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In this paper the optimal control of uncertain parabolic systems of partial differential equations is
investigated. In order to search for controllers that are insensitive to uncertainties in these systems,
an iterative optimization procedure is proposed. This procedure involves the solution of a set of
operator valued parabolic partial differcntial equations. The existence and uniqueness of solutions
to these operator equations is proved, and a stable numerical algorithm to approximate the
uncertain optimal control problem is proposed. The viability of the proposed algorithm is
demonstrated by applying it to the control of parabolic systems having two different types of
uncertainty.

I. INTRODUCTION

Optimal control of infinite-dimensional systems is a rapidly growing field, with appli-
cations in many engineering disciplines. Modeling of most physical systems results in dy-
namical equations that evolve in infinite-dimensional spaces [1-4]. This is due to the fact
that there is always an infinite number of modes in physical systems. These modes, if ap-
propriately controlled, may not affect the overall performance of the system, and thus
the standard procedure of reduced-order modeling is justified. On the other hand many
systems of practical importance do not have this property, and to accurately model them
the distributed nature of the dynamics ought to be taken into consideration.

In addition to the problem of infinite dimensionality all models of physical systems are
plagued with uncertainties. The effect of uncertainties in control problems can be so
severe as to completely degrade the performance, and even to destabilize the system. In
this article we will address the issue of optimal control under the influence of uncer-
tainty, and show how the problem reduces to a parameter optimization problem with dy-
namic constraints that are represented by partial differential equations.

In the process of designing optimal control systems for distributed parameter systems
the solution of certain partial differential equations arise. These equations, which de-
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scribe the evolution of a certain performance index, form the basis of an iterative proce-
dure for finding the optimal solution. Reliable numerical approximation of these equa-
tions is the crux of the optimal control problem. In this article we will formulate the
problem, analyze the existence and uniqueness of the resulting partial differential equa-
tions, and present a numerical study of the equations that illustrate the effectiveness of
the method.

Il. OPTIMAL CONTROL PROBLEM

The systems considered in this article are modeled by lincar, time-invariant, infinite-
dimensional evolution equations in a real, separable Hilbert space X. The parametric un-
certainty consists of a random variable a taking values in a closed and bounded set W in
a Euclidean space R™, according to a known probability density u(da):

dx(1)

Il Ale)x(t) + Bla)u(t),

where x(to) = x, is a given element in X [5,6]. The control u(¢) is assumed to be of the
form u(f) = Kx(r), where K is a Hilbert-Schmidt operator mapping X into itself. In
specific we will consider the case where ¢ is a bounded open set in R" with smooth
boundary I, X = L) and A(a) is the second-order elliptic operator

n 2
A@b = 3 ayla) L + ayfa)s

ij=1 a X

where a;(a), ao(a) € R are continuous functions of , and satisfy the following ellipticity
requirement

2 a,;(a)b,vb,- 2 Cz bib;
g i

and ¢ is a positive constant independent of a. The parameter of uncertainty « belongs to
W. The input B(a) is a bounded operator for each « which maps X into itself, and as a
function of a it is assumed to be continuous. The initial condition is a Gaussian random
functional on the dual space (X)*, defined by

xo(¢*) = (x0,4%)x-

The expectation of x, is defined by

BGro@) = | 36" dP()

where (2, B, P) is an underlying probability space. Thus E(xo(¢*)) is a bounded linear op-
erator on the dual space X* and the Reisz representation theorem can be used to write

E(xo(¢*)) = ("1, ¢')x

for some m in X. In a similar fashion the covariance operator can be defined as

[(¢t,81) = El(xo(d?) — E(xo(d))(xo(@3) — E(xo(#2))].
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From this it is clear that the covariance operator is a continuous bilinear form on X x X,
and thus can be written as

T@t,67) = (Adi, ¢1)

where A is a positive self-adjoint operator.
The Hilbert space valued random variable x, induces a cylindrical measure on X given
by the following finite-dimensional densities:

1
= exp(—3(x — m)'A (x — my)) dx,---dx,

where
(m, 1)
m, = :
(m,$2)
(An); = (AdT,4/), and {¢} is an orthonormal basis for X. Any bounded, positive, and
self-adjoint operator A induces a cylindrical measure on X, but the only class of covari-
ance operators which induce regular measures on X is exactly the class of nuclear (trace-
class) operators [7]. On the basis of this it is reasonable to assume that the initial
condition has a nuclear operator for a covariance. Viewing the initial condition as a
Hilbert space valued random variable enables us to remove the dependence of the opti-
mal control on the initial conditions by formulating the following parameter optimization
problem:

minimize J(K) = Ea.m(r(x(S) - (), Q(x(s) — r(S)))de) + (K, K)us.
[}

subject to
dx(s)
di
over all K € Xy, the Hilbert space of Hilbert-Schmidt operators. The function r(s) is
an element of the Hilbert space L([0,T]; X), and the notation E,, . means expectation

with respect to xg, a. The inner product between any two elements of Xy s. say K and M,
is given by [8]

= A(a)x(t) + B(a)u(t) 1

(K, M)ys. = trace(KM®*).

The initial condition x(fo) = x, is a given element in X, and Q is a positive, self-adjoint,
Hilbert-Schmidt operator.

. NECESSARY CONDITIONS FOR OPTIMALITY

We will reformulate the problem by converting it to a final value optimization problem.
This is done by obtaining a system of operator equations that evaluate the performance
index J, .(K). The advantage of this approach is that the dependence of J,.,(K) on the
initial condition is displayed explicitly, and thus can be removed by averaging. By a stan-
dard calculation we can get

Joxl K) = (x0, P(0, @)xo}x + (K, K)us. + {xo,v(0))x
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where P(0,a) is evaluated by

(2a)
P(T,a)=0
29 4 (A@) + BE@K)vita) - 20r =0, (%)

J(K) = EXo.a'(xOy P(O: a)xo)x + (K’ K)H.S. + EX()Q(XD) V(O»X

= [ duie)(P @) Ans. + (m, POy + (m0.00) + (K, Kus. O

The new optimization problem will be
min J(K) @

KEXus.
subject to Egs. (2a) and (2b).
To form an iterative numerical procedure to search for the optimal solution, we obtain
a set of necessary conditions for the optimal solution via Lagrange multipliers. Let N(z, a)
and z(¢, @) denote the Lagrange multipliers,

N(t,a) € L([0,T] X W, Xus)* = LY[0,T) X W; Xus)
z(t,@) € LY[0,T] x W; X)* = LY[0,T] X W; X).

Define the quantities M (a, K, P,v, 1), My(a, K, P,¢), S\(a, K, Py, 1), and Sz(e, K, Py, 1) as
follows:

Mi(a, K, Pty = 22 g @) | (A(a) + B@K)'P(,a) + PLa)Ala) + B@K) + Q,
Mi(e, K, Py1) = % — (A(e) + B@)K)N(t,a) - N(t, a)(A(a) + B@)K)",
Sie, K, Py,t) = d"g :9) 4 (A(a) + B@K)W(,a),

Saa, K, Put) = f’f‘%i) - (A(e) + B(@)K)z(t,a).

The first-order necessary conditions can be obtained by taking Frechet derivatives (with
respect to P, N,v, z, and K) of the Lagrangian L defined by

L= de“(a)«P((L a), A) HS. + (mv P(O’ a)m)x + <m,V(O, a))X) + (K, K)HS.

T
+] | duta)diV o), Mita, K, P s + (20,00, e K, P )
w

yielding
Mi(a,K,Pv1) =0 (5a)
P(Ta) =
My(a,K,Py,t) = 0 (5b)

NOa) = A+ my® my
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Si(a,K,Pv,t) =0 (6a)
v(T,a) =0
S:a, K, Pvt) =0 (6b)
20,a) =0
T
K=- L || dusterdeccpis By NG @) - 1t @Br2(t e, ™

Equations (5)—(7) constitute a system of transcendental equations that characterize the
optimal solution for the parameter optimization problem.

V. SYSTEMS GOVERNED BY PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

The main component in the numerical solution of the optimization problem is the so-
lution of the operator Egs. (5a) and (5b). In this section we will investigate the issue of
existence and uniqueness of solutions to such equations. For this purpose will restrict
ourselves to Eq. (2a) and assume, without loss of generality, that Q is equal to the iden-
tity operator denoted by I. Note that the situation in Eq. (6a) is identical. We will analyze
the operator equation

dP _ .
dt—(A+BK)P+P(A+BK)+I ®

PO)=0

by converting it to a parabolic partial equation using the Schwarz kernel theorem [9], and
determine under what conditions it has a weak solution. By the Schwarz kernel theorem
we can write -

(1 P = | SuEIPG 60 £ da .

From this representation it follows that Eq. (8) leads to a partial differential equation de-
scribing the evolution of the kernel P(z, ¢, &)

aP(t’ fh §2)

o - A+ BKPE,6)
+ (4 + BK)3P(1, 61, £) + 8(6: — &) ©

subject to

P0,£,6) =0
P,6,6)=0 LETL &LEY

Pt,6,6)=0 LHEY LET

The identity operator gives rise to a Dirac é function with support along the diagonal
of the region ¢ X . This is exactly the point of difficulty which requires further analy-
sis. However, we can still prove existence and uniqueness of a weak solution under a re-
strictive condition.
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First we need some notation. Let = = [0,T] x ¢ x ¢ and define the following
Sobolev spaces

dg 9
HE'(3) = {g|g,a—f,5§ € L(5), glonr = 0}

g g %
21 = Y o, Y L ? Lz
H(3) {glg e € L)

HY'(2) = {glg € H}', and g(T) = 0}
P(t, &1, &) will be called a weak solution of (9) if it satisfies the following integral equa-
tion

LP(I, f..&:)(—%?— —(A+ BK),G — (4 + BK)hG) dtdé, dé;

= LTJ;G(t, &, &) dtdé

for every G(1,£,,£) € H*' n HY'.

Theorem 1: Under the assumptions stated above, if ¢ C R" with n < 3 then there exists
a unique weak solution P(t, £, &) € LY(3).

The proof of this proposition is based on the following two lemmas whose proofs are
given in the appendix.

Lemma 1: Consider the map L: H>' N Hy' — R defined by

T
L0 = | | 666 arae

L is a continuous linear functional on H>' N H}'.

Lemma 2: The map
M= (—% —(A+ BK), - (A + BK);,):H&"(E) N H¥(Z) — LX3)

is an isomorphism.

Proof of Theorem 1: Define a linear functional on L(Z) by

gld) = LIM™Y(¢) forall ¢ € L¥3)
then
(@) = IL(M )]
By using Lemma 1 we get
lg(@) = KM~ (d)lapron.
Applying Lemma 2 we get
lg@) = Kllél:.

From the Reisz representation theorem there exists a unique P € L*(Z) such that

8@ = | P06 618061 ) drduda.
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Now for every G € Ay' N H*!, M(G) € LXZ) and
gM(G)) = LIM™'(M(G))) = L(G) = LP(L &1, £)M(G) dtdé, dé,.

Thus P is the desired weak solution. [

V. NUMERICAL OPTIMAL CONTROL OF UNCERTAIN INFINITE-DIMENSIONAL
SYSTEMS

In this section we illustrate the optimal design procedure outlined in Secs. IT and III by
considering the approximate numerical design of two uncertain infinite-dimensional con-
trollers. Firstly, the optimal control of the heat equation in which the initial conditions
(IC) are uncertain. Secondly, the optimal control of the heat equation in which the diffu-
sion coefficient is considered to be an uncertain parameter. In both cases the perfor-
mance of the optimal controller designed to cater for uncertainties (referred to as the
insensitive control) is compared to the performance of the optimal control tailored to the
mean initial condition/parameter value (which is referred to as the sensitive control).

A. Numerical Optimal Control of the Heat Equation with Uncertain Initial Conditions

In this example we consider the tracking optimization problem:

minimize J(K) = Em( [ (+(6) = 1,Q(6) — ) ds) + y]T<K<s), K(s)usds  (10)

t
subject to: % = Ax + Bu, u = —Kx, x(0) = xo. (11)
Here we assume that 4 = D(d?/d¢?) and that ¢ € (0, L). Following the procedure out-
lined in Sec. III we obtain the equations for the performance index:

JuolK) = {xo, PO)xo)x + (xo,v(O)x + v L T(K(S), K(sDus.ds (12)
where P(0) is determined by solving
%f') + (A — BKYP() + Pt)A - BK)+Q =0, P(I=0 (13)
and v(0) is determined by solving
‘i“;(ti) + (4 - BKy*(t) —20r=0, wT)=0. (14)

Making use of Eq. (12) and assuming that xo € X is a Hilbert-space-valued Gaussian
random variable with mean %, and covariance operator A, we obtain the new optimiza-
tion problem:

T
minimize J(K) = (P(0), Adus. + (%o, P(0)Xo)x + Ko, v(0))x + 'YJ; (K(s), K(s)us.ds

subject to Egs. (13) and (14).
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We define Lagrange multiplier functions N(f) € L¥[0,T], Xus)%z(t) € LX[0,T], X)*
and the corresponding Lagrangian L as was done in Sec. III. Taking Frechet derivatives
of L with respect to P,y N, z, and K we obtain Egs. (13) and (14) as necessary conditions
in addition to

d‘—jz,(t) = (A — BK)N(1) + N(t)(A — BK), N(0) = A + Zox} (15)
? = (A — BK)z(1), 2(0) = xy (16)

T
0= L 2¥K(s) = 2(P(s)B)*N(s) — (v*(s)B)z*(s), 5K(s))us.ds. an

Given a trial controller K*' we determine an approximate solution to Egs. (13)-(16)
numerically using finite differences. In the case of Eqs. (14) and (16), which only involve
one spatial dimension, we divide the domain [0, L] into N equal subintervals of length
A¢ = L/N and denote the mesh points formed by the end points of these subintervals by
£, = nA£ The numerical solution at such a mesh point is denoted by v = v¥)t, £,) and
similarly for z{¥. Using a central difference approximation to A, Eq. (14) reduces to the
following system of ordinary differential equations (ODEs):

% + /i\i(t)Vi - 22 Qintn =0, vi(T) =0, im=0,...,N, (18)

where A ()i = 8(vicy + vin) + Si(t)vi, 0 = DA£7?, and ¢(t) = —20 — K{”(¢). Here we
have assumed that we have full observation so that B = &;, and that the operator K is
diagonal so that K = K8;. This assumption is a matter of computational convenience
and will be made for the remainder of the numerical experiments performed in this arti-
cle. A central difference approximation to Eq. (16) yields a similar system of ODEs for 2;
to those given in Eq. (18).

In the case of the operator Egs. (13) and (15) we divide the product domain
[0,L] x [0,L] into the mesh of N* square cells that are formed by the Cartesian product
of the subintervals used in Eq. (18). Using a central difference approximation to A,
Eq. (13) reduces to the following system of ODEs:

dP;

LA A0+ A0l + Q=0 P =0, ij=0..N, (9

where A, (O)F;; = 0(Pi—y + Pisy) + ¢i(0)Py, A2j(0)P; = 6(Pj-, + Pin) + ¢i(t)F;, and @
and ¢i(r) are defined in Eq. (18). A central difference approximation to the operator
equation (15) yields a similar system of ODEs for N; to those given in Eq. (19).

To solve the system of ODEs (18) we use the Crank-Nicholson (CN) procedure [10].
The time interval [0,T] is divided into M subintervals of length At = T/M. The end
points of these subintervals are denoted by ¢, = mAt, and superscripts are used to de-
note the time step at which a quantity is evaluated, e.g., v = v(tm, £,). The CN proce-
dure can be expressed in the form

N
[1 - %Ak).m-l]v'('k).m-l = [1 + Az_‘_AAgc).m ]v'('k).m — 2At 2 Ot 20)
i=0
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The numerical solution {v$*™} can be found by a marching process using Eq. (20), which
involves an inversion of the tridiagonal matrix on the left-hand side of (20).

To solve the system of ODEs (19), which result from approximating the operator equa-
tion (13), we use an alternating direction implicit (ADI) scheme [10]:

[1 - %ﬂf}-”“"”’]ﬂﬂ“""” = [1 + %A‘S’:’;"’]P&"’-" + %Qa, (21a)
[1 - %ﬁ&f’;""]l’b*’-'"" = [I + % ‘sf)-'"]P&*"""‘"*’ + -A-zfga. (21b)

Assuming that P{*™ is known, we invert the tridiagonal matrix on the left-hand side of
Eq. (21a) to obtain P{f*™ 2, The right-hand side of Eq. (21b) is now known and the
tridiagonal matrix on the left-hand side is now inverted to yield P{f*™". This backward
marching procedure is used to determine the approximate solution to Eq. (13). We as-
sumed above that K* was known, and calculated the corresponding propagators for the
performance index Pf and v/ and the Lagrange multipliers N}’ and z/*. All these
quantities are then used to determine an approximate gradient Gf}*" from Eq. (17),
which is used to set up a conjugate direction search procedure [11]. The reason for choos-
ing the implicit CN procedure to solve Eq. (18) and the ADI scheme to solve Eq. (19) in
preference to an explicit scheme, such as Euler’s method, is that for explicit schemes the
bound on the time step At to ensure stability depends on the unknown control K. For
such explicit schemes it would be impossible to determine the magnitude of the time
steps At without knowledge of K. Both the CN scheme (20) and the ADI scheme (21) are
unconditionally stable and therefore do not require restrictions on the size of time step
to ensure stability.

1. Numerical Results

We consider the design of an IC insensitive controller for the one-dimensional heat oper-
ator defined in Eq. (11) over a spatial domain of length L = 1.0 and a time interval of
length T = 0.02. We assume: that the diffusion coefficient D = 1.0; that the reference
function r(£) to be tracked has the parabolic form r(£) = £(1 — £); that the mean initial
condition has the form

. _ J2¢ if0<¢<i,
=20 -, ift<e<1;

and that Q;; = 8y, the covariance matrix A;; = 8;;, and y = 107 For the spatial mesh we
assume that N = 50 while the time interval [0, 7] was divided into M = 20 time steps.
In Fig. 1 we plot the controller X designed to be insensitive to initial conditions with a
Gaussian distribution around the mean %,. In Fig. 2 we plot the controller X that is tai-
lored to the mean initial condition %, i.e., designed to minimize the same performance
index as (10) but without any averaging over the initial conditions x,. Comparing Figs. 1
and 2 we see that both controllers resemble the mean initial condition X, however the
shape of the sensitive controller is much closer to the mean initial condition X, than that
of the insensitive controller. In Figs. 3 and 4 we plot the solutions x(¢, £) corresponding to
the insensitive and sensitive controllers, respectively. For both these solutions the mean
initial condition x(0,£) = Xo(£) was used. Both solutions tend to the specified function
r(¢) as ¢ increases. As a measure of the success of each of the controllers in forcing the
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FIG. 1. IC insensitive control.

400
300
200

100

FIG. 2.

IC sensitive control.

solution x(¢, ¢) to track the function r(¢) we consider the error functional
T
B6) = [ (69 = r06x) = Pheds @2

for the two solutions. In the case of the insensitive control Einsens = 0.00791, whereas in
the case of the sensitive control E,.,, = 0.01110.
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0.20

FIG. 4. State with sensitive control and mean IC.

To compare the performance of the two controllers when the initial condition is uncer-
tain, we evaluated the error functional (22) for 5000 different initial conditions that are
random normal perturbations of the mean initial condition X,. In particular x, is dis-
cretized on the spatial mesh with N points to yield Xo;. The discrete perturbed initial
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conditions x,,; are defined to be
x0ip) = x0; + Rp)y i=0...,N  p=1,...,5000, (23)

where R;(p) is a family of normally distributed random N-vectors with covariance matrix
;. In Fig. 5 the frequency distribution of the costs for the randomly perturbed initial
conditions defined in Eq. (23) are given for the insensitive and sensitive controllers.
It can be seen that the frequency distribution of the insensitive controller is narrower
than that of the sensitive controller—the standard deviations are orinens = 0.012307,
Ouens = 0.016349. In addition the mean cost for the insensitive controller Einens =
0.025636 is lower than that for the sensitive controller E..., = 0.032958. Both the nar-
rowing of the frequency distribution and the lowering of the mean cost by the insensitive
controller clearly demonstrate that the insensitive controller is less sensitive to random
perturbations in initial conditions than the sensitive controller.

B. Numerical Optimal Control of the Heat Equation with an Uncertain Parameter

In this problem we consider the tracking optimization problem:

minimize J(K) = E,(IT@(S) - n0x(s) = NMx ds)
T
+ [ (K19, K s, ds

T
= IW(L (x(s,@) — r,Qx(s,@) - r)x ds) du(a)

T
+y [ (K(s), K. ds 24)

subject to:

dx(t,£ a)
dt

For the purposes of demonstrating optimal control with parameter uncertainty we as-
sume that A(e) = a(d?/d£?), i.e., the diffusion coefficient is the uncertain parameter. We
are not able in this case to exploit an operator approach to remove the dependence on a
as we were in the case of uncertain initial conditions. Therefore our approach is to use
numerical integration to evaluate the cost functional and gradients.

We define a Lagrange multiplier function z(¢) € L¥[0,T], X)* and the corresponding
Lagrangian L as was done in Sec. III. Taking Frechet derivatives of L with respect to v,
x, and K we obtain Eq. (25) as a necessary condition, in addition to

dz(t,§,a) _
d

= Ale)x(t,§,e) + Bu(téa), u=-Kx, x(0,6)=x(f). (25)

—(Al@) - BK)z(t,£,a) + Q(x(t,£,0) - r(§)), z(T§a) =0, (26)

T
L 2yK(s) + L(v‘(s, a)B)x*(s, a) du(a), 5K(s)us. ds = 0. @7

Given a trial controller K*’ we determine an approximate solution to Egs. (25) and (26)
using finite differences. We use the same discretization procedure as that used above in
the case of the one-dimensional equations (14) and (16). We solve the resulting systems of
ODE:s using the CN method described above. The numerical solutions x%’ and v’ are
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FIG. 5. Frequency distributions of sensitive and insensitive controllers.

used to determine an approximate gradient G{*™ from Eq. (27), which is used to set up
a conjugate direction search procedure.

1. Numerical Results

As above, we assume a spatial domain of length L = 1.0 and a time interval of length
T = 0.02. We assume that ¥ = 107° and that

(@ — @

dula) = \/;_'mr exp( 297 )da

where @ = 20, ¢ = 6, and the width of the parametric domain W for the purposes of nu-
merical integration was 3o. As with the previous numerical example we assume that
B = §,, that KX is diagonal and that r(¢) = £(1 - £). The initial condition in this case
was taken to be xo(¢) = sin’(2wé).

In Fig. 6 we plot the controller X designed to be insensitive to the parameter a. In
Fig. 7 we plot the controller that is tailored to the mean parameter value a = 20.0, i.c.,
designed to minimize the same performance index as Eq. (24) but without any averaging
over the parameter a. The two controllers are similar in shape; however the amplitude
of the sensitive controller is larger than that of the insensitive controller. In Figs. 8
and 9 we plot the solutions x(z, £) corresponding to the insensitive and sensitive con-
trollers respectively, For both these solutions the mean parameter a = 20.0 was used.
The solution corresponding to the sensitive control can be seen to track r(£) more closely
than the insensitive controller. As a measure of the success of each of the controllers in
forcing the solution x(£,¢) to track the function r(£) we consider the error functional

E(a) = L(x(s, a) = nQ(x(s,a) — rhxds (28)
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for the two solutions. In the case of the insensitive control Einsens(20) = 0.020 616,
whereas in the case of the sensitive control E.,(20) = 0.019367. This measure demon-
strates that the sensitive control is seen to perform better than the insensitive control for
the mean parameter value—this is to be expected since the sensitive control is tailored
to this parameter value. In Figs. 10 and 11 we plot the solutions x(¢, £) corresponding to
the insensitive and sensitive controllers assuming a value of & = 2.0, which is 3¢ away
from the mean. In this casc the solution corresponding to the insensitive control can be
seen to track r(£) noticeably better than the sensitive controller. In the case of the insen-
sitive control Einens(2) = 0.105071, whereas in the case of the sensitive control
E ses(2) = 0.522 271. Therefore for a large perturbation from the mean parameter value
the insensitive control is seen to perform much better than the sensitive control. In
Fig. 12 the cost function E(a) defined in Eq. (28) is plotted for a large range of values
of a. Three regions of performance can be identified: Firstly in the immediate neighbor-
hood [16,25] of the mean diffusion coefficient @ = 20 the sensitive controller
outperforms the insensitive controller. The extent of this interval will depend upon the
magnitude of the sensitivity gradient dE/da at the nominal value &. Secondly, in the in-
terval [2,15] the insensitive controller performs progressively better than the sensitive
controller as the value of « is decreased toward a region of higher sensitivity gradient.
Thirdly, in the interval [25, 38] the insensitive controller marginally outperforms the sen-
sitive controller due to a low sensitivity gradient in this region.

The above example clearly demonstrates the effectiveness of the parameter insensi-
tive design procedure, particularly in regions where the sensitivity gradient of the cost
is large.
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FIG. 6. Parameter insensitive control.
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FIG. 9. State with sensitive control and mean parameter.

FIG. 10. State with insensitive control and perturbed parameter.
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FIG. 11. State with sensitive control and perturbed parameter.

AINTFIOHA300 NOISNHIQ NVaN

«f— SENSITIVE

INSENSITIVE

40

30

20

0.6000

0.5000 -

0.4000 -
0.3000
0.2000 -

1800

0.1000

-0.0000

DIFFUSION COEFFICIENT

FIG. 12. Cost as a function of diffusion coefficient.
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VI. CONCLUSION

In this article we showed how the problem of optimal control of uncertain parabolic sys-
tems leads to an iterative optimization procedure, involving the solution of a set of
parabolic partial differential equations. The existence, uniqueness, and numerical ap-
proximation of the resulting partial differential equations were given. The method was
shown to yield an effective way to compute optimal control laws for systems governed by
uncertain parabolic systems. The positive conclusions of this article suggest that this
method can be applied to many different control problems, arising in other engineering
applications.

A.P.P. was partially supported by the National Science and Engineering Research Council
of Canada. M. D. was supported by the National Science Foundation under Grant No.
ECS-8914357.

APPENDIX

Proof of Lemma 1 T
L(G) = I I G(t,x,x)dtdx.

From a Sobolev imbedding theorem [12] we know that H ™(Q2") imbeds continuously in
Co(ﬂ")where Q" C R” if mp > n'. Specializing to our case we have m = 2,p = 2, and
n' = 2n, Therefore if n = 1 we have
|G, x,x)| = [|Gllc, = K[Glagnne
from which it follows that
T
LG = K Gl < ClGlagrnnes.

On the other hand, by another imbedding theorem [12] we know that H"(£)") imbeds
continuously in LYQ"/?) if mp < n’ < 2mp. Therefore if n = 2 or n = 3 the condition
is satisfied and we have

[Gllexaery < [Gllagny:.
The above inequality implies

T
LG = [ Gl dt < KiGlipou .

Proof of Lemma 2
We will use the fact that [13]
(—i — (A) - (A): H' N HY — 1})

is an_isomorphism and use a perturbation argument. Given any ¢ € L? there exists
v € HY' N H*, which is a solution to the unperturbed problem. Using semigroups we
can write

v = I‘Z(t — 5)p(s) ds.
)

From Ref. 13 we have

"v"ﬁql)nﬁz = KL |I¢|IL2WX¢) ds Ve >0,
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and X is independent of . Now consider successive approximations
!
vi(t) = J’Z(t ~ s)(p(s) + Fv""\(s))ds (A1)
)

where F = (BK), + (BK), is a bounded operator on L2 with |[i-"|| = C.Letr = [Jp(s)|2ds,
from Eq. (Al) we get
x, (KCry
e < k3 S
IV llginnz = rK exp(KCt).
This formula leads to
P llasrones < Clilhas

which means that v" is in fact a sequence in H5' N H>'. The next step is to observe that
v" satisfies

KCt
V" = v latnnz < Kr( i r.
Thus form = n + 1 we have
"Vm - V""ﬁ",nuz s 2 _(K.Ct) :
isn+l ’!

This in turn implies that for any e > 0 there exists # > 0 such that
[v® = vataur <€ form,n > N.

v" is a Cauchy sequence in the Hilbert space H' 0 HY, soit converges to an element v,
which is a solution to the perturbed equation. |
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