and then grows, by design, up
or down into the less competent pay zone containing the
bulk of the fracture.

There have also been attempts to model fully 3D
hydraulic fractures [39] with limited success. The computa-
tional burden on such coupled systems is still excessive,
even with today’s powerful computational resources. There
are also unresolved physical questions pertaining to the
generation and spacing of mode III fractures that such
models do not currently address.

2.3. Scaling laws and propagation regimes

In recent years, there has been a return to fundamental
research, with significant effort being devoted to under-
standing the different regimes of propagation in hydraulic
fracturing. The objective of this research has been to gain
insight into the properties of the classical hydraulic fracture
models rather than to develop new models to deal with the
complex and challenging new environments in which
hydraulic fractures are being developed. This work was
developed on two fronts. First, an exhaustive analysis of
the near-tip processes (using methods based on asymptotic
theory) was undertaken, which has significantly extended
the pioneering results of [40] for the zero-toughness,
impermeable case; and of [41] for the zero-toughness,
leak-off dominated case. This ongoing effort has accom-
plished not only the inclusion of toughness and fluid lag,
but also the development of all the pertinent intermediate
asymptotic regimes [42–44].

The second front includes the analysis of the dominant
dimensionless groups that control the hydraulic fracturing
process [45,46]. This work has shown that hydraulic
fractures can be categorized within a parametric space,
whose extremes are controlled by leak-off, toughness, or
viscosity dominated processes. In general, a hydraulic
fracture evolves with time within this parametric space,
following trajectories that are determined by the rock
properties (elastic moduli, toughness, leak-off coefficient),
fluid viscosity, and injection rate.

Within this framework, semi-analytical and numerical
solutions have been developed for simple geometries (KGD
and penny-shaped) for different asymptotic regimes, such
as zero toughness impermeable [47–49]; small toughness
impermeable [50]; finite toughness impermeable [51,26];
large toughness impermeable [52,49]; zero toughness
permeable [53] regime; and finite toughness permeable
[54] regime solutions. These solutions have not only yielded
an understanding of the evolution of hydraulic fractures in
and between different propagation regimes, but have also
provided useful benchmarks for numerical simulators.
Another important consequence of this research work is

that the newly developed scaling laws can be used to define
the range of parameters required to properly model the
growth of a hydraulic fracture at the field or laboratory
scale, or at least to properly interpret and extrapolate
experimental data. For example, in most field-scale
treatments, the dominant factor that controls hydraulic
fracture growth is viscosity, and not toughness (the latter
quantity has been historically used to assign fracture
growth control in hydraulic fracturing simulators). How-
ever, in laboratory tests, where block sizes of 1 cubic foot
are typical, toughness is the controlling mechanism, even
when highly viscous fluids are injected. Hence, direct
application of experimental results to field scale may lead
to misleading conclusions. Recent experimental results
[55–57] have provided physical evidence of the validity of
these similarity solutions. The scaling law methodology
was crucial in identifying the appropriate ranges of
parameters in order to design the experiments to capture
these different physical solutions.
3. Mathematical equations

3.1. Underlying assumptions

Fig. 8 is a schematic of a typical hydraulic fracturing
problem that is of interest (in this case a PL3D situation is
depicted). The reservoir consists of multiple layers, each
with distinct properties such as elastic moduli, toughness,
permeability, porosity, and confining stress, extracted from
log data, seismic surveys, and/or down-hole stress tests.
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Layer interfaces are generally assumed to be parallel to
each other, although in reality, more complex situations do
occur. A thoroughly comprehensive model, aside from
being impracticable, would contradict the main purpose of
a numerical model—to represent the essential mechanism
in an approximate manner so as to aid understanding and
design while remaining computationally feasible [58].

The basic equations governing a hydraulic fracturing
model are: (a) the elasticity equation (expressing the
mechanical response of the host reservoir to the loading
imposed on the propagating fracture surfaces by the
pressure due to the injected fluid); (b) the fluid flow
equation (expressing the conservation of fluid mass, which
yields the velocity field of the fluid inside the fracture); (c)
the leak-off term (describing the history-dependent loss of
the injected fluid from the fracture into the porous
reservoir, due to a positive pressure gradient between the
fluid-filled fracture and the reservoir); (d) the proppant
transport equation (describing the time-dependent distri-
bution of the concentration of proppant in the fracture); (e)
the fracture growth condition (that controls the rate and
manner of growth of the hydraulic fracture, typically based
on the assumptions of LEFM).

All of these equations must be properly coupled together
in a stable, robust, and efficient manner to generate the
solution for the moving boundary problem—comprising:
the fracture footprint, the fracture width, the fluid pressure,
and the proppant concentration as functions of time and
space. The following assumptions are typically made when
building numerical hydraulic fracturing models: (a) the
host reservoir material is considered to be linear elastic; (b)
in the case of a multi-layered reservoir, the layer interfaces
are assumed to lie parallel to each other and to be perfectly
bonded (geological stress variations and even jumps across
layer interfaces can easily be modeled while a layered
Green’s function approach [59,60] can be used to model
elastic moduli that are piecewise constant); (c) the
hydraulic fracture is (usually) assumed to lie in a single
vertical plane; (d) the fluid flow in the fracture obeys
Poiseuille flow and is incompressible, and sequential
injections of multiple fluids are immiscible.

In addition to plastic behavior of the host rock, non-
parallel and debonded interfaces, and non-planar fractures,
these models typically ignore the following additional
effects: (a) the actual reservoir may be naturally fractured;
(b) the actual reservoir may contain a heterogeneous stress
field due to poroelastic influences of neighboring producing
wells; (c) usually, the fluid flow equations are restricted to
relatively simple models for the fluid rheology, such as
Newtonian or power-law. However, actual fluids used for
hydraulic fracturing treatments have more complicated
rheologies (yield stresses, viscoelasticity, etc.); (d) leak-off
is often assumed to be uncoupled from the fluid pressure,
and to be restricted to the linear (1D) flow regime; (e) many
effects related to the modeling of proppant transport (e.g.,
interaction and collision between proppant particles, shear-
induced proppant migration, proppant settling, etc.) are
often modeled in a rather simplistic manner, or neglected
altogether.

3.2. Elasticity equations

The elasticity equations are used to calculate the fracture
widths due to the net pressures (local fluid pressure minus
local confining stress) at each point on the fracture
footprint. The elasticity equations in 3D (a similar
expression can be obtained in the 2D case) can be written
[59,60] as an integral equation of the form:

Cw ¼

Z
OðtÞ

Cðx; y; x; ZÞ wðx; Z; tÞdxdZ

¼ pðx; y; tÞ � scðx; yÞ, ð1Þ

where p is the fluid pressure inside the fracture, sc is the
local minimum in situ (or confining) stress, and w is the
fracture width. The non-local kernel function C contains
all the information about the layered elastic medium. It is
assumed that the fracture occupies the region denoted by
OðtÞ at time t.
It is possible that posc within certain subregions of the

fracture footprint OðtÞ. Depending on the relative magni-
tude of p and sc as well as the extent of these so-called
pinched regions, it is possible that the corresponding width
determined by Eq. (1) can be negative. Since such an inter-
penetration of the fracture surfaces is physically impos-
sible, it is necessary to impose a minimum constraint wc on
the width

wXwc. (2)

We permit wc40 because surface roughness prevents
complete mechanical closure of a fracture, thus allowing
fluid to continue to flow.
There are essentially two main choices when discretizing

the elasticity equations. We can either employ an integral
equation formulation such as Eq. (1) known as the
displacement discontinuity method [61], or choose to
discretize the 3D partial differential equations via the finite
element or finite difference methods. If boundary integral
schemes are employed, the 3D layered reservoir is assumed
to be linear elastic, and the discretized equations (in the
case of a PL3D model) can be rigorously reduced to a
planar system of elements covering the fracture footprint
[59,60]. Other alternatives for layered systems include the
use of moduli perturbation [62] or Galerkin-based [63]
schemes. If finite element or finite difference schemes are
employed to discretize the 3D partial differential equations
[31], then a large volume of the reservoir in the vicinity of
the hydraulic fracture needs to be discretized in order to
compute the fracture widths accurately—a computation-
ally expensive option.
Various approximations for layered reservoirs have been

used in commercially available simulators, e.g., [37,64,65].
Ref. [37] erroneously assumes that the spatially varying
elastic moduli can be factored out of the integral equation,
thus leading to an incorrect formulation. Ref. [65] stacks a
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series of bi-layer solutions together to approximate the
multi-layer system. Ref. [64] models the multi-layer system
in an approximate manner by excluding higher order image
terms. The two latter approaches can be prone to errors in
estimation the fracture width when thin layers containing
large changes in elastic moduli span the fracture footprint.

Attempts to model multi-layer systems where layers are
permitted to frictionally slip have met with limited success.
Rigorous models of such layered systems are computa-
tionally very expensive [66], and ‘‘approximations’’ [67]
that involve non-rigorous changes to the elastic influence
matrix in an attempt to control fracture height growth and
hence ‘‘mimic’’ fracture growth in the vicinity of frictional
interfaces are at best highly approximate and subject to
significant errors. This is a topic for further research.
3.3. Fluid flow and leak-off equations

In the case of a planar fracture that grows in a 3D elastic
medium, the basic 2D fluid flow equations are governed by
the Reynolds’ equation given by

qw

qt
¼ = � ½DðwÞð=p� rgÞ� þ dðx; yÞQ, (3)

where r is the fluid density, g is the gravity vector, dð�Þ is the
Dirac delta function, Q ¼ Qðx; y; tÞ is the source injection
rate (we note that line sources may also be defined to
represent perforated intervals along the wellbore),
DðwÞ ¼ w3=12m, and m is the Newtonian fluid viscosity.
The addition of a leak-off sink term and a power-law fluid
yields

qw

qt
¼ = � ½Dðw; pÞð=p� rgÞ� þ dðx; yÞQ

�
2CLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t� t0ðx; yÞ
p � 2S0dðt� t0ðx; yÞÞ, ð4Þ

where CL is the Carter leak-off coefficient having dimen-
sions [LT�1=2] [16], t0ðx; yÞ is the initiation time for the leak-
off (i.e., the time at which the fracture front first reaches the
coordinate ðx; yÞ), and

Dðw; pÞ ¼ N 0wð2n0þ1Þ=n0 j=p� r gjð1�n0Þ=n0 , ð5Þ

N 0 ¼
n0

2n0 þ 1

� �
1

2n0þ1K 0

� �1=n0

, ð6Þ

j=p� rgj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qp

qx
� r gx

� �2

þ
qp

qy
� r gy

� �2
s

, ð7Þ

where the power-law exponent n0 is typically in the range
0:1on0o2, K 0 is the consistency index, gi are the
components of the gravity vector, and the spurt S0 (which
represents a very rapid initial leak-off at early times before
a filter cake builds up on the fracture surfaces) has units of
[L3=L2]. For a Newtonian fluid, n0 ¼ 1 and K 0 ¼ m and we
recover the Newtonian pressure gradient terms as per
Eq. (3).
The application of the Carter leak-off model to a
simulator usually implies that we assume that the leak-off
is 1D, in a direction orthogonal to the fracture plane. This
approximation is reasonable provided the fracture is
propagating sufficiently rapidly that non-orthogonal leak-
off is negligible. However, in highly permeable reservoirs,
leak-off exhibits a non-orthogonal flowpath—laboratory
tests clearly show a zone of leak-off ahead of the main tip of
the fracture [68]. In addition, fluid leak-off can be a complex
process, and may, depending on the fluid properties, be
sensitive to the pressure and the temperature. In some cases,
wormhole behavior of the leaking fluid has been noted [69],
and the inclusion of such effects in a fracture simulator is
challenging. In high permeability reservoirs, �90% of the
injected fluid can leak off into the reservoir during the
injection treatment. It is thus important to be able to
simulate this process in at least an averaged manner.
The fluid flow equations are usually solved using finite

element, finite difference or finite volume [70] schemes. In
most hydraulic fracturing models, the fluid flow equations
are discretized over the fracture footprint to produce a 2D
system of equations where the fluid pressure is the primary
unknown. Fracturing fluids include polymers, viscoelastic
surfactants, and foams and their rheology is typically
approximated to follow a power-law model. As the
fracturing fluid advances through the fracture volume,
the warmer surrounding reservoir heats it up, and thermal
transfer will cause the viscous fluid to thin (i.e., the
apparent viscosity decreases and the fluid becomes more
Newtonian ðn0 ! 1Þ); this also needs to be built into the
fluid flow simulations. Furthermore, the evolving concen-
tration of proppant particles also causes the rheology of the
fluid to adjust. The stiffness terms in the fluid flow
equations can thus, in general, be complicated functions
of fluid consistency index, power-law index, fracture width,
proppant concentration, temperature, and fluid pressure.
Proppant-carrying fracturing fluids are designed to be
viscous while carrying the proppant, and to eventually
‘‘break’’ (i.e., thin dramatically) after a time delay or when
a critical temperature is reached. This ensures that the
injected fluid is more easily cleaned up (by flowing back
into the wellbore) once the injection has ended and the
fracture surfaces have closed onto the packed proppant.
Schedules generally contain multiple fluid types, so that a
rigorous placement simulator should account for all of the
above physical effects.

3.3.1. Boundary conditions

Along the perimeter of the fracture, we specify a zero
fluid flux boundary condition given by

Dðw; pÞn � ð=p� rgÞ ¼ 0, (8)

where n is the outward unit normal along the fracture
perimeter. This boundary condition is only applicable if the
fluid completely fills the fracture, i.e., if the fluid lag is
considered negligible compared to the scale of the fracture.
Otherwise, we must alter the equations to account for the
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effect of the fluid lag. Indeed, the inclusion of a fluid lag
(defined as a cavity between the fracture tip and the fluid
front, with practically zero pressure) becomes an additional
unknown of the problem [44]. The boundary condition at
the fluid front then becomes a zero pressure condition,
whereas tracking of the fracture tip (or of the fluid lag
length) requires one to account for the fluid lag in the
elasticity equation explicitly.

One of the complications of the zero flux boundary
condition is that the operator = � ðDðw; pÞ=�Þ together with
this boundary condition is no longer invertible since the
solutions are only unique up to an arbitrary constant
pressure. This boundary condition introduces several chal-
lenges both from a discretization point and for the
appropriate coupling algorithm. For example, normal
derivative boundary condition implementations along curved
boundaries using 2D finite difference methods are extremely
tedious if not impracticable. In this case, it is preferable to
resort to finite volume or finite element discretization
procedures. The pressure indeterminacy for zero flux
boundary conditions complicates the coupling algorithm
since the appropriate pressure level becomes an unknown of
the problem. For situations in which width constraints are
not active, this does not pose a problem. However, when
width constraints are active in some of the elements, this
pressure indeterminacy can become very difficult to resolve.

3.3.2. Conservation of mass and the solvability condition

The solvability condition is a constraint (which simply
expresses the global conservation of mass) that needs to be
imposed so that a solution to the fluid flow equation along
with the derivative boundary conditions exists at all. The
solvability condition plays an important role in the design
of efficient schemes to solve the coupled elasto-hydro-
dynamic equations because of the pressure indeterminacy
of the fluid flow equation.

To derive the 2D solvability condition,2 we integrate
Eq. (4) over the region OðtÞ to obtainZ
OðtÞ

qw

qt
dV ¼

Z
OðtÞ

= � ðDðwÞ=pÞ þ dðx; yÞQ

"

�
2CLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t� t0ðx; yÞ
p � 2S0dðt� t0ðx; yÞÞ

#
dV . ð9Þ

Application of Leibnitz’s rule and the divergence theorem
gives

q
qt

Z
OðtÞ

wdV ¼

Z
qOðtÞ

DðwÞ
qp

qn
dS þQ

�

Z
OðtÞ

2CLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� t0ðx; yÞ

p þ 2S0dðt� t0ðx; yÞÞ

" #
dV .

ð10Þ
2For simplicity, we have assumed that the fluid is Newtonian and we

have removed the gravity terms—i.e., we assume that the gradient =p in

the following equations is actually given by =p� r g.
Using the zero flux boundary conditions for the pressure
and integrating with respect to time from the beginning of
the pumping process, we obtain the solvability conditionZ
OðtÞ

wdV ¼

Z t

0

QðtÞdt�
Z t

0

Z
OðtÞ

2CLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t� t0ðx; yÞ

p dV dt

� 2S0 Area½OðtÞ�. ð11Þ

We observe that the solvability condition expresses the
global conservation of mass.
3.4. Proppant transport

The transport and placement of proppant within the
fracture is usually modeled by representing the slurry (i.e.,
the mixture of proppant and fluid) as a two-component,
interpenetrating continuum. This implies that the fluid flow
equations (i.e., conservation of mass and conservation of
momentum) are solved for the mixture, and not for each
individual component. The distribution of proppant in the
fracture is given by its volumetric concentration (defined as
the probability of finding a proppant particle at a given
point in space and time [71]), which is the additional
variable to be determined. In modeling proppant transport
and placement, it is often assumed that: (a) both proppant
and fluid are incompressible; (b) the proppant particles are
small compared to a characteristic lengthscale, in this case
the fracture width; and (c) the only mechanism to account
for ‘‘slip’’ between the proppant and the carrying fluid is
gravity-induced settling, i.e., relative proppant-fluid velo-
cities due to migration by self-diffusion (created by
shearing and/or proppant collision), Taylor dispersion, or
clustering are usually neglected. This implies that, in the
absence of gravity, the proppant and fluid move at the
same velocity at any given point.
Assumption (a) implies that the governing equations to

describe the flow of slurry can still be derived from
principles of fluid dynamics and lubrication theory.
Assumption (b) means that we are dealing with a relatively
dilute suspension of particles. This assumption, of course,
has a limit: in situations with significant leak-off, or after
shut-in, the relative concentration of proppant with respect
to the fluid can reach significantly larger values, to the
point that the mixture would start to behave more like a
porous solid. If the concentration reaches a given satura-
tion value (generally determined by geometrical considera-
tions), the proppant particles conform to a ‘‘pack,’’ and
thereafter, only the fluid phase is able to mobilize through
the interstitial pores. In addition, we can expect that near
the fracture tips, the fracture width is of the same order of
magnitude as the proppant diameter. The mobility of the
proppant in this case will rapidly decrease, to the point of
stopping altogether in some cases, again forming a ‘‘pack’’
or ‘‘bridge.’’ This phenomenon is usually taken into
account (albeit in a rather pragmatic way) by setting a
minimum fracture width (as an experimentally-derived
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3The saturation value c� is usually given by c� ¼ 0:52 (known as ‘‘loose

packing,’’ which corresponds to an arrangement of regular spheres in a

cubic pattern), or by c� ¼ 0:65 (known as ‘‘tight packing,’’ which

corresponds to the maximum concentration that can be achieved by

random packing of regular spheres).
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proportion of the proppant mean diameter) required for
the proppant to circulate freely.

Assumption (c) is probably the weakest foundation of
these models, as it is known [71–74] that slumping and
migration do occur in shear-induced flow of particle
suspensions. The two most important consequences of
using this assumption are that: (a) the concentration of
proppant across the fracture width can be taken as
homogeneous (i.e., there is no layering, banding or ‘‘sheet
flow’’); and (b) by ignoring any Taylor dispersion effects,
we can consider the advancing front of proppant as a
‘‘sharp’’ front, without any dispersion ahead.

Modeling of the proppant transport then reduces to
solving an advective (mass conservation) equation for the
proppant volumetric concentration c given by

qðcwÞ

qt
þ = � ðcwvpÞ ¼ 0, (12)

where vp is the proppant velocity vector. If dispersion
ahead of the proppant front is neglected, it is desirable to
minimize any effects of numerical dispersion, which are
common in solving hyperbolic equations like (12) using
conventional upwind methods. Usually, this is accom-
plished by applying a second-order correction with a
limiter. The limiters are selected based on the total
variation diminishing (TVD) principle [75–77]. The pur-
pose of the limiters is to retain the second-order terms
where the solution is smooth and to suppress the second-
order terms where the solution has discontinuities. In this
way, both the numerical diffusion of the first-order
schemes and the dispersion of the second-order schemes
are minimized or prevented.

Coupling between Eq. (12) and the rest of the governing
equations of the hydraulic fracture model is given by three
variables: (a) the slurry density, which affects the fluid flow
Eq. (3) as a correction to the pressure gradient; (b) the
slurry velocity, which is obtained by solving the fluid flow
equations; and (c) the viscosity of the slurry, which is
calculated by adjusting the clean fluid viscosity with the
proppant concentration by means of empirical formulae.
To obtain the velocity of the proppant from the slurry
velocity we have to consider the possibility of slip between
the fluid and the proppant. The proppant velocity vector is
then calculated from the slurry velocity v using

vp ¼ v� ð1� cÞvs, (13)

where vs is the slip velocity vector. Specific phenomena
associated with the transport of proppant can be included
in this velocity. If we consider that slip is assumed to be
caused only by settling, this vector is parallel to the gravity
acceleration vector g. Usually, the magnitude of the slip
velocity vs is calculated from variations of the classical
Stokes equation. A correction factor (function of the
concentration) to take into account the effect of proppant
interaction and wall effects (‘‘hindered settling’’) is applied
to the Stokes settling velocity. A review of such equations
can be found in [72]. Other models are discussed in [78–80].
Experimental observations are cited in [81].
Regarding the viscosity of the slurry, this is actually one

of the most difficult (and critical) aspects of the modeling.
Proper formulation of the momentum equation for the
problem of a suspension of solid particles yields terms that
are related to the interaction between particles and between
particles and the fluid. Accounting for these effects in detail
is challenging, and most models that attempt to describe
these interactions are still awaiting experimental verifica-
tion [71]. Hence, it is common practice to ‘‘lump’’ all these
effects into a modified viscosity of the slurry, which is
usually calculated using an expression of the form

m ¼ m0ð1� c=c�Þ
b, (14)

where m0 is the effective Newtonian viscosity of the clean
fluid, c� is a saturation concentration,3 and b is a negative
number (usually �3obo� 1). The effect of Eq. (14) is to
increase the viscosity as the proppant concentration
increases. There is some experimental verification [81] for
this type of model, although there are a variety of other
models that have been postulated [78,82,83]. From the
modeling point of view, an adjustment formula like
Eq. (14) presents the inconvenience that the effective
viscosity increases very rapidly as c approaches c�. Usually,
a threshold value (either in c or in m) has to be enforced.
However, a limitation of Eq. (14) is that, as concentra-
tion increases, it is expected that the slurry will start to
behave more like a solid than a fluid. Hence, the use
of a lubrication-type equation (even with a very high
viscosity) to model the slurry transport may become
inappropriate.

3.5. Evolution of the fracture front

3.5.1. Meshing strategy

There are essentially two classes of meshing that are
typically used in hydraulic fracture models, viz., fixed
(Eulerian) or moving (Lagrangian). It is also possible to
consider a hybrid approach in which the underlying grid is
fixed within the fracture while the location of the fracture
front is treated by discrete points that move. This
procedure is known as front tracking.
In the case of moving meshes, triangular elements are

typically used to define the fracture footprint. This may be
constructed in two ways: (a) addition of new elements to
advancing sections of the fracture, with periodic re-
meshing of the entire fracture footprint to recover more
tractable aspect ratios; or (b) re-meshing of the entire
fracture footprint at each growth step. Moving meshes are
desirable because they allow for the fracture footprint to be



ARTICLE IN PRESS
J. Adachi et al. / International Journal of Rock Mechanics & Mining Sciences 44 (2007) 739–757748
modeled at a user-defined level of detail at any growth step,
i.e., moving meshes can be constructed so that the number
of active elements at any growth step stays at a ‘‘reason-
able’’ number, hence maintaining good accuracy at early
times, and low CPU times and good accuracy at late times.
However, moving meshes require interpolation of fracture
width, pressure, concentration, and leak-off data for each
re-meshing procedure, thereby introducing interpolation
errors into the system. In addition, the use of moving
meshes becomes problematic in the case of a layered
material, where elements may partially cross layer inter-
faces—the assignment of averaged layer properties over a
crossing element will result in polluted results.

Fixed meshes are typically constructed using rectangular
elements. Algorithms that employ fixed meshes are easier
to encode, and avoid interpolation issues with associated
noise in the width and pressure histories. However,
resolution issues can affect these algorithms, i.e., too few
(many) elements at early (late) times. Re-meshing can also
be employed for fixed meshes to make more efficient use of
the element count and to reduce CPU times, with
concomitant interpolation errors as in the case of moving
meshes. In addition, the use of rectangular elements can
imply poor (or binary) definition of the fracture front.
Since most of the pressure drop occurs near the fracture
tip, special care needs to be taken to obtain accurate results
in the case of a fixed mesh. One alternative is to sub-mesh
near the fracture tip [84], but this is computationally
expensive, and again requires interpolation as the fracture
front moves and drags the sub-mesh region along with it.
Another alternative is to use specially enhanced tip
elements [85] to increase the accuracy of the solution, or
to force exact tip asymptotic solutions [45] in the tip
elements.

In the context of a fixed mesh, efficient methods have
been developed to capture the front evolution by tracking
the dynamics of an ancillary field variable, which can be
used to establish the front position. The VOF method [86]
tracks the evolution of the fill fraction, which represents the
fraction of a discretization element that is filled with fluid.
The level set method [87,88] tracks the front position as the
zero level set of a scalar function, which is assumed to
evolve on the regular grid according to a hyperbolic
conservation law defined by the normal velocity of the
front.

3.5.2. Locating the front position

There are a number of approaches that can be used to
locate the fracture front in a hydraulic fracturing simu-
lator. These methods can be classed in two main categories:
explicit and implicit methods. For explicit methods, key
information from the end of the previous growth step is
used to predict the advance of the fracture front for the
current growth step. Such schemes will generate poor
results in the case of fracture growth through multiple
layers, because the fracture front advancement can only
depend on local conditions at the location of the fracture
tip at the end of the previous growth step. These schemes
are only effective if the time step is severely restricted in
order to reduce such errors. A better alternative is to iterate
on the fracture front within the current growth step. Such
implicit methods can be combined with level set or VOF
methods to iterate on the fluid front to achieve an accurate
fracture footprint. However, these methods are expensive
since multiple iterations of the coupled system of equations
are required before the fracture footprint converges—this
is aggravated in layered reservoirs where significant
changes in elastic moduli or confining stress can occur
from one layer to the next.

3.5.3. Propagation criterion

The propagation criterion for the fracture represents a
very special type of tip boundary condition, as it practically
dictates the nature of the whole solution. Usually,
numerical models consider the conventional LEFM criter-
ion that the fracture propagates (quasi-statically) if
K I ¼ K Ic, where K I is the stress intensity factor (the
strength of the inverse square-root stress singularity at the
tip) and K Ic is the toughness, a material property of the
rock. In most cases, this propagation condition is enforced
by using ‘‘tip elements’’ in which the width profiles are
prescribed according to the classical square-root shape.
Hydraulic fractures, however, represent a special class of

fracturing, due to the coupling between different processes
(elastic deformation, rock fracturing, fluid flow in the
fracture, leak-off) taking place near the tip. It has been
recently recognized that, in this near-tip region, each of
these processes can be associated with a characteristic
lengthscale [42]. Predominance amongst these lengthscales
determines the fracture response (the propagation regime),
characterized by the order of the stress (or pressure)
singularity. This yields a complex multi-scale solution for
the propagation of the fracture. The importance of this
type of asymptotic analysis lies in the fact that, even
though these solutions are obtained at the scale of the near-
tip region, the propagation regime of the whole fracture is
actually determined by the tip.
Following this methodology, it can be shown that, for a

relatively large range of parameters encountered in field-
scale hydraulic fracturing treatments, fracture propagation
is actually dominated by viscous dissipation, or by a
combination of viscous dissipation and leak-off. In such
cases, the classical LEFM stress singularity is restricted to a
very small lengthscale (practically negligible from the
standpoint of the resolution of numerical simulations)
near the tip [50], and other singularities dominate the
propagation process. In other words, toughness may
become irrelevant.
Thus the indiscriminate use of a tip element based on the

classical square-root shaped tip may lead to an incorrect
fracture footprint. Recognition of the current propagation
regime (and hence of the proper stress and pressure
singularities at the tips, or at least at the lengthscale of
the discretization) at any point along the outer rim of the
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fracture is therefore a significant issue. The use of ‘‘smart’’
tip elements (i.e., tip elements that could adjust the width
shape and/or pressure singularity according to the local
propagation regime), or enforcement of the ‘‘proper’’
pressure singularity at the tips (i.e., the singularity
corresponding to the regime in which most of the fractures
are expected to develop), should be part of any field-scale
hydraulic fracturing model.

Fluid lag: Further complications can be added by
considering, for example, the existence of a lag (of
unknown length) between the crack tip and the fluid front.
Laboratory experiments have shown that the fluid front
and the fracture front do not coincide. Indeed, the fracture
can advance ahead of the fluid, in which case there is a
‘‘fluid lag,’’ i.e., a dry fracture zone ahead of the fluid front,
or behind the fluid, in which case there is an ‘‘invaded
zone’’ ahead of the crack tip. Note that it is nearly
impossible to ensure that the fracture front and the fluid
front will coincide for any length of time. Until recently,
hydraulic fracturing treatments were mostly performed in
lower permeability formations ðo100mDÞ, and the for-
mation of a fluid lag was likely. Nowadays, treatments are
performed in high permeability formations ð41DÞ and an
invaded zone can occur.

In order to determine the relevance of fluid lag, explicit
solution for the size of the fluid lag as part of the solution
process is required. Because of the focus on the tip of the
fracture, investigators have focused on hydraulic fractures
of simple geometries, treating the rock as elastic and later
as plastic [89]. It was found that, unless the pore pressure in
the reservoir is close to the confining stress sc (i.e., the case
of an overpressured reservoir where the limit for the pore
pressure is actually the confining stress), the presence of a
fluid lag was more important than its exact size.
Furthermore, the presence of the fluid lag shielded the
hydraulic fracture from the effect of the fracture toughness
in most practical cases. These results then were extended by
Detournay and Garagash [43,44], demonstrating that
various regimes could be distinguished and that asymptotic
solutions could be derived for each of them, allowing one
to neglect the exact size of the fluid lag. Furthermore,
recent work [90] has demonstrated that in most practical
situations the presence of the fluid lag is important only at
the early time in the life of a hydraulic fracture: as the
fracture evolves, the fluid lag tends to gradually disappear,
specially under conditions of high confining stress (deep
fractures). The explicit computation of the fluid lag can be
replaced by the appropriate asymptotic behavior of width
and pressure in the vicinity of the fracture front [40].

Work on the invaded zone case has not progressed to the
point where clear conclusions can emerge. This is an area of
current experimental and theoretical investigation (e.g., [68]).

3.6. Coupling

The elasticity, fluid flow, leak-off, fracture growth, and
proppant transport equations should ideally all be fully
coupled together in order to solve the system of equations
correctly. In addition, pinch points may develop (e.g., due
to the fracture growing in a higher stressed layer, or due to
a region of the fracture becoming packed with proppant).
Thus, it is necessary to implicitly couple a width constraint
condition into the system of equations—a non-trivial task.
It is also possible to couple in the effect of the evolving
reservoir pore pressure distribution to the coupled elasto-
hydrodynamic equations. Such schemes are preferential in
high permeability situations where the leak-off may invade
the reservoir ahead of the fracture tip and potentially
dominate fracture growth.
In this section we discuss the algorithms that can be used

to solve the discrete elasticity and fluid flow equations
given by

Cw ¼ p� sc, (15a)

Dw

Dt
¼ AðwÞpþ F (15b)

for p and w: Here F contains the source and sink terms,
C is the fully populated elasticity influence coefficient
matrix and AðwÞ is the sparse matrix that results from the
discretization of = � ðDðwÞ=�Þ, where, for simplicity, we
restrict the discussion to Newtonian fluids. We assume that
the fracture footprint has been established via some front
location algorithm described above and that the time step
Dt has been specified.
3.6.1. Explicit and implicit time stepping

Because of the non-linearity of the system of equations
(15), it is tempting to use an explicit scheme to perform the
time-stepping. However, the coupled system is particularly
stiff as can be seen by the following illustrative example. If
we consider the 1D KGD model, the discrete elasticity and
fluid flow matrices have elements

Cmn ¼ �
E0

4pDx

1

ðm� nÞ2 � 1
4

" #
, ð16Þ

Apn ¼
D̄

Dx2
ðpnþ1 � 2pn þ pn�1Þ, ð17Þ

where E0 is the elastic plane-strain modulus. Here we have
used a collocation method to discretize the elastic integral
equation assuming piecewise constant displacement dis-
continuity elements of length Dx. The nodal points at
which the pressures and widths are sampled are located at
element centers, which are assigned indices m and n.
Standard central finite differences are used to discretize the
fluid flow equations. In Eqs. (16) and (17), we have
assumed that the width is slowly varying and is frozen to
some nominal value w̄, and that the conductivity D̄ is thus
defined as D̄ ¼ w̄3=12m: Since both of these matrices are
Toeplitz matrices (matrices with constant diagonals and for
which eiknDx are eigenfunctions), it is possible to show [91]
that the eigenvalues of the system matrix AC that governs
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the evolution of the width vector are given by

ÂkĈk ¼ �
2E0D̄

Dx3
sin3

jkjDx

2

� �
. (18)

Thus if the explicit Euler method is used to evolve the
solution to the system Eqs. (15a) and (15b) in which C and
A are given by Eqs. (16) and (17), then stability dictates
that the time step must satisfy the following CFL
condition:

Dto
Dx3

E0D̄
. (19)

This CFL condition leads to prohibitively small time steps,
each involving a multiplication by the fully populated
matrix C. As a result of this extreme stiffness of the
coupled equations, a backward Euler or some higher order
backward difference scheme is recommended.
3.6.2. Picard iteration

In order to implement specially enhanced tip elements
[85] it is necessary to use an algorithm that involves the
inversion of C. Given a trial solution ðwk; pkÞ a fixed point
strategy based on this approach involves solving the fluid
flow equation for pkþ1; which is then used in the elasticity
equation to determine wkþ1. In order to stabilize this
process the following sequence of Picard iterations are
typically used:

pkþ1=2 ¼ AðwkÞ
�1 Dwk

Dtk

� F

� �
,

pkþ1 ¼ ð1� aÞpk þ apkþ1=2,

wkþ1=2 ¼ C�1ð pkþ1 � scÞ,

wkþ1 ¼ ð1� aÞwk þ awkþ1=2, ð20Þ

where the invertability of A is ensured by imposing the
solvability condition

R
OðtÞ DwdV ¼ QDt. This process can

be shown to converge for 0oao1
2
provided the time step is

not too large and stress jumps or extreme changes in the
elastic moduli are not encountered. However, if such
extreme situations do occur then the Picard or similar
schemes typically converge well initially but soon degen-
erate to spurious oscillations.
3.6.3. Newton iteration

On the other hand, Newton’s method does not converge
well if the initial guess is far from the solution but it
converges very rapidly if the trial solution is close to the
desired solution. In this case the Newton equations can be
obtained by linearization of Eqs. (15a) and (15b) to yield
the following system of linear equations:

�C I

�
1

Dt
I þ Bk Ak

2
4

3
5 dwk

dpk

" #
¼ �

pk � sc

Akpk þ F �
Dwk

Dtk

2
64

3
75,

(21)
where I is the identity matrix, and

Ak ¼ AðwkÞ; Bk � = � ðD0ðwÞ=pÞ (22)

and the solution is subject to the following solvability
condition:Z
OðtÞ

dwk dV ¼ QDt�

Z
OðtÞ

DwdV . (23)

Typically, an initial guess is determined by a few Picard
iterations after which the coupling algorithm switches to a
Newton scheme. If a pinch point develops during the
iterative process then a width constraint of the form Eq. (2)
must be imposed.

3.6.4. Proppant transport coupling

The proppant transport equations can be coupled to the
elasto-hydrodynamic equations in a loose manner at the
end of each time step. Given the latest width and pressure
distributions from the simultaneous solution of Eqs. (15a)
and (15b), we can determine the associated velocity field vp;
which can be used in Eq. (12) to obtain the latest
concentration distribution c. For each fracture element,
we then update the local fluid properties as a function of
the new c values and proceed to the next time step. Explicit
solution of Eq. (12) necessitates a CFL restriction on the
time-step. Since the front evolution is determined by
implicit time stepping and pressure-width coupling, the
front evolution time steps are typically much larger than
the CFL restriction required in the solution of Eq. (12).
The front evolution steps are therefore divided into sub-
time-steps for the solution of Eq. (12), each of which
satisfies the CFL restriction [92].

4. Application

To illustrate the complexity and the challenges involved
in modeling hydraulic fracture treatments under real
conditions, we present the following application example,
based on real data. A hydrocarbon reservoir is located in
two sandstone layers: the upper layer (Pay Zone 1) is
located at a depth of 1615–1670 ft (492–509m), and the
lower layer (Pay Zone 2) at a depth of 2050–2150 ft
(628–655m), as shown in Fig. 9. Between these two ‘‘pay
zones,’’ there is an alternate array of layers of sandstone
and shale, with varying stiffnesses and permeabilities.
Downhole measurements yield a given interpretation of
the elastic properties and the magnitude of the minimum
confining stresses for the area surrounding the wellbore, as
indicated in Fig. 9. Observation of the logs in Fig. 9
indicates the presence of relatively thin and stiff layers at
various depths (these thin and hard layers are usually
referred to as ‘‘streaks’’). There are also two significant
increments or jumps in the confining stress: a jump of
250 psi (1.7MPa) at a depth of 2100 ft (640m) (i.e., within
Pay Zone 2), and a jump of 380 psi (2.6MPa) at a depth of
2250 ft (686m).
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Fig. 9. Profiles of plane-strain modulus (left) and minimum in situ confining stress (right) versus depth.

(footnote continued)

cppa ¼ ðc=ð1� cÞÞGs rw, where Gs is the proppant solid’s specific gravity,

and rw is the water density in pounds per gallon (rw ’ 8:34 lb=gal).
5In reality, part of the gel fraction of the fluid, plus the fluid trapped in
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The treatment design considers the perforated interval
(i.e., the part of the wellbore from which the fracture will
be initiated) to be located at Pay Zone 2. The sandstone in
Pay Zone 1 is considered to be too weak for the wellbore
casing to be perforated, as this would increase the risk of
wellbore collapse or sanding. The design intends to take
advantage of the bottom ‘‘stress barrier’’ to create a
hydraulic fracture that would start in Pay Zone 2 and
propagate upwards and connect to Pay Zone 1. It is also
possible that the thin hard streaks may halt the fracture
height growth.

The rock permeability is expressed in the fracture model
in terms of the leak-off coefficient and spurt. In this
particular case, the leak-off coefficient varies between
6:3	 10�4 and 1:5	 10�3 ft=min1=2 (2:4	 10�5 and
5:9	 10�5 m=s1=2), and the spurt for all the rock layers is
assumed to be equal to 0:01 gal=ft2 (4:1	 10�4 m3=m2).

The treatment design also considers a pumping schedule
for both fluids and proppants. The schedule is shown in
Fig. 10. An injection rate of 40 bbl/min (0:11m3=s) will be
sustained for 120min (7200 s). The first 60min (3600 s) of
the schedule is the ‘‘pad’’ of clean fluid. After 60min of
pumping, proppant is injected in incremental concentration
stages, starting at 2 ppa (c ¼ 0:13),4 and increasing up to
12 ppa (c ¼ 0:48). Pumping stops after 120min, with a total
4Proppant concentration is usually given in ppa units (pounds of dry

proppant per gallon of clean fluid). The conversion formula between

concentration in ppa and volumetric concentration c is
injected VOF of 4157 bbl (661m3) and a total injected mass
of proppant of 224 tons (203	 103 kg). The period follow-
ing pumping (in which the flow rate at the wellbore is kept
to zero) is referred to as the ‘‘shut-in.’’ During shut-in, the
fluid contained in the fracture continues to leak off to the
formation, and hence the observed pressure decline.
Usually, fluid and proppant continue to mobilize (and
the fracture continues to propagate) for a short period after
shut-in starts. However, the fluid pressure in the fracture
eventually equilibrates, rendering a practically null gradi-
ent of pressure everywhere, which essentially stops any
further movement, except for gravity-induced settling.
Shut-in continues until the fracture closes against the
placed proppant. At this point, the net fluid pressure drops
to zero, and it is considered that all the fracturing fluid5 has
leaked into the formation.
The selected fracturing fluid is a crosslinked HPG

(hydroxypropylguar) polymer gel. This fluid has a power-
law rheology defined6 by an exponent n0 ¼ 0:94 and a
consistency index K 0 ¼ 0:05 lbf=ft2 sn0 (2:39Pa sn0). The
the interstitial pores of the proppant pack remains in the fracture.
6These values of n0 and K 0 are ‘‘nominal’’ values for clean fluid, usually

measured at a given standard reference shear rate and temperature.

During the simulation, these values are adjusted based on shear rate,

temperature and proppant concentration.
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selected proppant is a synthetic low-density proppant, with
mean particle diameter of 0.025 in (0.64mm) and solids
specific gravity of 1.55.

Modeling of this treatment case was performed using a
PL3D simulator with fixed (Eulerian) rectangular mesh
and implicit time stepping. This simulator encompasses
many of the features discussed in this paper. It uses a
boundary integral scheme for solving the multi-layered
elasticity equation, a finite difference scheme for the fluid
flow equations, and a VOF method for iterating and
tracking the fracture footprint. Fluid leak-off is calculated
using the 1D Carter approximation. Proppant transport
is modeled using an upwind method with a second-
order limiter, and the fluid density and viscosity are
adjusted depending upon the concentration of proppant.
The mesh used in this particular case consisted of 65
horizontal 	35 vertical rectangular elements, with a total
horizontal extent of 2000 ft (610m) and a total vertical
extent of 820 ft (250m). This simulator has been exhaus-
tively (and successfully) tested against available analytical
solutions for the penny-shaped [49] and PKN models
[19,21], as well as laboratory experiments aimed to
reproduce other effects, such as the crossing of stress
barriers [93].

Results of the simulation are shown in Figs. 10–12. Fig.
10 shows the predicted evolution of fluid pressure at the
wellbore with time, both during injection and after ‘‘shut-
in.’’ We observe that the model predicts a total closure of
the fracture after 400min of treatment time. Figs. 11 and
12, on the other hand, show ‘‘snapshots’’ of the fracture
footprint (with contours of proppant concentration in ppa)
and the fracture width profile at the wellbore, for different
treatment times. At early time (t ¼ 9 min), we observe that
the fracture propagates within Pay Zone 2, but it is limited
at the bottom by the first stress barrier. Towards the end of
the pad injection (t ¼ 60 min), the fracture has already
propagated upwards (as expected). The important height
growth explains the fact that the wellbore fluid pressure
remains practically flat after an initial increase: if the
fracture were to be contained within one single layer (i.e.,
as a PKN-type fracture), we would expect a monotonic
increase of the pressure with time. At the end of the
injection period (t ¼ 120 min), the fracture has already
reached Pay Zone 1, and it starts to propagate within this
layer, confined from further height growth by a combina-
tion of stiffer elastic moduli and higher confinement at a
depth of 1600 ft (488m). The light proppant is carried up
by the fluid, with minimum downward settling. Finally, at
the end of shut-in (t ¼ 400 min), the fracture is completely
closed, and we observe a practically uniform distribution of
proppant, with concentration of about 15 ppa (c ’ 0:5),
which ensures a good conductivity for the hydrocarbons
between Pay Zone 1 and the perforated interval. We
observe that the bottom stress barrier has been able to
contain the fracture downwards. The fracture width
profiles reflect the presence of the hard streaks and stress/
modulus jumps.

5. Discussion

A number of open questions still need to be properly
addressed in the modeling of hydraulic fractures. These
include: (i) how best to address, in a numerically efficient
and physically realistic manner, the handling of layer
debonding and fluid invasion along layer interfaces with
associated stunting of fracture height growth in shallower
wells—relatively limited progress has been made in this
area [94–96]; (ii) how to appropriately adjust current (linear
elastic) simulators to enable modeling of the propagation
of hydraulic fractures in highly cleated coal bed seams (for
the extraction of methane) [97]; (iii) how to appropriately
adjust current (linear elastic) simulators to enable modeling
of the propagation of hydraulic fractures in weakly
consolidated and unconsolidated ‘‘soft’’ sandstones, such
as are found in the Gulf of Mexico—limited progress has
been made in this area [98,99]; (iv) laboratory and field
observations demonstrate that mode III fracture growth
does occur [100], and this needs to be further researched;



ARTICLE IN PRESS

Fig. 11. Fracture footprint (left) showing contours of proppant concentration, and profiles of fracture width versus depth at the fracture center (right), at

t ¼ 9 and 60min.
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(v) related to (iii), the effect of the invaded zone ahead of
the fracture tip needs to be further researched—a criterion
to switch from a fluid lag based approach to an invaded
zone based approach in a numerical model is required; (vi)
suitable models for the propagation of hydraulic fractures
in naturally fractured reservoirs that result in complex
(non-planar) geometric configurations requires develop-
ment [101]; and (vii) how to efficiently model 3D or ‘‘out of
plane’’ effects, such as fracture re-alignment (when the
fracture initiates following an orientation that is not
perpendicular to the minimum in situ stress and then tries
to re-align itself), which could be a cause of near-wellbore
tortuosity or even ‘‘pinching,’’ a factor that usually
determines the success or failure of hydraulic fracturing
treatments [102].

On the fluid mechanics side, the largest unknown is still
the proper coupling of the rheology of the slurry to the
rheology of the base fluid and the concentration and type
of proppant. In particular, it is often assumed that the
proppant particles travel at the same averaged speed as the
fluid, which laboratory experiments have shown to be
grossly incorrect [103–105].
There are also ongoing efforts to incorporate new fluids

that do not follow standard power-law models into existing
simulators, such as visco-elastic surfactants (VES) or poly-
meric fluids with complex time-, temperature- and/or shear-
rate dependent properties. The development of improved
leak-off models for these new fluids is also required, as well as
improved models for use in high permeability situations (e.g.,
[106]) where leak-off can advance ahead of the fracture tip
and no longer satisfies a 1D spatial model or follows a square
root of time behavior [107].
With the advent of real-time micro-seismic, tiltmeter,

and other monitoring during hydraulic fracturing treat-
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Fig. 12. Fracture footprint (left) showing contours of proppant concentration, and profiles of fracture width versus depth at the fracture center (right), at

t ¼ 120 and 400min.
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ments, there is a growing need for very fast models that can
be used to update the treatment designs on the fly as
information is fed back into the models. This is possible to
do using existing P3D models, but PL3D models are
still too CPU-intensive for practical use in such settings.
Effort needs to be devoted to dramatically speed up
PL3D simulators. Current fracture monitoring techniques
often reveal a fracture shape more complex than a P3D
model can adequately represent, and PL3D models can be
used to extract more value from fracture monitoring
activities.

The state of the art in hydraulic fracture modeling allows
the petroleum industry to routinely design and evaluate
stimulation treatments. It has not, however, reached a fully
predictive capability which would allow for daring
optimization strategies: today, most of the optimizations
of stimulation treatments are based on an incremental
strategy. Although we have focused on the forward
modeling of hydraulic fractures, it is clear that a strong
effort needs to be devoted to the inverse problem to
develop robust methodologies to interpret limited field data
and to make the best use of the available models to
optimize fracturing treatments. Such an effort has been
lacking whereas new monitoring methods have been
developed and deployed in the field, and models have not
yet been fully developed with such an inversion/optimiza-
tion process in mind. The value-added step for the
petroleum industry will be to have the models, the
monitoring methods, and the inversion process tightly
integrated so as to make the best use of all the efforts that
have gone into developing hydraulic fracturing models
over the past 50 years.
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