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a b s t r a c t

The aim of this study is to develop a model for proppant transport in hydraulic fractures capable of
capturing both gravitational settling and tip screen-out effects, while prohibiting the particles from
reaching the crack tips by imposing a width restriction based on the particle size. First, the equations that
govern the propagation of hydraulic fractures and the proppant transport inside them are formulated.
They are based on the solution for the steady flow of a viscous fluid, mixed with spherical particles, in
a channel, which is obtained assuming an empirical constitutive model. This proppant transport model
is applied to two fracture geometries – Khristianovich–Zheltov–Geertsma–De Klerk (KGD) and pseudo-
3D (P3D). Numerical simulations show that the proposed method makes it possible to capture proppant
plug formation and growth, as well as the gravitational settling for both geometries. A dimensionless
parameter, whose magnitude reflects the intensity of the settling, is introduced for the P3D fracture.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic fracturing is a process whereby the fluid pressure due
to fluid injection into a crack is the driving force for the fracture
opening and propagation. Among the multiple uses of hydraulic
fracturing, such as accelerating the waste remediation process
(Frank and Barkley, 2005), waste disposal (Abou-Sayed et al.,
1989), or preconditioning in rock mining (Jeffrey and Mills,
2000), oil and gas reservoir stimulation (Economides and Nolte,
2000) stands out as one of the most common applications.
Recognizing the significance of hydraulic fracturing, many studies
have been devoted to the modeling and numerical simulation
of this phenomenon. Starting from the work of Khristianovic
and Zheltov (1955), further examples of the analytical modeling
can be found in Garagash and Detournay (2000), Adachi
and Detournay (2002), Detournay and Garagash (2003) and
Detournay (2004), where the near tip solutions and regimes of
propagation are studied, while reviews of the existing numerical
approaches aiming to predict hydraulic fracture propagation are
given in Adachi et al. (2007) and Peirce and Detournay (2008).

The problem of hydraulic fracturing is challenging to analyze
due to a variety of physical processes that are involved in the
problem, such as fluid flow inside the fracture, fluid leak-off to

the surrounding rock, the rock fracturing due to crack propagation,
and, in some cases, elastic interaction with natural fractures or
other hydraulic fractures. Moreover, the fracturing fluid can be
non-Newtonian, and its properties may vary with time and tem-
perature. To effectively model the process, however, many
assumptions are typically made. For instance, the fluid is assumed
to be Newtonian, the flow is assumed to be laminar, the behavior of
the rock is taken as linear elastic, poroelastic effects are typically
neglected, the geometry of the fracture is greatly simplified to
one-dimensional, radial, or planar etc. Even with these simpli-
fications, the phenomenon of hydraulic fracturing is difficult to
model, as it requires the solution of a nonlinear problem with a
singularity, in which the nonlinearity comes form the lubrication
equation and the singularity typically appears at the crack tip.
This study aims to add an additional aspect to the problem,
namely, the movement of proppant within the fracture. Typically,
proppant is used to prevent the fracture from closing once the well
is depressurized. In this case, modeling the fracture propagation
driven only by a viscous fluid is not sufficient, since the proppant,
blended with the fracturing fluid alters the properties of the frac-
turing fluid. Incorporating the effects associated with the presence
of particles poses an additional challenging problem, which is
addressed in this study. As mentioned in Adachi et al. (2007), in
hydraulic fracturing problems, the slurry is typically modeled as
a Newtonian fluid with the effective viscosity given by an empirical
function of proppant content. In addition, a uniform particle
distribution across the fracture is assumed and the slip velocity
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only due to gravity is considered. In contrast, the current study uti-
lizes an approach developed in Dontsov and Peirce (2014), where
the governing equations for the slurry and the proppant transport
are obtained based on the empirical constitutive model for the
slurry introduced by Boyer et al. (2011). This model accounts for
the non-uniform particle distribution across the channel, slip
velocity induced by the slurry flow, and captures the transition
from Poiseuille’s flow for small particle concentrations to Darcy’s
law for nearly maximum proppant content.

It is also important to highlight a two phase model proposed
by Boronin and Osiptsov (2010), and work by Chekhonin and
Levonyan (2012), where proppant plug formation near the crack
tip is studied. In the latter study, the one-dimensional problem
of KGD fracture propagation is considered, and the problem is tack-
led using a double moving coordinate system. One coordinate is
scaled by the length of the crack and another by the distance from
the inlet to the proppant plug, in which case the boundaries of the
plug are tracked automatically based on the calculated distances.
While this approach works well for a 1D geometry, its generaliza-
tion to 2D fractures seems to be tremendously difficult since two
moving boundaries cannot easily be resolved using scaling. Some
of the studies, however, investigate just the flow of the slurry, i.e.
the mixture of fluid with the particles, and do not apply it to the
fracture propagation problem. One example is a study by Eskin
and Miller (2008), in which the granular temperature is used to
account for micro-level particle movements. To address the prob-
lem, this study aims to develop a model for hydraulic fracturing
by a slurry, which accounts for the mechanics of the slurry, while,
at the same time, is sufficiently simple that it can be implemented
into a hydraulic fracturing simulator.

The paper is organized as follows. First, the governing equations
for the slurry flow and proppant transport inside hydraulic frac-
tures, obtained in Dontsov and Peirce (2014), are in summarized
in Section 2. Then, in Sections 3 and 4, the governing equations
for the slurry and proppant transport are embedded into the
fracture propagation problems (respectively KGD and P3D) and
the complete problems are solved numerically.

2. Background

This section aims to summarize background information that is
necessary to develop a computational scheme for proppant trans-
port inside hydraulic fractures. The approach is based on the slurry
flow solution in the channel, developed in Dontsov and Peirce
(2014). This solution is, in turn, based on the empirical constitutive
model for the mixture of a Newtonian fluid and spherical particles
introduced in Boyer et al. (2011). Fig. 1 shows the schematics of the
fracture and the associated coordinate system, where x is the coor-
dinate along the fracture in the horizontal direction, z is the verti-
cal axis (it is assumed that the fracture is contained in a vertical
plane), while y is the coordinate across the fracture. As shown in

Dontsov and Peirce (2014), the balance equations for the slurry
and proppant can be written as

@w
@t
þr " qs þ gL ¼ 0;

@w!/
@t
þr " qp ¼ 0; ð1Þ

where w is the width of the fracture, !/ ¼ h/i=/m is the normalized
proppant concentration averaged over fracture the width, i.e. in the
y direction, /m ¼ 0:585 is the maximum allowed proppant concen-
tration, gL represents leak-off, while qs and qp denote respectively
the slurry and proppant fluxes. Note that the fluxes have two com-
ponents, namely x and z, and consequently, r ¼ ð@=@x; @=@zÞ in (1).
The expressions for the fluxes are

qs ¼ & w3

12lf Q̂ s !/;
w
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rp̂;
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! "
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w
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! "
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p & qf ÞgezĜp !/;
w
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! "
; ð2Þ

where lf is the clear fluid viscosity, p̂ is the fluid pressure corrected
by hydrostatic pressure, qp & qf is the difference between proppant
and fluid mass densities, g is the gravitational acceleration, a is the
particle radius, B is a, so-called, blocking function, while the func-
tions Q̂ s; Q̂p and Ĝp come from the slurry flow solution (Dontsov
and Peirce, 2014).

The blocking function B is introduced to capture proppant
bridging that occurs when the fracture width is on the order of
several particle diameters. For the purpose of calculations, the
blocking function is taken as

B
w
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! "
¼ 1

2
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w
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! "
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1þ cos pwB &w
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! "
; ð3Þ

where N represents ‘‘several’’ particle diameters, H denotes the
Heaviside step function, while wB ¼ 2aðN þ 1Þ, which provides a
continuous vanishing of the function and helps in the numerical
implementation. N ¼ 3 is chosen for all examples considered in this
paper.

Functions Q̂ s; Q̂ p and Ĝp can be expressed in a simpler form as

Q̂ s !/;
w
a

! "
¼ Q sð!/Þ þ a2

w2
!/D;

Q̂ p !/;
w
a

! "
¼ w2Qpð!/Þ

w2Q sð!/Þ þ a2 !/D
;

Ĝp !/;
w
a

! "
¼ Gpð!/Þ & w2Gsð!/ÞQ pð!/Þ

w2Q sð!/Þ þ a2 !/D
;

ð4Þ

where Q s;Qp;Gs and Gp are functions of !/ only and are calculated
numerically, D ¼ 8ð1& /mÞ

!a=3/m is related to the permeability of
the packed particles, !a ¼ 4:1, see Dontsov and Peirce (2014). As

Fig. 1. Schematics of the hydraulic fracture (left) and the slurry flow inside it (right).

E.V. Dontsov, A.P. Peirce / International Journal of Solids and Structures 63 (2015) 206–218 207



an illustration, Fig. 2 plots the functions Q̂ s; Q̂p and Ĝp versus
normalized proppant concentration !/ for different values of the
parameter w=a. Function Q s represents the reciprocal of the effec-
tive slurry velocity, while the term with D in Q̂ s accounts for a
Darcy’s law. So, the slurry flux in (2) is able to capture the transition
from Poiseuille’s flow (with effective viscosity) to Darcy’s filtration
flow as the concentration reaches nearly the maximum value. The
function Q̂p in the proppant flux in (2) describes the proppant
motion caused by the slurry flow, while Ĝp captures gravitational
settling of the particles.

It is the difference between the fluid pressure and hydrostatic
pressure, denoted by p̂, that drives the slurry, see (2). According
to Dontsov and Peirce (2014), p̂ is given by

p̂¼p&ph¼pþqfgzþðqp&qf Þg/m
!/zþðqp&qf Þg

Z z

0

a2Gsð!/Þ
w2Q sð!/Þþa2 !/D

dz0;

ð5Þ

where p is the fluid pressure and ph is the hydrostatic pressure. The
hydrostatic pressure is the driving force for buoyancy-driven frac-
tures (Lister, 1990), which is typically neglected for other hydraulic
fracturing problems for simplicity. For this reason, all calculations in
this paper neglect the hydrostatic pressure, which effectively
replaces p̂ by the fluid pressure p in (2).

It is important to outline the assumptions of the proppant
transport model that is adopted in this study. Firstly, since a con-
tinuum approach is used, the model is only applicable in regions
where the fracture width exceeds several particle diameters.
Clearly, this condition is violated near the fracture tip, where prop-
pant size becomes comparable to the fracture width and bridging
occurs. At the same time, the model is applicable in regions that
are away from the fracture tip. Secondly, it is assumed that all par-
ticles are spherical and have the same diameter. To incorporate
effects associated with non-spherical particles, a new constitutive
model for the flow of such particles would have to be developed
first. Thirdly, the steady state slurry flow is used to formulate the
model. Hence, the regions of a fracture where slurry flow changes
rapidly are not described accurately. For instance, if a clear fluid is
followed by a slurry with a finite proppant concentration, the evo-
lution of the proppant front will entail rapid flow fluctuations,
which leads to inaccurate predictions near the clear fluid/slurry
boundary.

3. Numerical solution for a KGD fracture

3.1. Problem formulation

To better understand the effects associated with the presence of
particles (or proppant) on hydraulic fracture propagation, it is
instructive to consider the simplest one-dimensional case of a
KGD fracture in the presence of stress barriers. To this end it is

assumed that the fracture lies along z axis and occupies interval
ð&l1; l2Þ (see Fig. 3), where l1 and l2 are the extensions of the frac-
ture respectively in the negative and positive z directions. By using
Carter’s leak-off model (Carter, 1957) and adding the source terms,
the governing equations for fluid flow within the fracture including
proppant can be deduced from (1) as

@w
@t
þ
@qs

z

@z
þ

C 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t & t0ðzÞ
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¼ !/0Q0dðzÞ; ð6Þ

where &l1 6 z 6 l2, and
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Here l0 ¼ 12lf is the scaled viscosity, C0 ¼ 2CL (CL – Carter’s leak-off
coefficient), Q0 is the injection volume of the slurry per unit time,
while !/0 is the normalized volume fraction of proppant at the
source. To close the system of Eqs. (6), one needs to add the elastic-
ity equation (see e.g. Adachi, 2001), which can be written as

p& DrðzÞ ¼ & E0

4p

Z
----

l2

&l1

wds
ðs& zÞ2

; ð8Þ

where E0 ¼ E=ð1& m2Þ is the plane-strain Young’s modulus, the inte-
gral is understood in the sense of a Hadamard finite part, while
DrðzÞ is an additional confining stress coming from the stress bar-
riers. The boundary and propagation conditions at the tips are

qs
zjz¼&l1

¼ 0; qp
z jz¼&l1

¼ 0; w! K 0

E0
ðzþ l1Þ1=2; z! &l1;

qs
zjz¼l2

¼ 0; qp
z jz¼l2

¼ 0; w! K 0

E0
ðl2 & zÞ1=2; z! l2; ð9Þ

where K 0 ¼ 8KIc=
ffiffiffiffiffiffiffi
2p
p

is the scaled fracture toughness.

3.2. Numerical algorithm

The problem under consideration is split into two steps: (i)
solve for the propagation of the fracture, i.e. coupling (6a), (8)
and (9) and (ii) solve for the proppant transport, i.e. (6b) with
the boundary conditions given in (9). In other words, at each time
step, first (6a), (8) and (9) are solved to update the fracture width
profile and length, and then (6b) is solved to find the new proppant
concentration distribution over the fracture length. This subsection
is aimed to cover both steps in the procedure.

To facilitate the numerical solution of the moving-boundary
problem under consideration, a double moving mesh is introduced.
In this case, negative and positive components of the x coordinate
are normalized respectively by l1 and l2, so that

Fig. 2. Variation of the functions Q̂ s; Q̂p and Ĝp versus normalized proppant concentration !/ for different values of the parameter w=a.
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f1 ¼
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where V1 ¼ dl1=dt and V2 ¼ dl2=dt are the velocities of crack prop-
agation in the negative and positive z directions, as indicated in
the Fig. 3. By substituting (11) into (6), one can write

@w
@t
& V1;2

l1;2
f1;2

@w
@f1;2

þ 1
l1;2

@qs
z

@f1;2
þ C0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t & t0ðl1;2f1;2Þ
p ¼ Q0
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@fqp
z
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!/0Q 0
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where

fqp
z ¼ qp

z & V1;2f1;2w!/;

and the indices 1;2 correspond respectively to the regions z 6 0 and
z P 0 (see (11)).

Fracture propagation. To formulate the numerical scheme, first,
the width is approximated by a piecewise constant function in
the f1 and f2 domains. In this case, the elasticity Eq. (8) can be dis-
cretized in obtain

pi ¼ C iwi þ pi
tip þ Dri; ð13Þ

where pi and wi denote respectively pressure and width vectors
(defined at all grid points and time ti), pi

tip is the pressure correction
at the tip (defined only at the tip points and time ti),

ðC iÞjk ¼ &
E0l1Df

4p ðzj & zkÞ2 &
1
4
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% &&1
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1
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; zk ¼ 0;

ðC iÞjk ¼ &
E0l2Df

4p ðzj & zkÞ2 &
1
4

l2
2Df2

% &&1

; zk > 0

is the elasticity matrix (depends on time through l1 and l2), while
Dri is the term that comes from the presence of stress barriers
(again, this depends on time through l1 and l2). Here Df denotes
the mesh size associated with the discretized coordinates f1 and
f2 (the same element size is used for both f1 and f2), while zj refers
to the location of the jth element of wi. The tip pressure is added as
an unknown since the accuracy of the pressure at the tip is poor due
to the singular nature of the kernel in (8). By using the backward
Euler scheme to approximate the time derivative, Eqs. (12a) and
(13) can be written in a discretized form as

wi &wi&1

ti & ti&1
& Biwi þ Aðwi; !/iÞC iwi þ Aðwi; !/iÞ pi

tip þ Dri
! "

¼ Si&1=2;

ð14Þ

where Bi is the matrix that accounts for the ‘‘moving mesh terms’’
coming from the time derivatives in (11), Aðwi; !/iÞ approximates
the flux divergence term, while Si&1=2 accounts for the source and
leak-off terms. Central differences are used to calculate matrix Bi,
while Aðwi; !/iÞ is calculated using

1
l1;2

@qs
z

@f

% &i

j
¼ J A

jþ1=2

p i
jþ1 & p i

j

ðl1;2DfÞ2
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p i
j & p i
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¼ Ajm p i

m; ð15Þ

where

J A
j'1=2 ¼ &

wi
j'1=2

l0 ðwi
j'1=2Þ

2
Q sð!/i

j'1=2Þ þ a2 !/i
j'1=2D

! "
;

and wi
j'1=2 ¼ 1

2 ðw
i
j'1 þwi

jÞ, while !/i
j'1=2 are defined at the midpoints,

see Fig. 4. Note that the pressure is defined at the same points as the
width, while coefficients J A

j'1=2 share the mesh with !/i
j'1=2. The

discretized Eq. (14) approximates the corresponding differential
equation inside the domain, and thus does not capture the bound-
ary conditions. To find the discretized equations for the boundary
nodes, one needs to integrate Eq. (6a) over the tip elements and
use the boundary conditions (9). This provides two equations,
which can be written in the general form as

p i
tip ¼ p i

tipðV1;V2;wi; !/iÞ: ð16Þ

If the correction for the tip were not necessary, then (16) would
allow us to find the unknown tip velocities V1 and V2 and close
the system of Eqs. (14). However, since the pressure at the tip ele-
ments cannot be computed accurately, one has to impose two addi-
tional conditions. One possibility is to assume that the width in the
tip elements should follow the appropriate asymptotic solution, as
used in Peirce and Detournay (2008), and use the corresponding
asymptotic formulas for the tip velocity. In this case, two additional
equations are

V1 ¼ !V1ðwi;C 0;K 0Þ; V2 ¼ !V2ðwi;C 0;K 0Þ; ð17Þ

where functions !V1 and !V2 depend on the regime of propagation of
the hydraulic fracture. Note that the proppant cannot occupy the
near-tip elements due to the ‘‘blocking’’ functions, introduced in
(3), for this reason, ‘‘classical’’ asymptotic solutions can be used.
For instance, in the viscous regime, i.e. in situation when
C0 ¼ K 0 ¼ 0, one has

V1 ¼
wi

2

' (3

b3
mðl1DfÞ2

; V2 ¼
wi

Nf&1

! "3

b3
mðl2DfÞ2

ð18Þ

where bm ¼ 21=3 " 35=6, while wi
2 and wi

Nf&1 are the values of the
width for the second and the penultimate nodes. Note that
wi

1 ¼ wi
Nf
¼ 0 due to the boundary conditions in (9). More informa-

tion about asymptotic solutions for the KGD fracture can be found
in Adachi (2001).

Finally, at each time step, Eqs. (14) and (16) are solved itera-
tively using the appropriate expression for the tip velocities (17).
Then, the fracture footprint is updated using

li
j ¼ li&1

j þ ðti & ti&1ÞVj; j ¼ 1;2:

Proppant transport. As indicated earlier in this section, first, the
fracture propagation is determined for a given time step, and then
(12b) is solved numerically to update the particle distribution over
the fracture length. Eq. (12b) has the form of a conservation law,

Fig. 3. Schematics of asymmetric KGD fracture.
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which is both nonlinear and heterogeneous. To deal with such a
problem, a finite volume method with cell-centered flux functions
(Bale et al., 2002) is used. In particular, the moving mesh term is
integrated by parts, and (12b) is discretized as follows

ðw!/Þi & ðw!/Þi&1

ti & ti&1
þ V1;2

l1;2
ðw!/Þi&1 þ DE'1=2

fqp
z

i&1 ¼ Si&1=2
p ; ð19Þ

where Si&1=2
p is the source term, matrix D is a finite difference opera-

tor, which employs a central difference scheme to approximate the
flux derivative. i.e. ðDAÞj&1=2 ¼ Ai&1

j & Ai&1
j&1;E'1=2 is a shift operator,

which shifts the flux function evaluation either to the left or to
the right by a half grid cell size, i.e. E'1=2Aj ¼ Aj'1=2. Note that

ðw!/Þi are defined at the grid points that correspond to !/i
j'1=2 (see

Fig. 4), so that ðw!/Þij'1=2 ¼ 1
2 ðw

i
j þwi

j'1Þ!/i
j'1=2. The most difficult

challenge in using (19) is to determine how to use the shift operator
appropriately to have a stable scheme.

An in-depth analysis of the nonlinear conservation laws (and
the associated numerical schemes) entails finding the characteris-
tics, which depend on the derivative of the nonlinear flux, i.e.

@fqp
z =@ðw!/Þ (see e.g. Bale et al., 2002; LeVeque, 2002).

Unfortunately, the proppant flux fqp
z depends on w, which, in turn,

is functionally dependent upon !/ through (6a), so that exact eval-
uation of this derivative is not trivial. For this reason, it is assumed
that the variation of w with respect !/ is small (@w=@!/ ( 0), in
which case the differentiation of (6a) with respect to !/ yields:

qs
z ¼ const:) vs

z ¼
qs

z

w
¼ const:; ð20Þ

where vs
z is an average velocity of the slurry, and ‘‘const.’’ means

constant with respect to !/. The implication of Eq. (20) is that the
velocity of the slurry may be taken as constant during the evalua-
tion of the derivative of the flux, i.e.

@fqp
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@ðw!/Þ
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w
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! "
wvs
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@

@ðw!/Þ
Q̂ p w!/

w
;
w
a

% &) *
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w
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! "a2w
l0 ðq

p&qf Þg @

@ðw!/Þ
Ĝp w!/

w
;
w
a

% &) *
&V1;2

l1;2
f1;2: ð21Þ

One may also interpret the assumption @w=@!/ ( 0 and conse-
quently (20) in a different way. In the numerical scheme, first the
width profile is updated, and then the equation for particle concen-
tration is solved. Once the width is calculated, it cannot be changed
while solving the proppant transport equation (within the same
time step), hence w ¼ const:, which consequently implies (20). It
is interesting to observe that according to Fig. 2, derivatives of the
functions Q̂p and Ĝp appearing in (21) can be large in magnitude
for !/ ( 1. In particular, it can be shown that their absolute values
behave like w2=a2 ) 1. Note, however, that Q̂ s ¼ Oða2=w2Þ and con-
sequently vs

z ¼ Oða2=w2Þ for such particle concentrations, so that the
product of the derivative of Q̂p and vs

z is Oð1Þ in terms of the small
parameter a=w. Since a2 multiplies the gravitational settling term in
(21), the fact that the derivative of Ĝp is Oðw2=a2Þ similarly does not
make the whole term large in magnitude. This shows that even in
the limit of very small particles, the flux derivative (21) is bounded.
The width of the fracture can also be small, but, clearly, the differ-
entiation in (21) cancels w and leads to some finite value of the flux
derivative for small w.

Since (12b) has the form of a conservation law, Eq. (21) allows
us to calculate the velocity of the nonlinear wave, which is then
used to find the sign of the ‘‘wind’’ and utilize it in the numerical
scheme. One of the best options is to use the Godunov scheme,
which, however, requires the solution of the Riemann problem

(LeVeque, 2002). Unfortunately, finding the solution of the
Riemann problem may be challenging and requires a significant
amount of the computation time (since the proppant flux depends
on functions that are computed numerically), for this reason an
approximate Riemann solver is used. To assist with the construc-

tion of the numerical scheme, it is noted that fqp
z ¼ fqp

z ðw!/;wÞ,
and that the shock velocities between the elements can be defined
as

V sh
j ¼

fqp
z wi

jþ1=2
!/i

jþ1=2;w
i
jþ1=2

! "
&fqp

z wi
j&1=2

!/i
j&1=2;w

i
j&1=2

! "

wi
jþ1=2

!/i
jþ1=2 &wi

j&1=2
!/i

j&1=2

; ð22Þ

where wi
j'1=2 ¼ 1

2 ðw
i
j þwi

j'1Þ. Fig. 5 shows the algorithm for deter-
mining the proppant flux based on the sign of the ‘‘wind’’ (21)
and the shock velocity (22). There are three cases, where: (a) the
‘‘wind’’, calculated according to (21), is positive for both neighbor-
ing points, (b) the ‘‘wind’’ is negative for both neighboring points,
and (c) the direction of the ‘‘wind’’ is different for the neighboring
points. In the latter case, the shock velocity in (22) is used to deter-
mine the value of the proppant flux, see Fig. 5.

Since Eq. (19) represents an explicit scheme, stability poses a
restriction on the magnitude of the time step ti & ti&1. In other
words, the time step has to be reduced to make sure that the
Courant–Friedrichs–Lewy (CFL) condition (LeVeque, 2002) is satis-
fied. On the other hand, since the numerical scheme for the crack
opening (14) is implicit, there is no restriction on the time step
for solving (14). To allow for arbitrary large time steps ti & ti&1

for the whole numerical algorithm, the time step ti & ti&1 is subdi-
vided into small time steps when solving (19), each of which
satisfies the CFL condition. This decomposition enables us to use
large time steps for the stiff part of the problem (6a) and (8), which
would require a time step restriction Dt * OðDz3Þ, while the less
stiff Eq. (6b) can be treated explicitly as it only involves a CFL
condition Dt * OðDzÞ.

It should also be noted that the equations are first scaled and
then solved numerically. Once the solution is obtained, the dimen-
sions of the parameters are then recovered. More information
about scaling for the KGD fracture can be found in Adachi (2001).

3.3. Numerical examples

This section is devoted to numerical examples that highlight
the effects produced by the proppant. Due to the considerable
number of parameters that influence the result, it is instructive
to specify a reference set of parameters, and then change just
some of them if needed. All numerical simulations in this section
start at tstart ¼ 1 s, assume a symmetric crack of length
l1 ¼ l2 ¼ 1 m, and take the opening to be elliptic with the maxi-
mum width wmax ¼ 5+ 10&4 m. The fracture is then propagated
until tpr ¼ 1000 s using pure fluid, and thereafter the proppant is
introduced, so for t > tpr, the mixture of the proppant and the fluid
is used. The simulations run until tend, which is specified uniquely
for each calculation. The input volume concentration of particles is
taken !/0 ¼ 0:2, but note that !/0 is the scaled concentration, so that
the true concentration is /m

!/0. Other parameters used for the
calculations are E0 ¼ 25+ 109 Pa for the plane strain modulus,
l0 ¼ 1:2 Pa s for the viscosity (times 12), Q0 ¼ 2+ 10&4 m2/s for
the inlet flux, C0 ¼ 5+ 10&5 m/s1/2 for the leak-off coefficient,
K1c ¼ 106 Pa m1/2 for the fracture toughness, a ¼ 4+ 10&4 m for
the particle radius, Dq ¼ 1300 kg/m3 for the difference in mass
densities between the proppant and the fluid and g ¼ 9:8 m/s2

for the gravitational acceleration. A stress barrier is assumed to
be symmetric, located lr ¼ 10 m from the inlet, and to have a
magnitude Dr ¼ 2:5+ 106 Pa.
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The problem with no leak-off is considered first. Fig. 6 plots pic-
tures of the fracture width and proppant concentration at different
time instants, as well as pressure and length histories. First of all,
without the leak-off, the proppant does not accumulate rapidly
in the tip regions, while, at the same time it can reach the bottom
tip due to the gravitational settling. Even though the proppant
changes the viscosity notably, its uneven distribution does not
influence the symmetry much. This is because high viscosity has
the most influence in the regions with high pressure gradients,
i.e. near fracture tips. So, there is almost no influence of proppant

Fig. 4. Discretization of the width w and normalized particle concentration !/.

Fig. 5. Schematics of the algorithm for approximating the proppant flux at the point that corresponds to wi
j: (a) if the ‘‘wind’’ at both neighboring points is positive, then use

the ‘‘left’’ value, (b) if the ‘‘wind’’ at both neighboring points is negative, then use the ‘‘right’’ value, and (c) if the direction of the ‘‘wind’’ is different for neighboring points,
then use the sign of V sh

j to determine value of the flux.

Fig. 6. The fracture width and proppant distribution (top pictures) for the reference parameter set and leak-off at different time instants tev ¼ 500 s (no proppant at this time),
1100 s, 3000 s, and 5000 s. Bottom pictures show the histories of pressure at the inlet and the lengths l1 (distance from the inlet to the bottom tip) and l2 (distance from the
inlet to the top tip).
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before it reaches the tip region and starts to accumulate there. This
hypothesis is supported by the length histories shown in Fig. 6.
Indeed, noticeable asymmetry is induced only at t ( 4500 s, which
corresponds to the time when the bottom proppant plug develops.
Note that the kink on the pressure history at t ( 110 s corresponds
to reaching the stress barrier. There is no visible pressure change
due to the injection of the proppant as well as due to the develop-
ing of the bottom plug.

To investigate the tip screen-out effect, Fig. 7 shows the results
of a simulation for the reference parameter set, which includes
leak-off. There are three features in the pressure diagram. First,
there is a kink that corresponds to the time when the fracture
reaches the stress barrier. Then, there is a characteristic pressure
increase due to the development of the bottom proppant plug at
t ( 1800 s. After that, when the proppant reaches the top fracture
tip, it causes an additional pressure rise at t ( 2000 s. These obser-
vations are also supported by the length histories, which clearly
indicate slower fracture growth due to the stress barriers, initiation
of asymmetry at t ( 1800 s, as well as slower propagation of the
top fracture tip after the formation of a proppant plug there. Also
note that the fracture width is noticeably affected by the formation
of the proppant plugs.

4. Numerical solution for a P3D fracture

4.1. Problem formulation

To highlight the versatility of the proppant transport model, a
simple multidimensional case is considered, namely the pseudo-
3D (P3D) model for hydraulic fracture propagation with sym-
metrical stress barriers (Adachi et al., 2010). Fig. 8 shows the
schematics of the fracture. The fracture is propagating between
two symmetric stress barriers, where an additional stress Dr fur-
ther compresses the fracture in the regions jzj > H=2. The fracture
tip is assumed to be vertical, the horizontal length of the fracture is
denoted by lðtÞ, while the height of the fracture is hðx; tÞ, see Fig. 8.
Other assumptions of the model are: (i) the fluid pressure is uni-
form over the height of the fracture, i.e. does not depend on
z; p ¼ pðxÞ, which implies the symmetry of the fracture, (ii) a plain
strain elasticity condition exists in any vertical ðy; zÞ plane, and (iii)

leak-off occurs only in the reservoir layer (jzj < H=2) and follows
the Carter’s leak-off model (Carter, 1957).

To facilitate the development of the appropriate proppant
transport model, it is useful to formulate the 2D equations for both
fracture width and the particle concentration, so that

@w
@t
þ @qs

x

@x
þ @qs

z

@z
þ C 0HðH & 2zÞHð2zþ HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t & t0ðxÞ
p ¼ QðzÞ

H
dðxÞ;

@w!/
@t
þ @qp

x

@x
þ @qp

z

@z
¼

!/0QðzÞ
H

dðxÞ; ð23Þ

where the fluxes are given in (2), QðzÞ is a source density that is dis-
tributed over the vertical coordinate z, and H is a Heaviside step
function. The boundary conditions for (23) require the vanishing
of all fluxes along the fracture boundary, as well as the appropriate
asymptotic behavior of the width near the vertical tips, see Peirce
and Detournay (2008) for details. Following Adachi et al. (2010),
since the pressure is assumed to be uniform over the height, the
elasticity equations can be solved to obtain

wðx; zÞ ¼ 2
E0
ðpðxÞ & DrÞv

þ 4Dr
pE0

v arcsin
H
h

% &
& z ln

Hvþ 2zw
Hv& 2zw

$$$$

$$$$þ
H
2

ln
vþ w
v& w

$$$$

$$$$

+ ,
;

ð24Þ

Fig. 7. The fracture width and proppant distribution (top pictures) for the reference parameter set and leak-off at different time instants tev ¼ 500 s (no proppant at this time),
1100 s, 1800 s, and 3500 s. Bottom pictures show the histories of pressure at the inlet and the lengths l1 (distance from the inlet to the bottom tip) and l2 (distance from the
inlet to the top tip).

Fig. 8. Schematics of the P3D fracture.
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where v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 " 4z2

p
; w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 " H2

p
, while E0 as in (8) is the plane-

strain Young’s modulus. Again, as follows from Adachi et al. (2010),
the application of the toughness propagation criterion leads to

p ¼ Dr 1þ
ffiffiffiffiffiffiffi
2

pH

r
KIc

Dr

ffiffiffiffi
H
h

r
" 2

p arcsin
H
h

" #" #
; ð25Þ

where KIc is mode I fracture toughness. Formulas (24) and (25)
apply in the regions where h > H. When h ¼ H, an elliptic fracture

width profile is used instead of (24), i.e. w ¼ 2ðE0Þ"1vpðxÞ. To formu-
late the P3D model, one also needs to introduce average width, flux,
and total inlet flux as follows:

!w ¼ 1
H

Z h=2

"h=2
wdz; qs

x ¼
1
H

Z h=2

"h=2
qs

x dz; Q0 ¼
1
H

Z h=2

"h=2
QðzÞdz:

ð26Þ

Note that !/ is an average concentration over the thickness (i.e. in
the out-of-plane y direction) of the fracture, while !w and qs

x are
respectively the width and flux, averaged over the height (i.e. z
direction) of the fracture. With (26) in mind, Eq. (23a) can be inte-
grated over z to obtain

@ !w
@t
þ @qs

x

@x
þ C 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t " t0ðxÞ
p ¼ Q 0

H
dðxÞ; ð27Þ

where

qs
x ¼ "

@p
@x

1
H

Z h=2

"h=2

w3

l0 Q sð!/Þ þ a2w
l0 Dð!/Þ

$ %
dz: ð28Þ

Relation (24) can also be integrated to obtain

!w ¼ H
E0

ffiffiffiffiffiffiffi
p

2H

r
KIc

h
H

" #3=2

þ Dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

H2 " 1

s0

@

1

A; h > H; ð29Þ

Given the fact that p can be expressed as a function of !w from (25)
and (29), Eq. (27) can be solved if the variation of !/ versus z is pro-
vided (so that the integral in (28) can be calculated). Once solved for
!w, (29) can be used to find h, which finally allows us to obtain w
from (24) and (25). In other words, knowing the average width !w
is enough to ‘‘restore’’ the fracture width profile w. This property
allows us to obtain the 2D fracture footprint by solving the one-
dimensional problem governed by (27). Unfortunately, such a
useful ‘‘restoring’’ property does not apply for the proppant.
Indeed, having only the average proppant concentration is not
sufficient to ‘‘restore’’ the concentration profile, as there are many
different (physically admissible) particle distributions that can have
the same mean value. For this reason, a 2D proppant transport
model has to be considered.

To assist the solution of the proppant transport equation, the
vertical (or z) component of the slurry flux has to be computed
first. Formally, due to the assumptions of the model, there is no
pressure gradient in the vertical direction, which implies no flux
in the vertical direction. This, however, should be interpreted in
a sense that the vertical flux is small compared to the horizontal
flux, but not necessary zero. To find the vertical component of
the slurry flux, one can integrate (23a) to determine

qs
z ¼

Z z

"h=2

QðzÞ
H

dðxÞ " C0HðH " 2zÞHð2zþ HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t " t0ðxÞ

p " @w
@t
" @qs

x

@x

" #
dz:

ð30Þ

Finally, the system of equations that describes the P3D problem
with proppant is

@ !w
@t
þ @qs

x
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þ C0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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!/0QðzÞ
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dðxÞ; ð31Þ

where qs
x is given in (28), the relations between w; !w;p, and h are

given by (24), (25) and (29), while the proppant fluxes are
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w
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& 'w3
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Qpð!/Þ;
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& ' a2w
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p " qf ÞgĜp !/;
w
a
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; ð32Þ

where g is the gravitational acceleration constant. The boundary
conditions for (31) are

qs
xjx¼l ¼ 0; !wjx¼l ¼ 0: ð33Þ

Note that the boundary conditions at the top and bottom sides of
the fracture are accounted for in (30). Also, the blocking function
B restricts the presence of the particles near the fracture tip, so that
the zero-proppant-flux boundary condition is always satisfied
automatically.

4.2. Numerical algorithm

To facilitate the numerical calculations, first, the problem
parameters are scaled as

l̂¼ l
l&
; ĥ¼ h

h&
; t̂ ¼ t

t&
; ŵ¼ w

w&
; p̂¼ p

p&
; q̂s

x ¼
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; ð34Þ

where all ‘‘hat’’ quantities are dimensionless, while the scaling
factors are computed as

l& ¼
H4Dr4

Q0l0E0
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Dr5H6
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3

DqH4Dr3
: ð35Þ

The biggest advantage of this scaling lies in the fact that it
highlights the number of independent parameters that govern the
problem. For this problem, there are four of such quantities:
K̂; Ĉ; â and ĝ. Note that the scaling (34) is done slightly differently
from Adachi et al. (2010).

To aid the solution of the moving boundary problem, a moving
mesh in both x and z directions is introduced. The following scaled
coordinates are introduced as

n ¼ x

l̂
; f ¼ z

ĥ
; ð36Þ

where l̂ ¼ l̂ð̂tÞ and ĥ ¼ ĥðn; t̂Þ. In this case, the derivatives transform
as
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where V ¼ d̂l=dt̂ is the velocity of the crack tip. By substituting (37)
into (31), and simplifying the result, one may write
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are the fluxes that account for the moving mesh terms. Note that
similar changes of variables can be applied to (23a), in which case
the integral (30) for the calculation of the flux transforms to
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where

fqs
x ¼ ĥðcqs

x & VnŵÞ:

Note that the fluxes in (39) can also be derived from physical
considerations. Fig. 9 shows the elements in the physical (on the
left) and computational (on the right) domains. The fluxes in the
picture are generic and can be applied to either the slurry or
proppant. The element in the computational domain is rectangular
and does not move, while the corresponding element in the
physical domain is distorted and moves horizontally with velocity
Vn and vertically with velocity @ĥ=@t̂ f. The angle h can be found
from tanðhÞ ¼ &@h=@nf=̂l. Since the fluxes through the sides of the
element should be preserved, one can write
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which allows us to recover (39).
To close the system of equations, it is noted that
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where the pressure derivative is
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Finally, to ‘‘restore’’ the fracture opening based on the average
width, one can rewrite (24), (25) and (29) as
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where v̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4f2

p
and ŵ ¼
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p
. Relations (44) allow us to

calculate a function ŵð !̂wÞ, i.e. ‘‘restore’’ the fracture width. When
ĥ ¼ 1, the latter equations combine to yield

ŵ ¼ 4
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 4f2

q
!̂w; ĥ ¼ 1:

The numerical algorithm for the P3D geometry is somewhat
similar to that for the KGD fracture, in that it is divided into two
main parts: (i) calculating the fracture propagation and (ii) updat-
ing the proppant concentration inside the fracture. Since the equa-
tion for the fracture propagation is very similar to that for the KGD
fracture, a similar algorithm is used to update the fracture
footprint. The average width !̂w is approximated by a piece-wise
constant function, the time derivative is approximated by back-
ward differences, and the integral in (41) is approximated using
the midpoint rule, in which case (38a) is reduced to a system of
algebraic equations that is solved iteratively. The big difference,
however, lies in the absence of a pressure singularity near the right
tip, in which case the velocity of the crack tip is calculated based on
a zero flux condition. Eq. (38b) is solved numerically using a finite
volume method and a generalization of the one-dimensional
algorithm shown in Fig. 5. The analog of the condition (20) is

cqs
x ¼ const:;

i.e. the average flux stays constant during the differentiation with
respect to !/. Another difference comes from the fact, that a line
source has to be used, and, moreover, that the line cannot go all
the way to the fracture boundary since the proppant cannot be
there due to the blocking function. The distribution of the intensity
of the source is taken proportional to the cube of the fracture width,
and contained inside w > ð2N þ 1

2Þa (N ¼ 3 is used for all calcula-
tions). In this case there is no proppant in the prohibited areas
and the source is concentrated near the centre of the fracture
height. Other details about the numerical scheme are analogous
to the 1D model and omitted for brevity.

4.3. Numerical examples

This section covers several numerical examples that highlight
the effects associated with the presence of proppant. First, it should
be noted that the numerical code (without proppant) was tested
against the solutions in Adachi et al. (2010), and the results showed
good agreement. There are two main effects associated with the
presence of the proppant, that are considered in the examples:
(i) gravitational settling and (ii) tip screen-out.

Fig. 9. The element in the physical domain (left) and the computational domain
(right).
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All figures in this section that plot the fracture footprint and
show the proppant concentration in color. Note that the maximum
value for !/ is 1, since the concentration is scaled by /m. For all fig-
ures, simulations start at tstart ¼ 1 s, with l ¼ 1 m, and an elliptic
width profile with a maximum opening wmax ¼ 10"3 m. At time
tpr the proppant is introduced, and at tend the simulation stops.
Note that the effect of the initial condition decays with time, so,
as long as the total initial volume of the fracture is sufficiently
small, there is practically no effect associated with the initial con-
dition. The reference problem parameters are H ¼ 25 m for the
width of the reservoir layer, l0 ¼ 1:2 Pa s for the shear viscosity
(times 12), E0 ¼ 25# 109 Pa for the plane strain modulus,
Q 0 ¼ 2# 10"2 m3/s for the injection rate, Dr ¼ 2:5# 106 Pa for
the magnitude of the stress barriers, Dq ¼ 1300 kg/m3 for the dif-
ference between proppant and carrying fluid mass densities,
K1c ¼ 106 Pa m1/2 for the fracture toughness, C0 ¼ 5# 10"5 m/s1/2

for the leak-off coefficient, a ¼ 4# 10"4 m for the particle radius,
g ¼ 9:8 m/s2 for the gravity constant, !/0 ¼ 0:2 for the proppant
concentration at the inlet, and tpr ¼ 1000 s for the start time of
proppant injection. At the same time, different values of tend are
used. For all the figures in this section, the parameters are assumed
to be taken from the above reference set, except those, which are
specified directly.

It is important to recognize the presence of the time scale
associated with the gravitational settling. The asymptotic behavior
of the function Ĝpð!/Þ (see Dontsov and Peirce, 2014) can be used to
estimate the settling velocity, while the settling time can be
calculated based on the vertical distance the proppant needs to
travel, which is 1=2 in the scaled formulation. Combining these
assumptions and the last equation in (41), the settling time can
be estimated as

ts ¼
1

2v̂settl
¼ 1

2 8
3 â2ĝ

t& ¼
3Dr4H4

16Dqa2gQ 0E03
;

where v̂settl is the dimensionless settling velocity calculated for
small particle concentrations. This settling time needs to be com-
pared to the proppant injection duration. Since the proppant is first
injected at tpr, the duration of the injection is tend " tpr. In this case,
it might be useful to introduce the ratio between two time scales
which determines whether the gravitational settling is significant
or not

Gs ¼
16Dqa2gQ0E03ðtend " tprÞ

3Dr4H4 : ð45Þ

If the parameter Gs ' 1, then the settling occurs before the end of
the fracturing job, while if Gs ( 1, then the gravity does not affect
the proppant distribution much. It is interesting to note that if
tend " tpr ¼ const:, the viscosity does not enter (45), so that changing
the viscosity of the carrier fluid alone cannot be used to alter the
settling pattern. This counterintuitive phenomenon can be under-
stood in the following way: a higher viscosity leads to a slower ver-
tical settling velocity, however, at the same time, the horizontal
velocity becomes smaller too. Since both settling and horizontal
velocities are proportional to the inverse of the viscosity, the direc-
tion of the velocity vector does not change, and so the proppant pat-
tern is unaffected. However, if the design fracture length is regarded
as fixed, then the total treatment time tend becomes a function of
viscosity, and then Gs will no longer be independent of l0.

In addition, since high powers of E0;Dr and H appear in the scal-
ing parameters (34), and in particular in (45), the fracture footprint
and proppant distribution become very sensitive to the values of

Fig. 10. Fracture footprint and the proppant concentration !/ indicated by color calculated for the reference parameters and tend ¼ 4000 s, except C0 ¼ 0 (top left), C0 ¼ 0 and
l0 ¼ 0:24 Pa s (top right), C0 ¼ 0 and Dr ¼ 1:5# 106 Pa (bottom left) and C0 ¼ 0 and H ¼ 35 m (bottom right). The gravitational settling parameters are Gs ¼ 0:67 for both top
pictures (notable settling), Gs ¼ 5:15 for the bottom left picture (significant settling), and Gs ¼ 0:17 for the bottom right picture (almost no settling).
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E0;Dr and H. In other words, if any of those quantities is measured
inaccurately, the prediction of the model can be unreliable.

To illustrate the importance of the parameter Gs, Fig. 10 plots
the distribution of !/ for different values of Gs. As can be seen from
Fig. 10, Gs ¼ Oð1Þ leads to some skewness of the proppant
distribution, which is nearly identical (as it should be) for the top
pictures. The bottom left picture corresponds to Gs $ 1, and so
the effect of the gravity is significant. The bottom right picture cor-
responds to Gs % 1, and so the effect of the gravitational settling is
minimal. One can also see the effect of the ‘‘blocking’’ functions, as
the proppant cannot sink all the way to the bottom of the fracture
and the maximum concentration in the plug does not increase
beyond unity (the maximum allowed concentration).

Crack tip screen-out is another very important consequence of
the presence of proppant. It is important to recognize that particles
can reach the crack tip even without leak-off. First, the proppant
flows faster by a factor 1.2 for small concentrations, which can
be concluded from the asymptotic behavior of Q̂p, see Dontsov
and Peirce (2014). This happens because of the nonuniform dis-
tribution of particles over the width of the channel. A similar thing
happens in the vertical direction, the proppant tends to flow in the
areas where the fracture is wide, while the fluid flows everywhere
inside the fracture. So, the proppant gets concentrated near the
centre, which again implies that, on average, it flows faster than

the slurry. To illustrate this phenomenon, Fig. 11 plots the fracture
footprints and the proppant distributions at different time instants
t ¼ 800 s, t ¼ 1200 s, t ¼ 3000 s and t ¼ 4500 s for C0 ¼ 0 (other
parameters are taken from the reference set). The variation of the
pressure at the inlet, the length of the fracture, and the height at
the inlet versus time are also shown. As can be seen from the pic-
tures, the length of the fracture is below 100 m right before the
proppant injection starts, and by a length of 300 m, the proppant
is already in the tip region. The proppant travels approximately
250 m, while the fracture grows by 200 m during the same time
period, which shows that the proppant is faster by approximately
25%. There is no plug formation (in the x direction), however, at
these times and the proppant is distributed almost uniformly
inside the fracture. At the same time, there is a plug in the vertical
z direction due to gravitational settling. The variation of the
pressure, the length, and the height is smooth, although there is
a small kink at t ¼ 1000, which corresponds to the beginning of
proppant input.

To promote the accumulation of proppant in the tip region,
leak-off needs to be introduced. Fig. 12 plots the fracture footprint
and the proppant distribution at different time instants t ¼ 800 s,
t ¼ 1200 s, t ¼ 1700 s and t ¼ 3000 s (all parameters are taken
from the reference set). The variation of the pressure at the inlet,
the length of the fracture, and the height at the inlet versus time

Fig. 11. Fracture footprint with the proppant concentration !/ indicated by color calculated for the reference parameters and C0 ¼ 0 at t ¼ 800 s (top left), t ¼ 1200 s (top
right), t ¼ 3000 s (centre left) and t ¼ 4500 s (centre right). The case with t ¼ 4500 s corresponds to Gs ¼ 0:89. Bottom pictures show the pressure at the inlet, the length of the
fracture, and the height of the fracture at the inlet versus time.
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are also shown. As can be seen, the leak-off significantly retards the
fracture propagation, and even at t ¼ 800, the fracture is 50%
shorter compared to that in Fig. 11. Once the proppant is intro-
duced, it reaches the crack tip much faster, accumulates there,
and significantly slows further fracture propagation. After the plug
is formed, only a small amount of fluid can penetrate and so the
fracture starts to grow noticeably in the vertical direction.

5. Summary

This paper applies a model for proppant transport, which is
based on an empirical constitutive law for the mixture of a viscous
fluid with spherical particles, to two hydraulic fracturing problems,
namely with the KGD and the P3D geometries. In the adopted
formulation, the slurry flux has two terms, one Poiseuille-law-type
term with an effective viscosity (which goes to infinity as the con-
centration reaches a critical value), and a Darcy-law-type term,
where the average velocity is proportional to the particle size
squared and the pressure gradient. The flux of the particles also
has two terms, one proportional to the slurry flux, and another
related to gravitational forces. The first term describes the advec-
tive motion, while the second term describes gravitational settling.
The proppant transport model is first applied to the KGD fracture

geometry with stress barriers. The numerical simulations show
that the developed model is able to capture the initiation and fur-
ther growth of a proppant plug in the crack tip region, which leads
to tip screen-out. The gravitational settling introduces asymmetry,
leads to faster screen-out at one side of the crack, and may stop the
propagation there for some time. The proppant transport model is
then implemented with the P3D fracture geometry. Despite the
fact that the P3D model reduces to the solution of a 1D equation,
the proppant transport cannot be treated in a similar fashion,
and requires the numerical solution of a 2D problem. Two main
objectives in the analysis of the numerical solutions include the
gravitational settling and tip screen-out. A dimensionless parame-
ter, which controls the magnitude of the particle settling, is intro-
duced. One interesting fact is that this parameter does not directly
depend on the viscosity of the fluid. It is further shown that the
particles can reach the tip of the fracture even without leak-off.
This occurs due to the fact that the proppant is concentrated near
the centre of the channel, and thus, on average, gets transported
faster than the carrying fluid. When leak-off is introduced, the
proppant reaches the crack tip region notably faster and accumu-
lates there forming a plug. Once the plug is developed, only a small
amount of fluid can penetrate the plug (due to the Darcy-law-type
term), which switches fracture growth predominantly to the verti-
cal direction. The main drawbacks of the model include: its

Fig. 12. Fracture footprint with the proppant concentration !/ indicated by color calculated for the reference parameters at t ¼ 800 s (top left), t ¼ 1200 s (top right),
t ¼ 1700 s (centre left) and t ¼ 3000 s (centre right). The case with t ¼ 3000 s corresponds to Gs ¼ 0:45. Bottom pictures show the pressure at the inlet, the length of the
fracture, and the height of the fracture at the inlet versus time.
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inability to capture asymmetry caused by gravitational settling;
and the rigid plug property, in which the proppant can sustain
some stress once the fracture tends to close. Both issues cannot
be implemented since one of the key assumptions of the P3D
model – uniform pressure over the height of the fracture (and
the resulting solution of the elasticity equation), would not be
satisfied. This could be overcome only by adding a proppant trans-
port module into a fully planar 3D hydraulic fracture propagation
model, which is a challenging problem for future research.
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