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This paper re-examines the boundary conditions at the moving front of a hydraulic fracture
when the fluid front has coalesced with the crack edge. This practically important partic-
ular case is treated as the zero fluid lag limit of the general case when the two fronts are
distinct. The limiting process shows what becomes of the two boundary conditions on
the fluid front, a pressure condition and a Stefan condition, when the lag vanishes. On
the one hand, the pressure condition disappears as the net pressure (the difference
between the fluid pressure and the magnitude of the far-field stress normal to the fracture)
becomes singular. On the other hand, the Stefan condition, which equates the front velocity
to the average fluid velocity, transforms into a zero flux boundary condition at the front. As
a consequence, the velocity of the coalesced front does not appear explicitly in the bound-
ary conditions. However, the front velocity can still be extracted from the near-tip aperture
field by a nonlinear asymptotic analysis. The paper concludes with a description of an algo-
rithm to propagate the combined front, which explicitly uses the known multiscale asymp-
totics of the fracture aperture.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid-driven fractures represent a particular class of tensile fractures that propagate in solid media, typically under pre-
existing compressive stresses, as a result of internal pressurization by an injected viscous fluid. Hydraulic fractures are most
commonly engineered for the stimulation of hydrocarbon-bearing rock strata to increase production of oil and gas wells
(Economides & Nolte, 2000), but there are other industrial applications such as remediation projects in contaminated soils
(Murdoch, 2002), waste disposal (Abou-Sayed et al., 1994), preconditioning and cave inducement in mining (Jeffrey & Mills,
2000). Furthermore, hydraulic fractures manifest at the geological scale as kilometer-long vertical dikes bringing magma
from deep underground chambers to the earth’s surface (Lister & Kerr, 1991; Rubin, 1995), or as subhorizontal fractures
known as sills that divert magma from dikes (Pollard & Hozlhausen, 1979).

The design of hydraulic fracturing treatments relies, in part, on our ability to simulate the evolution of the fracture foot-
print and of the aperture field, as well as of the injection pressure, and to assess the dependence of these quantities on the
fracturing fluid rheology, the injection rate, and the rock mechanical properties. However, simulating the propagation of a
hydraulic fracture remains a formidable task, even under the ideal assumptions of an isotropic homogeneous linear elastic
rock. The challenge stems on the one hand from solving the non-linear, history-dependent, and non-local equations
53043.
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governing the flow of a viscous fluid in a deformable permeable channel, and on the other hand from the moving boundary
nature of the problem. In principle, there are two moving fronts – the crack edge and the fluid front lagging behind. But
under stress conditions that are prevalent in hydrocarbon reservoirs, the lag between the two fronts is virtually non-existent.
The two fronts must then be treated as having coalesced in numerical simulators, as a prohibitively dense discretization
mesh would be required otherwise to capture the lag.

Paradoxically, it is more challenging to formulate a computational algorithm to propagate the front for the limiting case of
zero lag. The complication arises because of the degeneracy of the Reynolds lubrication equation near the fracture tip, where
the aperture tends to zero, and also because of a singularity in the leak-off velocity at the tip in permeable rock. As a result,
the Stefan condition at the fluid front, which provides a condition on the fluid front velocity when the two fronts are distinct,
degenerates into a zero flux boundary condition when the two fronts coalesce. With the front velocity not appearing explic-
itly in the conditions at the moving front, standard computational algorithms for solving moving boundary problems, such as
the volume of fluid method (Voller, 2009) or the level set method (Osher & Sethian, 1988; Sethian, 1999) cannot be used as
such.

While considerable effort has been invested in the modeling of hydraulic fracturing since the pioneering work of
Khristianovic and Zheltov (1955) (see Adachi, Siebrits, Peirce, & Desroches (2007) and Bunger, Detournay, Garagash, &
Peirce (2007) for an extensive list of references, with a particular focus on the Petroleum Industry), the realization that
the global solution depends critically on the boundary conditions at the tip and on the details of the near-tip solution has
only emerged in recent years. Indeed, when the first models of hydraulic fractures were being developed, the complexity
of the problem linked to the existence of a moving boundary and to the degeneracy of the nonlinear equations near the
tip was not fully recognized. In these early attempts, analytical solutions for plane strain and radial hydraulic fractures were
built based on ad hoc assumptions (Abé, Mura, & Keer, 1976, 1979; Advani, Torok, Lee, & Choudhry, 1987; Geertsma & de
Klerk, 1969; Nilson, 1986; Nilson & Griffiths, 1983), while numerical models inherited propagation algorithms from dry
cracks based on linear elastic fracture mechanics (Advani, Lee, & Lee, 1990; Clifton, 1989; Clifton & Abou-Sayed, 1979;
Shah, Carter, & Ingraffea, 1997; Sousa, Carter, & Ingraffea, 1993; Vandamme & Curran, 1989); these algorithms unwittingly
forced a behavior in the tip region that was not always appropriate for the spatial resolution of the mesh (Lecampion et al.,
2013). Furthermore, the non-linearity of the equations implies that it is possible to find multiple volume-conserving and
equilibrated fracture width and fluid pressure fields associated with different fracture footprints at a given time. The role
of the boundary conditions is to select the appropriate fracture width, fluid pressure, and fracture footprint combination.

Recent research efforts have led to a series of accurate benchmark solutions for simple hydraulic fracture geometries
(with zero lag): plane strain (Adachi, 2001; Adachi & Detournay, 2002, 2008; Garagash, 2006a, 2006b; Garagash &
Detournay, 2005; Hu & Garagash, 2010) and radial (Bunger, Detournay, & Garagash, 2005; Madyarova & Detournay, 2013;
Savitski & Detournay, 2002). These solutions, which have also been partially verified by laboratory experiments (Bunger,
2005; Bunger et al., 2007), provide rigorous tests for numerical algorithms (Lecampion et al., 2013), and also are forcing a
re-examination of the tip boundary conditions and of the importance of the solution in the vicinity of the fracture front.

Motivated by the recent resurgence of papers on the modeling of hydraulic fractures (Carrier & Granet, 2012; Chen, 2012;
Damjanac, Detournay, Cundall, & Varun, 2013; Gordeliy & Detournay, 2011; Gordeliy & Peirce, 2013a, 2013b; Linkov, 2012;
Mishuris, Wrobel, & Linkov, 2012; Mohammadnejad & Khoei, 2013; Hunsweck, Shen, & Lew, 2013; Zhou & Hou, 2013; Zhang
& Jeffrey, 2012), we carefully re-examine here the conditions at the fluid and fracture fronts. Furthermore, we use tip asymp-
totic analysis to highlight the change in the required boundary conditions in the singular limit in which the fluid and the
fracture fronts coalesce. The crack front velocity can then only be extracted from a non-linear asymptotic analysis of the
solution in the tip, a challenging task in itself because of the multiscale nature of the tip solution. We conclude by describing
an algorithm that exploits the tip asymptotics to both locate the free boundary and to determine the front velocity, and
which is capable of achieving an accurate solution on a relatively coarse mesh.

2. Mathematical formulation

2.1. Problem definition and assumptions

We consider the propagation of a planar fracture, driven by the injection of a fluid in a rock medium, see Fig. 1. The
hydraulic fracture is, in principle, characterized by the two distinct moving fronts that evolve with time t: one is the crack
edge C cðtÞ and the other is the fluid front C f ðtÞ, which is contained inside C cðtÞ. The contour C cðtÞ defines the crack footprint
AcðtÞ, while C f ðtÞ defines the fluid-filled fracture domain Af ðtÞ# AcðtÞ. Under large far-field stress conditions, the lag between
the crack edge and the fluid front becomes negligible (Garagash & Detournay, 2000), and the two fronts effectively coalesce
to a single front denoted by CðtÞ, which encompasses the crack domain AðtÞ.

The fluid is viewed as being injected from a point source because the characteristic dimension of C f ðtÞ and thus of C cðtÞ is
much larger than the dimension of the source. The injection point serves as the origin for the vector x defining the position of
any point in the fracture plane.

The main focus of this paper is on the nature of the boundary conditions at the moving front CðtÞ that results when the lag
vanishes. Before addressing this question, we first formulate the complete set of equations for the case when C cðtÞ is distinct
from C f ðtÞ. A complete formulation of the problem requires that the governing equations, the boundary conditions on C cðtÞ
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Fig. 1. Planar hydraulic fracture with two distinct moving fronts: the crack edge C cðtÞ and the fluid front C f ðtÞ.
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and on C f ðtÞ, and the initial conditions be specified. The set of equations and conditions represent a closed system, from
which it is possible to determine the evolution of the footprints of both the fracture and of its fluid-filled part, as well as
the evolution of the aperture and pressure fields.

To simplify the problem and make it more tractable, we start by introducing four sets of assumptions, pertaining to the
rock, the fluid, the in-situ stress, and the lag region, respectively. First, the rock is assumed to be homogeneous, linearly elas-
tic, brittle, and impermeable and of infinite extent (although the assumption of impermeability will be relaxed at some point
in the discussion); thus only two parameters are needed to characterize the rock: the so-called plane strain modulus E0

(equal to E=ð1� m2Þ where E is Young’s modulus and m is Poisson’s ratio) and the toughness KIc . Second, the fracturing fluid
is assumed to be incompressible and Newtonian with viscosity l and density qf . Third, the orientation of the minimum in-
situ compressive principal stress r0ðxÞ is assumed to remain constant. The assumptions on the far-field stress and on the
rock medium ensure that the fluid-driven fracture propagates in Mode I (pure tension). In other words, the mode I stress
intensity factor KI equals the rock toughness KIc and KII ¼ KIII ¼ 0 at every point of the crack edge C cðtÞ. Finally, the lag region
between the crack edge and the fluid front is assumed to be filled with vapors from the fracturing fluid, at a pressure that is
negligible compared to the magnitude of the far-field stress.

2.2. Governing equations, initial and boundary conditions

Two fundamental equations govern the fracture aperture w and the fluid pressure pf : a non-local elasticity equation relat-
ing the net pressure p ¼ pf � r0 to the aperture w and the Reynolds lubrication equation. For the cases considered here, i.e., a
domain of infinite extent, and a linear elastic homogeneous material, the elasticity equation can be expressed as a hypersin-
gular integral equation given by Crouch and Starfield (1983), Hills, Kelly, Dai, and Korsunsky (1996)
pðx; tÞ ¼ pf ðx; tÞ � r0ðxÞ ¼ �
E

8pð1� m2Þ

Z
Ac ðtÞ

wðx0; tÞdAcðx0Þ
jx� x0j3

ð1Þ
The Reynolds equation is the nonlinear PDE (Batchelor, 1967)
@w
@t
¼ 1

12l
$ � w3 $pf � qf g

� �h i
þ QðtÞdðxÞ; x 2 Af ðtÞ ð2Þ
obtained by combining Poiseuille’s law for the fluid flux q
q ¼ � w3

12l $pf � qf g
� �

ð3Þ
with the continuity equation
@w
@t
þ $ � q ¼ QðtÞdðxÞ ð4Þ
The boundary condition at the injection point has been incorporated directly in the continuity equation and in the
Reynolds equation, via the singular term QðtÞdðxÞ. In the above, the symbol g stands for the acceleration due to gravity.

If the fluid front C f ðtÞ is distinct from the crack front C cðtÞ, there are two boundary conditions on each front. On the crack
front C cðtÞ : w ¼ 0 and KI ¼ KIc; and on the fluid front C f ðtÞ : pf ¼ 0 and the Stefan condition
V f ¼ q=w on C f ð5Þ
This latter condition simply expresses that the fluid front velocity V f is equal to the average fluid velocity v at the fluid front
– itself equal to the flux q divided by the crack aperture w at the fluid front. (On the fluid front, the flux q is orthogonal to
C f ðtÞ).
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At time t ¼ 0, the solution is assumed to be known, i.e, the two contours C cð0Þ and C f ð0Þ, and the fracture aperture wðx;0Þ.
Alternatively the early time solution could be given by the so-called ‘‘O-solution,’’ a similarity solution for a radial fracture
characterized by power law growth of the two fronts, with C f ðtÞ growing faster than C cðtÞ (Bunger & Detournay, 2007).

Eqs. (1) and (2), together with two boundary conditions at each of the two fronts, and given the initial conditions
{Ccð0Þ;Cf ð0Þ, and wðx;0Þg with x 2 Acð0Þ (or alternatively a similarity solution at early time) constitute a closed system for
tracking the evolution of the hydraulic fracture.
3. Particular case of zero lag

Under certain conditions, which can be broadly defined to correspond to a ‘‘large’’ far-field stress r0, the lag between the
fluid front and the crack edge becomes negligible. This particular case actually turns out to be typical of most hydraulic frac-
turing treatments. It needs to be addressed carefully because of the degeneracy of the fluid equations at the tip.

In the presence of a ‘‘large’’ far-field stress, the two distinct fronts effectively coalesce so that a solution with one com-
bined front rapidly emerges over a time scale that is very small compared to the other time scales characterizing the fracture
evolution. For example, there is an extremely rapid transition from the O-solution to an intermediate asymptotic solution –
the so-called ‘‘M-solution’’, for a radial fracture with no lag, which is obtained by setting KIc ¼ 0 (Savitski & Detournay, 2002).
The transition between the O- to the M-solution takes place over the time scale E02l=r3

0 (Bunger & Detournay, 2007), which is
typically of order of seconds. The similarity M-solution is also characterized by a power law evolution of the fracture radius;
it is effectively the early time solution for planar hydraulic fractures that are completely filled by the injected fluid.

The combined front is now characterized by the conditions q ¼ 0 and w ¼ 0, besides the propagation criterion KI ¼ KIc . To
justify this we reason as follows: the Stefan condition V f ¼ q=w and the condition p ¼ �r0 (equivalent to pf ¼ 0) on C f ðtÞ,
reduces to q ¼ 0 when C c ¼ C f ¼ C . Indeed, the Stefan condition degenerates: since w ¼ 0 at the front and since V f is finite
the only possibility is that q ¼ 0. In fact, the front velocity V f ¼ V c ¼ V has to be extracted from an asymptotic analysis of the
nonlinear system of equations consisting of the elasticity and lubrication equations, and the conditions q ¼ 0; w ¼ 0, and
KI ¼ KIc , as will be shown in Section 4. For impermeable rock, V ¼ q=w on CðtÞ, i.e. the front velocity is equal to the average
fluid velocity q=w, but this is not the case when there is leak-off.

It is useful to understand how the two conditions on C f ðtÞ, qðxf Þ ¼ V f ðxf Þwðxf Þ and pðxf Þ ¼ �r0, with xf 2 C f reduce to
qðxcÞ ¼ 0 when C c ¼ C f ¼ C , noting that xc 2 C c . Consider a situation where the two fronts are close, and let x�f ðxcÞ be the point
on the fluid front that is closest to xc . In other words, x�f ¼ xc � knc , where k is the local distance between the two fronts and
nc is the outward unit normal to the front; both k and nc are evidently functions of xc . We now imagine that r0 increases and
becomes large compared to the reference stress r� ¼ 3plVE02=8K2

Ic (Garagash & Detournay, 2000), where V ¼ jV cj ’ jV f j.
With increasing r0, the lag k decreases and vanishes as r0 !1. In fact, for r0=r�J 10, k ’ 3:210�2k� expð�r0=r�Þ with
k� ¼ K6

Ic=l2V2E04. When x�f ðxcÞ ! xc , wðx�f Þ ! 0 while V f ðx�f Þ ! V cðxcÞ ¼ VðxcÞ, thus indeed qðx�f Þ ! 0, and pðx�f Þ ! �1. In
other words, when the lag k vanishes, the boundary condition on the pressure disappears and the Stefan condition on the
fluid front velocity transforms into a condition on the flux since the two front velocities have now become equal. The three
conditions on CðtÞ do not contain the velocity V explicitly, which is needed to evolve the front. However, as shown in Sec-
tion 4, the front velocity can be extracted from a nonlinear asymptotic analysis.

These boundary conditions at the crack front, in the presence of a vanishing lag, have been the source of considerable
confusion. The main points that we want to stress here are that the three conditions on CðtÞ; w ¼ 0; q ¼ 0, and KI ¼ KIc

are independent, although they appear to be related. Indeed, according to linear elastic fracture mechanics, the crack aper-
ture in the immediate vicinity of the crack edge is given by
w �s!0 32
p

� �1=2 KIc

E0
s1=2 ð6Þ
where s is a moving coordinate having an origin on the crack edge, which measures the signed distance from the front, with
positive value corresponding to a point inside the crack. Evidently, (6) implies that w ¼ 0 on the crack edge, s ¼ 0. Also, as
discussed above, the Stefan condition V f ¼ q=w transforms into q ¼ 0 when the fluid front coincides with the crack edge.
Nonetheless, each boundary condition carries different information. Indeed,

� Given the aperture field wðx; tÞ, and the domain contour CðtÞ, the condition q ¼ 0, which amounts to a Neumann boundary
condition, is sufficient to solve for the fluid pressure pf ðx; tÞ or the net pressure pðx; tÞ, up to a constant.
� Given the fluid pressure pf ðx; tÞ (up to a constant), CðtÞ, and the crack volume (equal to the injected volume of fluid
V f ðtÞ ¼

R t
0 QðsÞdsþ V f ð0Þ), the condition w ¼ 0 is sufficient to solve for the aperture wðx; tÞ, noting that the undetermined

constant in the fluid pressure is determined by the solvability condition VcðtÞ ¼ V f ðtÞ, typical of Neumann problems.
� The propagation criterion KI ¼ KIc provides the supplementary information to determine the position of the crack edge

CðtÞ.
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4. Asymptotic analysis and front velocity in the absence of a lag

4.1. Preamble

The velocity of the front CðtÞ, in the absence of a lag, can be extracted from an asymptotic analysis of the elasticity and
lubrication equations together with the three conditions w ¼ 0, q ¼ 0, and KI ¼ KIc on CðtÞ. The cases k > 0, for which a
classical Stefan condition applies, are thus radically different from the case k ¼ 0, in which the front velocity can only be
determined in terms of quantities involving a distinguished limit at the front.

Our proof builds on the reverse problem, i.e., the solution wðx; tÞ and pðx; tÞ in the vicinity of CðtÞ is completely determined
by the elasticity and lubrication equations and the three conditions on CðtÞ, provided that the front velocity is known. First we
note that the 1D nature of the solution in the vicinity of the front, i.e., the spatial variation of the fields w and p near CðtÞ,
takes place in the direction normal to the front (see Peirce & Detournay (2008) for details). Furthermore, we show next from
considerations involving the asymptotic forms of the continuity and the elasticity equations that the near-tip pressure, aper-
ture, and flux fields depend on time, via the dependence of the tip velocity on time.

4.2. Continuity

4.2.1. Impermeable case
Near the moving front CðtÞ, the continuity equation (4) can be rewritten as
Dw
Dt
þ V

@w
@s
� @q
@s
¼ 0 ð7Þ
where the operator D=Dt represents the rate of change at a fixed s. (Although not embodied in the notation, (7) deals with the
asymptotic form of the fields wðx; tÞ and qðx; tÞ, which only depends on the signed distance s from the front and on time t).
However, the convective term V@w=@s dominates the time derivative Dw=Dt close to the front (Adachi & Detournay, 2008;
Garagash, Detournay, & Adachi, 2011), since w � sa with 1=2 6 a < 1 as s! 0 (a ¼ 1=2 if KIc > 0, and a ¼ 2=3 if KIc ¼ 0).
Hence the continuity equation reduces to
V
dŵ
ds
� dq̂

ds
¼ 0 ð8Þ
where the hat indicates that the dependence of the field on time, is only via the dependence of the tip velocity on time, i.e.,
ŵðs; VÞ and q̂ðs; VÞ. Integrating the continuity equation (8) with ŵð0Þ ¼ q̂ð0Þ ¼ 0 yields (Desroches et al., 1994)
q̂ ¼ Vŵ; s� ‘ ð9Þ
In impermeable rocks the average fluid velocity v̂ ¼ q̂=ŵ is thus uniform in the vicinity of the front C and equal to the
instantaneous tip velocity V.

Eq. (9) apparently resembles the Stefan condition (5) on C f ðtÞ. The resemblance is superficial, however. The Stefan condi-
tion applies strictly at xf ; i.e., it does not necessarily imply that behind the front C f ðtÞ the average fluid velocity v is equal to
the front velocity Vf over any significant distance. Indeed, (9) relies on neglecting Dŵ=Dt on account of the singularity in the
aperture gradient at the tip, which results from the fact that either a ¼ 1=2 (an asymptotic result obtained by invoking elas-
ticity) or a ¼ 2=3 (obtained by invoking both elasticity and lubrication). In other words, (9) is an asymptotic condition that
applies in a region behind the crack tip while (5) is an interface condition. The region of validity of the asymptotic condition
is actually quite large (approximately one order of magnitude smaller than the fracture dimension for plane strain and radial
geometries (Adachi & Detournay, 2002; Garagash & Detournay, 2005; Savitski & Detournay, 2002)) on account of the singular
behavior of the solution at the tip. Finally, the Stefan condition qðxf Þ ¼ Vf ðxf Þwðxf Þ applies whether or not there is leak-off,
while (9) is valid only in the absence of leak-off, as will be shown in Section 4.2.

4.2.2. Permeable case
In the case of one dimensional Carter leak-off (Carter et al., 1957), the crack front velocity V is no longer equal to the aver-

age fluid velocity v̂ð0Þ. Indeed, the leak-off specific discharge f ðx; tÞ is given by
f ðx; tÞ ¼ 2Clffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � toðxÞ

p ð10Þ
where t0 is the time of first exposure, i.e., the time at which the crack front was at x;Cl is the Carter leak-off coefficient, and
the factor 2 accounts for the two walls of the fracture. Near the front, t � t̂0ðsÞ ¼ s=V; hence
f̂ ðsÞ ¼ 2Cl

ffiffiffiffi
V
s

r
ð11Þ
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Although there are issues applying Carter’s law in the near tip region, the basic structure of the law, i.e. the inverse square
root dependence on the elapsed time t � t̂0ðsÞ, remains in the case where a more general diffusive process is considered
(Detournay & Garagash, 2003; Kovalyshen & Detournay, 2013). In other words, (10) or (11) apply, provided that the leak-
off coefficient Cl is re-interpreted. With leak-off, the continuity equation (8) becomes
V
dŵ
ds
� dq̂

ds
þ f̂ ¼ 0 ð12Þ
which, after integration, yields
q̂ ¼ Vŵþ 4Cl

ffiffiffiffiffi
Vs
p

s� ‘ ð13Þ
In the toughness-dominated regime, the average fluid velocity v̂ ¼ q̂=ŵ is finite and uniform in the region of dominance of
the square root asymptote given in (6), but the front velocity is no longer equal to the average fluid velocity in that region,
but rather given by
V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V� þ v̂ð0Þ

q
�

ffiffiffiffiffiffi
V�

p� �2

ð14Þ
with
V� ¼
p
8

ClE
0

KIc

� �2

ð15Þ
On the other hand, in the viscosity-dominated regime and provided that the dimensionless leak-off coefficient
v ¼

ffiffiffiffiffiffiffiffiffiffiffi
V�=V

p
J 100, an intermediate asymptote emerges, which is characterized by ŵ � s5=8 (Garagash et al., 2011;

Lenoach, 1995). In the region of dominance of this leak-off viscosity asymptote, the average fluid velocity varies as s�1=8

(and thus does not have a finite limit at s ¼ 0).

4.3. Multiscale tip asymptotics

Besides (13), the asymptotic fields are governed by elasticity and Poiseuille’s law. Again, these two equations take a par-
ticular form near the crack front. The elasticity equation (1) for a field point close to the (smooth) crack front CðtÞ degener-
ates to Peirce and Detournay (2008)
p̂ ¼ E0

4p

Z 1

0

dŵ
dz

dz
s� z

; ð16Þ
while Poiseuille’s law (3) reduces to
q̂ ¼ ŵ3

12l
dp̂
ds
: ð17Þ
Note that any smooth spatial variation of the far-field stress r0 in the elasticity equation (r0 enters the equation through
the definition of the net pressure) as well as the gravity term in Poiseuille’s law can be ignored when viewed at the tip scale.

The system of Eqs. (6), (13), (16), and (17), which embed the boundary conditions for ŵ and q̂ at s ¼ 0 as well as the prop-
agation criterion, constitute a closed set that can be solved for p̂ðsÞ; q̂ðsÞ, and ŵðsÞ on ½0;1Þ (Garagash et al., 2011). The tip
asymptotic fields are actually governed by the equations for a semi-infinite fluid-driven fracture steadily propagating at a
constant velocity, corresponding to the current propagation speed of the finite fracture. The tip solution is thus autonomous.

The general solution for the aperture can be expressed as X̂ðn̂Þ ¼ ŵðŝ=‘̂mkÞ=ŵmk where ‘̂mk and ŵmk are reference length
scales for the distance from the front and for the aperture, respectively
‘̂mk ¼
g‘K

6
Ic

E04l2V2 ; ŵmk ¼
gwK4

Ic

E03lV
;

with g‘ ¼ 211=32p3 ’ 7:339 and gw ¼ 28=3p2 ’ 8:646. Furthermore, the solution X̂ðn̂Þ only depends on the number

v ¼
ffiffiffiffiffiffiffiffiffiffiffi
V�=V

p
. It is characterized by a near-field (toughness) asymptote X̂ðn̂Þ �n̂!0

n̂1=2, a far-field (viscosity) asymptote

X̂ðn̂Þ �n̂!1bmn̂2=3 with bm ¼ 21=3 � 35=6, and also an intermediate (leak-off/viscosity) asymptote X̂ðn̂Þ � n̂5=8 if vJ 100. In the

absence of leak-off (v ¼ 0), the toughness asymptote ŵ=ŵmk � ðs=‘̂mkÞ
1=2

applies for s K 10�6‘̂mk and the viscous dissipation

asymptote ŵ=ŵmk � bmðs=‘̂mkÞ
2=3

for s J ‘̂mk. This particular result shows that if ‘̂mk is much smaller than the fracture dimen-
sion (pragmatically less than 10%), then the fracture propagates in the viscosity regime, since at the scale of the fracture, the
relevant tip asymptote is the viscosity asymptote, which shields the toughness asymptote. In this regime, the energy dissi-
pation associated with the breaking of the rock is negligible compared to the viscous dissipation. Hydraulic fracturing treat-
ments for the stimulation of oil and gas are dominantly in the viscosity regime (Bunger et al., 2007; Detournay, Peirce, &
Bunger, 2007).
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The above results indicate that the near-tip aperture field only depends on the front velocity, given known material
parameters. Next, we describe a technique to update the front position and simultaneously calculate the front velocity, from
the aperture computed at points in the vicinity of the front.

5. Computational considerations with the tip asymptotes

Evidently the calculation of the two fields wðx; tÞ and pf ðx; tÞ and of the contour CðtÞ are coupled; their solutions at any
given time t requires iteration between the position of the front and the solution of a non-linear system of algebraic equa-
tions, obtained by combining discretized forms of the elasticity equation (1) and of the Reynolds equation (2). The challenge
of solving this particular problem is further compounded by the fact that the non-linear coupling between the Reynolds and
the elasticity is specially intense in the tip region, where there is rapid variation of the crack aperture. The issues associated
with this coupling, in particular the emergence of different asymptotes depending on the local crack velocity, have been dis-
cussed in a series of papers (Garagash, 2009; Lecampion et al., 2013; Peirce & Detournay, 2008).

Recently, a novel Implicit Level Set Algorithm (ILSA) has been developed (Peirce & Detournay, 2008), which uses the lim-
iting behavior of the fracture width, obtained from asymptotic analysis, in order to locate the unknown free boundary with-
out requiring explicit knowledge of the front velocity field. This scheme is able to select the appropriate asymptote based on
local conditions along the perimeter of the fracture footprint and to embed this asymptote and incorporate information at a
much finer length scale in a weak sense by matched tip volumes. In a recent comparative study of a number of different
numerical formulations (Lecampion et al., 2013), the ILSA scheme was shown to provide extremely accurate results while
requiring relatively few numerical resources.

To describe the details of the algorithm, assume that the three-dimensional elastic equilibrium equation (1) are discret-
ized using constant width rectangular elements that are collocated at element centers. Further let the Reynolds lubrication
equation (2) be discretized using a finite volume method also defined with respect to quantities sampled at the centers of the
rectangular elements. At the periphery of the fracture, which may not conform to the structured rectangular mesh, the
boundary is represented using a concept of partially filled tip elements that are used to define average fracture widths, which
are also sampled at element centers. The distinguishing feature of this algorithm is its ability to locate the fracture free
boundary using the asymptotic behavior of the hydraulic fracture width that is applicable at a particular point on the fracture
perimeter. The free boundary is located by the following iterative process: given an initial guess for the fracture boundary C ,
determine the corresponding trial fracture width w and fluid pressure field pf ; in the ribbon of elements that are completely
filled with fluid and which share at least one side with a partially filled tip element, use these trial width values to estimate
the distance to the free boundary by inverting the applicable tip asymptotic expansion; use these estimates of the distance to
the free boundary as initial conditions for the eikonal equation jrTðxÞj ¼ 1, whose level set curve TðxÞ ¼ 0 is the free bound-
ary C that we seek. The fracture boundary is then moved to the curve TðxÞ ¼ 0 and the iterative process is repeated until
convergence is achieved. The algorithm is able to use the multi-scale hydraulic fracture tip asymptotic solution
(Lecampion et al., 2013; Peirce, 2014) and can thus automatically capture the different types of propagation regimes with
a relatively coarse mesh.

The approach discussed above should be contrasted with the method recently advocated by Linkov and coworkers
(Linkov, 2012; Mishuris et al., 2012) to determine the front velocity V. Their approach is based on equating the front velocity
V to the average fluid velocity v ¼ q=w in the vicinity of the front (in impermeable media). This ‘‘speed equation,’’ as referred
to by these authors, is in fact the integrated continuity equation (9). Issues with this approach will be discussed in detail
elsewhere. We only want to point out here that calculation of the front velocity from (9) requires understanding how to
accurately compute both w and q in the vicinity of the front. While w can be computed with good accuracy near the crack
tip, the numerical evaluation of q is problematic as it involves applying divided differences to a singular pressure field. Fur-
thermore, if there is leak-off and if the fracture propagates in the viscosity-dominated regime, the region under the umbrella
of the square root asymptote (where the fluid velocity is uniform, although not equal to the front velocity) is much smaller
than the spatial resolution of a ‘‘reasonable’’ mesh (say Oð10Þ elements per fracture dimension) (Lecampion et al., 2013).
While it is, in principle, still possible to extract the front velocity V from the fluid velocity field, it would be very challenging
to determine the spatial variation of fluid velocity within the constraints of a reasonable mesh discretization. In contrast, the
implicit procedure outlined in Section 5 does not rely on knowing an accurate front velocity but yields it as a quantity that
can be determined a posteriori from the front position.

6. Conclusions

In this paper we have re-examined the nature of the boundary conditions at the moving front of a fluid driven fracture, in
the practically important case when the fluid front and the crack edge have virtually coalesced. By treating the zero fluid lag
case as the limit of the general case when the two fronts are distinct, we have analyzed the transformation of the two bound-
ary conditions at the fluid front when the fluid lag vanishes; namely the degeneracy of the Stefan condition into a zero flux
condition and the disappearance of the pressure condition. The front velocity, needed to evolve the fracture footprint with
time in numerical simulations, does not therefore appear explicitly in the boundary conditions for the zero lag case as is
usual in problems with a moving boundary, where a Stefan condition provides an explicit expression for the velocity.
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Although the front velocity is equal to the average fluid velocity in the vicinity of the tip when the rock is impermeable, a
large variation of the fluid velocity in the tip region is expected when there is leakoff, in view of the multiscale nature of the
solution near the tip – a consequence of the combination of nonlinear, non-local, and history dependence of the goverving
equations. In addition, considering the challenge of accurately computing the fluid velocity near the front, in view of the
pressure singularity, any algorithmic scheme to extract the front velocity from the near tip fluid velocity would require
an extremely fine grid resolution. However, the front velocity can be determined from a nonlinear asymptotic analysis of
the fracture aperture field. Such an approach, combined with an implicit level set algorithm is able to accurately propagate
the fracture footprint on a coarse mesh.
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