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ABSTRACT: The near-tip behavior of a hydraulic fracture determines the local dynamics of the fracture front, and therefore affects
the global fracture geometry. Several physical mechanisms may compete to determine the near-tip behavior. In this paper, we
consider the simultaneous interplay of fracture toughness, fluid viscosity, and leak-off, which together cause the solution to vary at
multiple scales in the near-tip region. In order to avoid having a mesh size that is able to resolve the finest length scale, an Implicit
Level Set Algorithm (ILSA), which uses a suitable asymptotic solution for the tip element to locate a fracture front, is employed.
The latter asymptotic solution comes from the analysis of a semi-infinite fracture propagating steadily under plane strain elastic
conditions. Equipped with an accurate closed-form approximation for this asymptotic solution, which resolves the effects of the
fracture toughness, fluid viscosity, and leak-off at all length scales, we analyze the problem of the simultaneous propagation of
multiple parallel hydraulic fractures.

1. INTRODUCTION

Hydraulic fracturing is a process, in which a pressurized
fluid is injected into a rock formation to induce crack
propagation. This technology is used primarily to stim-
ulate oil and gas wells [1], but, in addition, is used for
waste disposal [2], rock mining [3], as well as for CO2

sequestration and geothermal energy extraction [4]. To
increase the efficiency of operation in petroleum applica-
tions, multiple hydraulic fractures from different perfora-
tions are often generated simultaneously from one well-
bore. In this situation, outer fractures induce an addi-
tional compressive stresses on inner fractures and cause
non-uniform fracture growth. This phenomenon is called
stress shadowing and has been addressed in numerous
studies [5, 6, 7, 8, 9, 10, 11, 12, 13, 14] to name a few. It
can significantly affect the fracture geometry and the as-
sociated production rate. For this reason, it is important to
develop numerical models that are able to predict simulta-
neous growth of multiple hydraulic fractures and that can
be used to design more efficient hydraulic fracture stimu-
lations.

Recognizing the significance of the stress shadowing,

numerous numerical simulators that are able to capture
the interaction between multiple hydraulic fractures have
been developed such as [5, 8, 9, 11]. Various approxima-
tions are used in different simulators, which leads to dif-
ferent accuracy levels and computational times. As shown
in numerous studies [15, 16, 17, 18], hydraulic fractures
obey a complex multiscale behavior near the fracture tip.
Since the tip region determines the fracture dynamics, it
is essential to capture the appropriate near-tip features in
numerical schemes. One possibility to achieve accurate
results is to use a very fine mesh near the tip, which is
not always computationally efficient. Another possibil-
ity is to incorporate the multiscale tip asymptotic solution
into a numerical scheme. In the context of hydraulic frac-
ture modeling, such multiscale features are often not in-
cluded due to the complexity of tip asymptotic solutions.
In contrast, the study [19] implements a multiscale asymp-
totic solution into a hydraulic fracturing simulator. The
aforementioned study considers single planar fracture and
captures multiscale tip behavior assuming no leak-off. In
terms of predicting multiple fracture growth, the multi-
scale tip asymptotics has never been used in a hydraulic
fracturing simulator.



This study aims to include multiscale tip asymptotic
behavior into an Implicit Level Set Algorithm (ILSA) for
multiple parallel hydraulic fractures. This is made pos-
sible by the recent study [18], in which a closed form
approximation for the tip asymptotic solution is derived.
This asymptotic solution accounts for simultaneous ef-
fects of fracture toughness, fluid viscosity, and fluid leak-
off into the formation, and resolves the multiscale behav-
ior. As shown in [18], the error of this approximation is
within a small fraction of a percent, which is sufficient for
numerical calculations. In contrast to [19], where the leak-
off is not included, the universal tip asymptote obtained
in [18] is also able to capture fluid leak-off. This opens a
possibility to analyze the effect of leak-off on interaction
between multiple fractures.

2. MATHEMATICAL MODEL

2.1. ASSUMPTIONS

To formulate the mathematical model for describing the
simultaneous growth of multiple parallel hydraulic frac-
tures, it is first necessary to outline a list of assumptions
that are used in the model. In particular, it is assumed that:

• All the fractures are planar and perpendicular to the
wellbore, see Fig. 1. Five fractures are considered
in this paper, but the methodology can be easily ex-
tended to any number of fractures.

• Linear elastic fracture mechanics (LEFM) applies
for describing the fracture growth, see e.g. [20].

• The rock is linearly elastic and poroelastic effects
are ignored.

• The fluid flow is laminar and the fluid is assumed to
be incompressible and Newtonian with the dynamic
viscosity µ.

• The leak-off is described by Carter’s model [21],
which assumes a one-dimensional diffusion in the
direction perpendicular to the fracture surface, and
is quantified by the leak-off coefficient CL.

• The rock is homogeneous (i.e. the fracture tough-
ness KIc, Young’s modulus E, Poisson’s ratio ν,
and leak-off coefficientCL all have uniform values).

• All fractures are always in limit equilibrium, in
which case the stress intensity factor is always equal
to the fracture toughness at the crack tip.

• The effect of gravity is neglected.

• The fluid front coincides with the crack front, since
the lag between the two fronts is negligible under
typical high confinement conditions encountered in
reservoir stimulation [22, 23].

• The effect of perforation friction is not considered.

• The pay zone layer with height H is surrounded by
two other layers, in which an additional compres-
sive stress ∆σ is applied, see Fig. 1. Only two sym-
metric stress barriers are considered in this study for
the purpose of numerical examples. The approach
can be extended to arbitrary spatial variation of the
compressive stresses. Note that the all layers have
the same elastic constants. Capturing spatial varia-
tion of elastic properties requires substantial modi-
fication of the algorithm that is used in this study.
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Figure 1: Schematics of simultaneously growing multiple parallel hydraulic fractures.



2.2. GOVERNING EQUATIONS

This section outlines the governing equations for multiple
parallel hydraulic fractures. With the reference to Fig. 1,
it is noted that the z coordinate lies along the wellbore,
while each fracture is contained in the (x, y) plane. The
source (wellbore) with total volumetric injection rateQ(t)
is located at the origin of each (x, y) plane that contains a
fracture, i.e. (0, 0, zl), where zl is the location of the per-
foration and l = 1...np is the fracture number (np = 5 is
the total number of fractures). In this setting, the primary
quantities of interest in a hydraulic fracture problem are
the time histories of the fracture displacement discontinu-
ity components Dj,l(x, y, t) j = 1, 2, 3, the fluid pressure
pl(x, y, t), the fluid flux entering each fracture Ql(t), and
the position of the front Cl(t). Here l = 1...np, in which
case all the above quantities are calculated for each hy-
draulic fracture. The fracture width is determined from the
displacement discontinuity values as wl = Dz,l(x, y, t).
The solution depends on the injection rate Q(t), the far-
field compressive stress σzz , (perpendicular to the fracture
planes), and four material parameters µ′, E′, K ′, and C ′

defined as

µ′ = 12µ, E′ =
E

1− ν2
,

K ′ = 4

(
2

π

)1/2

KIc, C ′ = 2CL. (1)

Here E′ is the plane strain modulus, and µ′ is the scaled
fluid viscosity, while K ′ and C ′ the scaled fracture tough-
ness and leak-off coefficient. Such scaled quantities are in-
troduced to keep equations uncluttered by numerical fac-
tors.

2.2.1 Elasticity

Given the rock homogeneity and linear elasticity assump-
tions, the equations relating the displacement discontinu-
ity component and induced stress fields in the solid can be
condensed into the following hypersingular integral equa-
tions [24, 25]:

σiz(x, y, zk) =

np∑
l=1

∫
Al(t)

Cizj(x− χ, y − η, zk − zl)

× Dj,l(χ, η)dχdη, (2)

where Al(t) denotes the fracture footprint of lth fracture,
Cizj(x − χ, y − η, zk − zl) represents the the izth stress
component at point (x, y, zk) due to a unit displacement
discontinuity at point (χ, η, zl) in the jth coordinate di-
rection (the expressions for Cizj are omitted for brevity).
The total stress field is a sum of the hydraulic fracture in-
duced stress whose ij components are σij and the geolog-
ical stress with the ij components σgij . Since the fractures

typically grow in planes that are perpendicular to the min-
imum principal stress, then σgxz(x, y) = σgyz(x, y) = 0.
To include the effects of stress barriers, the zz component
of the geological stress should vary according to

σgzz = σ0zz + ∆σH(y − 1
2H) + ∆σH(−y − 1

2H), (3)

where H denotes Heaviside step function, while H is the
thickness of the reservoir layer. Since the fluid cannot sus-
tain shear stresses, the boundary conditions at fracture sur-
faces are

σxz(x, y, zl) = 0, σyz(x, y, zl) = 0, (4)

while the fluid pressure in lth fracture is calculated based
on

pl(x, y) = σzz(x, y, zl) + σgzz(x, y), (5)

where the expression for the geological stress σgzz is given
in (3).

2.2.2 Lubrication

Assuming a laminar flow inside the crack, the fluid flux
can be calculated based on Poiseuille’s law as

ql = −
w3
l

µ′
∇pl, (6)

where ∇ = (∂/∂x, ∂/∂y). The continuity equation for
each fracture is

∂wl
∂t

+ ∇ · ql +
C ′√

t−t0,l(x, y)
= Ql(t)δ(x, y), (7)

where the last term on the left hand side captures the fluid
leak-off according to the Carter’s model, and t0,l(x, y) sig-
nifies time instant at which the fracture front of lth fracture
was located at the point (x, y). Equations (6) and (7) can
be combined to yield the Reynolds equation for lth frac-
ture

∂wl
∂t

=
1

µ′
∇ ·
(
w3
l∇pl

)
− C ′√

t−t0,l(x, y)
+Ql(t)δ(x, y),

(8)
Due to the assumption of no fluid-lag, the governing equa-
tion (8) applies within the whole fracture for all l = 1...np.
The fluid fluxes that enter each of the fracture may be dif-
ferent, but the total flux in the wellbore is prescribed, so
that

np∑
l=1

Ql(t) = Q0(t), pi(0, 0, t) = pj(0, 0, t). (9)

Here the second equation states that the fluid pressure is
the same along the whole wellbore (i.e. for every frac-
ture), while i = 1...np, j = 1...np, and i 6= j.



2.2.3 Boundary conditions at the moving front

Due to the assumption signifying the applicability of the
LEFM solution, the fracture propagation for the mode I
crack can be described as [20]

lim
s→0

wl
s1/2

=
K ′

E′
, (10)

where s is the distance to the fracture front. In addition to
the propagation condition (10), a zero flux boundary con-
dition at the fracture tip is imposed

lim
s→0

w3
l

∂pl
∂s

= 0. (11)

The evolution of the fracture front Cl(t) (and the associ-
ated normal velocity V ) is implicitly determined by the
equations (2), (8), (10) and (11), which apply for all frac-
tures l = 1...np.

3. UNIVERSAL TIP ASYMPTOTIC SOLUTION

3.1. THE NEED FOR A MULTISCALE TIP ASYMPTOTIC
SOLUTION

Analysis of the near tip behavior of hydraulic fractures
indicates that the validity region of the propagation condi-
tion (10) is often limited to the immediate vicinity of the
tip (see e.g. [17]). In this situation, a very fine mesh is re-
quired to accurately resolve the square root behavior near
the tip, which, in turn, substantially increases the com-
putational cost. In order to avoid this situation, one can
replace the propagation condition (10) by a solution with
an increased validity region

w(s) ≈ wa(s), s = o(L), (12)

where wa(s) is the fracture width variation in the near tip
region, and L is the characteristic length of the fracture.
The universal asymptotic solution wa can be calculated by
considering a semi-infinite hydraulic fracture that propa-
gates steadily with the velocity V in plane strain elastic
conditions [17, 26].

3.2. PROBLEM FORMULATION AND VERTEX SOLU-
TIONS

The governing equations for the near tip problem can be
written as [17, 18, 26]

w2
a

µ′
dpa
ds

= V + 2C ′V 1/2 s
1/2

wa
,

pa(s) =
E′

4π

∫ ∞
0

dwa(s
′)

ds′
ds′

s− s′
, (13)

wa =
K ′

E′
s1/2, s→ 0,

where wa(s) is the fracture width variation away from the
tip, pa is the fluid pressure, V is the fracture propagation
velocity, while s is the distance from the fracture tip.

It is important to note that there are three limiting
regimes of propagation, namely, toughness (denoted by
k), leak-off (denoted by m̃), and viscous (denoted by
m) [17]. The fracture width solutions (so-called vertex
solutions) for these regimes are respectively given by

wk =
K ′

E′
s1/2, wm̃ = βm̃

(4µ′2V C ′2

E′2

)1/8
s5/8,

wm = βm

(µ′V
E′

)1/3
s2/3, (14)

where βm̃ = 4/(151/4(
√

2−1)1/4) and βm = 21/335/6.
The knowledge of the vertex solutions (14), however, is
not sufficient, since they represent only limiting cases. In
this case, a different approach should be chosen.

3.3. APPROXIMATE SOLUTION

This study utilizes an approximate closed form solution
of (13) that has been obtained in [18]. Following [27],
the solution can be written in terms of the dimensionless
quantities

K̂ =
K ′s1/2

E′wa
, Ĉ =

2C ′s1/2

V 1/2wa
, ŝ =

µ′V s2

E′w3
a

, (15)

where 0 6 K̂ 6 1 is related to scaled fracture toughness,
Ĉ > 0 represents the normalized leak-off, and ŝ is the
scaled s coordinate. The expression that provides solution
implicitly is

ŝ =
1

3C1(δ)

[
1−K̂3 − 3

2
Ĉb̂(1−K̂2) + 3Ĉ2b̂2(1−K̂)

− 3Ĉ3b̂3 ln
( Ĉb̂+ 1

Ĉb̂+ K̂

)]
≡ f(K̂, Ĉb̂, C1), (16)

where b̂ = C2(δ)/C1(δ) and

C1(δ) =
4(1−2δ)

δ(1−δ)
tan
(
πδ
)
,

C2(δ) =
16(1−3δ)

3δ(2−3δ)
tan
(3π

2
δ
)
. (17)

As follows from [18, 27], the zeroth-order approximation
can be obtained from (16) as

ŝ = f
(
K̂,

3β4m̃
4β3m

Ĉ,
β3m
3

)
≡ g0(K̂, Ĉ). (18)

To calculate a more accurate solution, one should calcu-
late δ as

δ =
β3m
3

(
1 +

3β4m̃
4β3m

Ĉ
)
g0(K̂, Ĉ) ≡ ∆(K̂, Ĉ), (19)



and substitute the result into (16) to obtain

ŝ = f
(
K̂, Ĉb̂

(
∆(K̂, Ĉ)

)
, C1

(
∆(K̂, Ĉ)

))
≡ gδ(K̂, Ĉ).

(20)
The latter equation (20) can be expressed in the dimen-
sional form using (15) as

s2V µ′

E′w3
a

= gδ

(K ′s1/2
E′wa

,
2s1/2C ′

waV 1/2

)
. (21)

Equation (21) provides an approximate closed-form im-
plicit solution for the fracture aperture variation in the tip
region wa(s) (12). The latter solution obeys a multiscale
behavior, and is able to capture all limiting solutions (14)
together with all possible transition regions, see [18, 27]
for more details. Note here that gδ is a relatively sim-
ple function, so that a numerical evaluation of the solution
through (21) is computationally efficient.

3.4. PARAMETRIC TRIANGLE

To quantify the “position" of the fracture opening solution
relative to the vertex solutions (14), it is useful to intro-
duce a concept of a parametric triangle, after [17]. To draw
this triangle in a quantitative manner, let us first introduce
shape functions associated with the vertex solutions (14),
and universal asymptotic solution wa (21) as

nk =
wk

w − wk
, nm̃ =

wm̃
w − wm̃

,

nm =
wm

w − wm
,

Nk =
nk

nk + nm + nm̃
, Nm̃ =

nm̃
nk + nm + nm̃

,

Nm =
nm

nk + nm + nm̃
. (22)

By selecting location of the vertices as (xm, ym) = (0, 0),
(xm̃, ym̃) = (1/2,

√
3/2), and (xk, yk) = (1, 0), a point

inside the triangle is determined by

xtr = xmNm + xm̃Nm̃ + xkNk,

ytr = ymNm + ym̃Nm̃ + ykNk. (23)

The colour filling of the triangle is calculated based
on the values of the shape functions as [R,G,B] =
[Nk, Nm̃, Nm].

4. NUMERICAL RESULTS

This section presents results of the numerical solution
of (2)–(5), (8), (9) with the propagation condition (12) that
is calculated using the approximate solution (21). The Im-
plicit Level Set Algorithm (ILSA) is used to construct the
numerical scheme, see [9, 19, 26, 27] that use a similar ap-
proach. The details of the numerical scheme are omitted

for brevity and can be found in [27]. Material parameters
that are used in the examples are

E = 9.5 GPa, ν = 0.2, µ = 0.1 Pa·s, (24)

Q0 = 0.05 m3/s, KIc = 1 MPa·m1/2, H = 20 m.

Three different values of leak-off are considered, namely

C ′ = {0.521, 1.65, 5.21}×10−5 m/s1/2, (25)

which correspond to a dimensionless leak-off parameter

φ =
µ′3E′11C ′4Q0

K ′14np
= {10−4, 10−2, 1}. (26)

The values of the compressive stresses in (3) are chosen as

σ0zz = 7 MPa, ∆σ = 0.75 MPa. (27)

The spacing between perforations is selected to be uni-
form and equal to 20 m, i.e. zk+1 − zk = 20 m for
k = 1...np − 1. This study focuses on the case of five
parallel fractures, i.e. np = 5.
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Figure 2: Results of the numerical simulations for t =
200 s (top) and t = 400 s (bottom) for φ = 10−4.



w [mm]

w [mm]

Figure 3: Results of the numerical simulations for t =
200 s (top) and t = 400 s (bottom) for φ = 10−2.

Figs. 2-4 show the results of the numerical simulations
for the three different values of leak-off considered. The
top pictures show the results at t = 200 s, while the bot-
tom pictures show the solution for t = 400 s. Color filling
indicates the fracture width according to the colorbar. The
fracture boundaries (footprints) are highlighted by solid
black lines, locations of the stress barriers are shown by
thicker solid lines (at y = 10 m and y = −10 m), while the
thickest black line passing through x = 0, y = 0 schemat-
ically indicates the wellbore. The total surface area, A(t),
of all five fractures at time t is shown on each picture. El-
ements that are used to locate moving fracture front are
called survey elements and have a special color filling.
The color of each element corresponds to the asymptotic
solution that is used in this element to locate the front,
see Section (3.4) for the description. Five parametric tri-
angles (see Section (3.4)) below each picture indicate the
location of the asymptotic solutions that are used in sur-
vey elements. The left-most triangle corresponds to the

left-most fracture (z = 0 plane), the right-most triangle
corresponds to the right-most fracture (z = 80 m plane),
while the intermediate triangles represent three intermedi-
ate fracture planes. From Fig. 2, we can observe that the
outer fractures use the m vertex solution at t = 200 s,
while the inner fractures utilize the asymptotic solutions
that are located inside the triangle. This shows that the
outer fractures propagate faster then the inner ones due to
stress shadowing. The trend becomes more apparent for
t = 400 s, which shows that the outer fractures are sub-
stantially larger in size. Similar stress shadowing effect
is produced for larger leak-off values, as can be seen in
Figs. 3 and 4. The primary differences are the fracture di-
mensions and the asymptotic solutions that are used in the
survey elements. Note the variability of the asymptotic
solutions that are used in all the results. This highlights
the necessity of using the universal asymptotic solution to
capture the large range of length scales active in the prob-
lem.
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Figure 4: Results of the numerical simulations for t =
200 s (top) and t = 400 s (bottom) for φ = 1.
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Figure 5: Time histories of fracture area (top left), width
at the wellbore (top right), flux (bottom left), and effi-
ciency (bottom right) for all fracture planes and φ =
{10−4, 10−2, 1}.

To quantify the effect of leak-off on the propagation
of multiple hydraulic fractures, Fig. 5 shows the time his-
tories of the fracture area (top left), the fracture width at
the wellbore, i.e. at x = 0 and y = 0 (top right), the
fluid flux (bottom left), and the efficiency (bottom right)
for every fracture and different values of the leak-off pa-
rameter. Here the efficiency is defined as the ratio between
current fracture volume and the total amount fluid that has
been pumped into it. Results for planes 1 and 5 (located
at z = 0 and z = 80 m) are identical due to symmetry
and are indicated by black lines. Results for planes 2 and
4 (located at z = 20 and z = 60 m) are also identical due
to symmetry and are indicated by blue lines. Results for
the middle plane 3 (located at z = 40 m) are indicated
by red lines. The results that correspond to φ = 10−4 are
indicated by solid lines, φ = 10−2 results are shown by
dashed lines, while φ = 1 results are indicated by dotted
lines. In all cases, the outer fractures consume most of the
fluid due to stress shadowing. The value of the fluid flux
for the outer fractures is almost independent of leak-off,
while the fluxes for inner fractures change for large leak-
off case φ = 1. The efficiency, on the other hand, strongly
depends on leak-off and inner fractures are noticeably less
efficient than the outer fractures. The fracture areas de-
pend on both the flux distribution and leak-off and their
ratios are a direct consequence of the flux distribution. It is
interesting to observe that the wellbore width of the inner
fractures starts to decrease at some point due to additional
compressive stresses produced by the outer fractures. This
feature becomes especially pronounced for large leak-off
case φ = 1 for planes 2 and 4. Such dynamics may poten-

tially lead to fracture closing, which is very undesirable in
practical applications.

5. SUMMARY

The primary goal of this paper is to describe a procedure
for implementing a universal tip asymptotic solution into
the hydraulic fracturing simulator ILSA [9, 19, 26, 27] that
is able to model simultaneous growth and interaction of
multiple parallel hydraulic fractures. Firstly, the govern-
ing equations that are utilized by the numerical simula-
tor are outlined. Then, a closed form approximation for
multiscale tip asymptotic solution, which is used to locate
moving fracture front, is presented. This solution accounts
for a simultaneous interplay between fracture toughness,
fluid viscosity, and leak-off, which together cause the mul-
tiscale behavior. The growth of 5 parallel fractures is con-
sidered. To understand the effect of leak-off, three differ-
ent values of leak-off are selected. Results demonstrate
that the leak-off does not significantly affect the flux in
outer fractures (for the examples considered), but, at the
same time, may affect inner fractures, changes fracture
growth dynamics, efficiency, and promotes stress shad-
owing by reducing the efficiency of the inner “shadowed"
fractures.
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