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Highlights

• An implicit level set algorithm (ILSA) for planar hydraulic fractures is developed.
• The ILSA scheme is able to capture multiscale behavior on a coarse rectangular mesh.
• Effects of fracture toughness, fluid viscosity, and leak-off are included.
• The ILSA scheme solution has been validated against a radially symmetric solution.
• The ILSA scheme is used to model hydraulic fractures in three stress layer geometry.

Abstract

This study uses an Implicit Level Set Algorithm (ILSA) to model the propagation of planar hydraulic fractures in situations when
their progress is determined by an interplay of fluid viscosity, rock fracture toughness, and fluid leak-off into the formation. One of
the key features of our approach is the use of the three-process tip asymptotic solution both as a propagation condition and to capture
the multiscale behavior in a weak sense. Using this special tip asymptote is necessary because the validity region of the classical
square root fracture opening solution (stemming from linear elastic fracture mechanics) is often limited to a small zone near the
fracture tip, which can only be captured by a very fine mesh. In addition, this validity zone depends on the velocity of fracture
propagation, so that slow and fast portions of the fracture front may experience different near-tip behavior. The multiscale tip
asymptotic solution, on the other hand, has an increased validity region, which makes it possible to capture the near-tip multiscale
behavior on a coarse mesh and yields a computationally efficient algorithm. The presence of leak-off also complicates the model
considerably as it involves a delay term containing the trigger time history, which depends on the earlier fracture front positions.
Moreover, the leak-off from tip elements in which the fracture front speed changes significantly requires special treatment. This
three-process asymptotic solution is used to solve the fully coupled integro-delay-PDE model for a propagating planar hydraulic
fracture by using a level set algorithm in conjunction with the tip asymptotic solution to locate the moving fracture front and to
capture multiscale behavior. Firstly, the developed algorithm is validated against a reference solution for an axisymmetric hydraulic
fracture. Secondly, a set of numerical examples involving three stress layers is presented to illustrate the variation of the multiscale
near-tip behavior along the fracture perimeter and the need to use the multiscale asymptotic solution in a hydraulic fracturing
simulator.
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1. Introduction

Hydraulic fractures (HF) are cracks that are produced by the injection of a viscous fluid into a solid medium.
HF occur in nature as kilometers-long vertical dikes that bring magma from deep underground chambers through
the rock to the earth’s surface driven by buoyancy [1–7], or as fluid-filled cracks in glaciers [8]. The most common
industrial application of HF is in the stimulation of oil and gas reservoirs to enhance the recovery of hydrocarbons
by the creation of permeable pathways, see e.g. [9]. In addition, HF are used for accelerating the waste remediation
process [10], waste disposal [11], and preconditioning in rock mining [12].

Apart from buoyancy-driven HF studies most HF models cater for petroleum applications. One of the first
models developed was the Khristianovich–Zheltov–Geertsma–De Klerk (KGD) model [13], in which a line fracture
propagates under plane strain elastic conditions. Another early model is the Perkins–Kern–Nordgren (PKN)
model [14,15], in which a vertical planar fracture with fixed height propagates horizontally. Later, the pseudo-3D
(P3D) model was developed [16] as an extension of the PKN model that allows for height growth. There are several
variations of the P3D model, including the cell-based P3D model [16], the lumped P3D model [17], the stacked
height P3D model [18], and the enhanced P3D model [19]. To overcome the simplifications of the P3D models, more
accurate, but less computationally efficient, fully planar 3D models have also been developed [20–22], see also [23] for
a review of planar HF simulators. In addition, the special case of an axisymmetric or radial fracture geometry has been
extensively studied, and [24] presents a thorough review of the findings. Recently, research effort has shifted towards
fully 3D HF modeling [25,26], modeling of simultaneous propagation of multiple HF [27–29], and the interaction of
HF with a natural fracture network [30]. A recent review of current HF models can be found in [31].

All HF models include elasticity calculations to ensure equilibrium of the rock, a balance of input fluid volume with
stored and leak-off volume, and a propagation criterion to advance the fracture front. In conventional HF modeling a
number of different approaches have been used to solve the elastic equilibrium equations, including: the displacement
discontinuity method [22], the finite element method [32], and the extended finite element method [33], see also
a review paper [34]. More recently a class of phase-field or smeared crack models has been developed, in which
fractures are not modeled explicitly but rather by distributed damage that is represented by a field variable [35–37]. In
addition, discrete HF models have been developed that treat the solid as a collection of particles in a lattice connected
by springs [38,39], or as a collection of particles that interact with each other within a given radius [40]. The primary
advantage of both phase-field and discrete models is that they are able to capture the evolution and interaction of
complex fracture geometries with significantly less effort than the conventional models in which cracks are modeled
explicitly. On the other hand, due to the discrete nature of lattice models and the smeared-out damage representation
of cracks by the phase-field approach, it is not clear whether these methodologies will be able to capture the complex
multiscale behavior characteristic of HF when multiple physical processes compete to determine their evolution. The
other essential component in an HF model involves capturing the fluid flow, which is often taken to be laminar and
the fluid is assumed to be Newtonian. More complex HF fluid models consider power-law fluids [41], turbulent fluid
flow [8,42], or proppant transport [23,43], in which case the fluid flow equation is modified. This study utilizes the
displacement discontinuity method commonly used in HF modeling and assumes laminar fluid flow of a Newtonian
fluid within the crack to illustrate the multiscale methodology we have developed to capture the evolution of planar
HF. This methodology can also be extended to non-planar and more complex fractures, however this is beyond the
scope of this work and left for future research.

Many HF models use a propagation condition based solely on the linear elastic fracture mechanics of a mode I
fracture in which the fracture propagates if the stress intensity factor has reached a critical value known as the fracture
toughness. However, an analysis of the tip region of a hydraulic fracture [44] indicates that the validity region of the
classical square root solution is limited to a small region in the vicinity of the crack tip. Thus, either a very fine mesh is
needed to capture the square root behavior near the tip sufficiently accurately, or a special asymptotic solution should
be utilized, which incorporates the near tip behavior beyond the square root solution. Recognizing the significance
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of the tip region and its rich multiscale behavior, numerous studies have addressed the asymptotic behavior of HF
in the near tip region [45–48,44,49]. The use of such a multiscale tip asymptotic solution as a propagation condition
within an HF simulator leads to a more accurate numerical solution that is able to capture the multiscale tip behavior
on a relatively coarse mesh. However, the implementation of a multiscale tip asymptote is complex and progress
has been limited. The tip asymptote without leak-off has been implemented into an enhanced P3D model [50], in
which a global approximation for the two-process toughness–viscosity tip asymptote was used. In the context of
planar fractures, an Implicit Level Set Algorithm (ILSA) [22] provides a suitable platform for the implementation
of any tip asymptotic solution for a planar fracture geometry. This approach has been used to incorporate the tip
asymptote that assumes no leak-off in [51], in which a one dimensional interpolation of the numerically calculated and
tabulated values for the two-process toughness–viscosity tip asymptote was used. The three-processes tip asymptote
that captures fracture toughness, fluid viscosity, and leak-off has been implemented into a simulator for a radial HF
in [52] using two-dimensional interpolation of the numerically calculated tip solution obtained in [44]. While two
dimensional interpolation of the three-process asymptote is feasible for the symmetric case of a radial fracture, which
is a one dimensional problem with a single tip element, such an interpolation scheme becomes extremely costly in
the context of arbitrary planar fractures with many distinct elements in the tip region close to the fracture front.
However, an accurate closed form approximation for the universal three-processes multiscale tip asymptotic solution
that accounts for leak-off was recently obtained in [49]. This development has made it possible to devise an efficient
implementation of the three-processes multiscale near tip behavior into an HF simulator that avoids interpolation.
It should be noted that including the effect of leak-off not only requires the use of the three-process asymptotic
solution, but also complicates the model considerably as it involves a delay term containing the trigger time history,
which depends on the previous fracture front positions since the hydraulic fracture initiated. In addition, the rigorous
treatment of the leak-off from tip elements in which the fracture front speed changes significantly (e.g. when the
fracture traverses a stress barrier) has required the development of a specialized integration procedure to treat the
singular leak-off term using the front velocity history. In summary, the aim of this study is to develop an algorithm
that is able to solve the delay-integro-PDE model for a single planar HF that is able to incorporate the three-process tip
behavior (stemming from the combined interplay of fracture toughness, fluid viscosity, and leak-off) using a relatively
coarse mesh.

The paper is organized as follows. Section 2 describes the mathematical model for hydraulic fracture propagation,
which outlines the primary assumptions and formulates the governing equations adopted in this study. Section 3
provides a motivation for using the multiscale tip asymptotic solution as a propagation condition for developing
a more accurate numerical algorithm and also briefly summarizes the closed form approximate solution for the
multiscale tip asymptote that was previously obtained in [49]. Section 4 contains details of the numerical algorithm,
which describes the numerical scheme for solving the governing equations presented in Section 2 together with the
propagation condition that is based on the multiscale tip asymptote outlined in Section 3. Finally, Section 5 presents
numerical results that validate the algorithm developed in this paper against a reference solution and provides a set of
numerical examples for a planar hydraulic fracture that illustrate the importance of using the multiscale tip asymptotic
solution for HF modeling.

2. Mathematical model

2.1. Assumptions

In order to describe the mathematical model that we use for hydraulic fracturing, we first outline the assumptions
that are used to simplify the analysis. The governing equations for describing the propagation of a hydraulic fracture
should account for the dominant physical processes that occur in the reservoir during treatment. In particular, they
should be able to account for the deformation of the rock caused by the presence of the fracture, incorporate the
mechanism for fracture growth, capture the fluid flow inside the crack, and quantify the fluid leak-off into the
surrounding porous formation. In order to moderate the complexity of the model, it is assumed that:

(1) There is a single planar (i.e. it is contained in a single plane, see Fig. 1) hydraulically induced fracture and no
other (natural) fractures.

(2) The rock is a linear elastic material and is characterized by its Young’s modulus E and Poisson’s ratio ν.
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(3) The fracture growth is governed by linear elastic fracture mechanics (LEFM), see e.g. [53]. Only mode I fracture
is considered and the associated rock fracture toughness is denoted by K I c.

(4) The fluid flow follows lubrication theory, while the fluid is assumed to be incompressible and Newtonian (with a
dynamic viscosity µ).

(5) The leak-off is described by Carter’s model [54], which assumes one-dimensional diffusion in the direction
perpendicular to the fracture surfaces, includes filter cake formation, and is quantified by a single leak-off
coefficient CL .

(6) The rock is assumed to be homogeneous (i.e. the fracture toughness K I c, Young’s modulus E , Poisson’s ratio ν,
and leak-off coefficient CL are all spatially constant).

(7) The effect of gravity (i.e the hydrostatic pressure change in the crack) is neglected.
(8) The fluid front coincides with the crack front, since the lag between the two fronts is negligible under the typical

high confinement conditions encountered in reservoir stimulation [47,55,56].

Note that it is possible to relax the assumption that K I c and CL are homogeneous as well as add the effect of
hydrostatic pressure without any significant changes to the algorithm. At the same time, if different fluids are used
during the same treatment, or if one desires to account for the effect of proppant, it is also possible to incorporate
the heterogeneous viscosity without excessive modifications. Developing a similar algorithm for fluids with different
rheology is more challenging, as this requires the corresponding asymptotic solution for the tip region, which, ideally,
should be given in closed form for efficient calculations. The assumption that the elastic properties are uniform
is also more difficult to overcome since the displacement discontinuity method is utilized to calculate the elastic
response of the rock numerically. However, an efficient multi-layer algorithm can be implemented by replacing the
Green’s function matrix elements for a homogeneous elastic medium by those for a layered elastic medium (see
for example [57–59]). Representing a heterogeneous solid medium can be incorporated relatively easily by a finite
element method or an extended finite element method, however care is required when incorporating the tip asymptote
behavior in these algorithms [33]. Finally, it should also be noted that the algorithm developed in this paper for a single
planar fracture can be extended to multiple fractures that propagate along the predefined directions by including elastic
interactions between the fractures.

In order to specify the geometry of the problem, in this paper we will focus on the case when a primary layer
with height H is sandwiched between two layers with different far-field compressive stresses. In this situation, there
are three layers in total and their compressive stresses are denoted by σ h

i , i = 1, 2, 3, as indicated in Fig. 1. Perfect
bonding is assumed between the layers. The wellbore (modeled as a point source) coincides with the origin of the
(x, y) coordinate system and is located in the middle of the central layer. It is important to note that while the three
layers are assumed to have different compressive stresses, the elastic properties, fracture toughness, and leak-off
coefficient of all three layers are assumed to be identical. Extension to a layered solid medium with different toughness
and leak-off properties in each layer is possible provided the algorithm is adapted to treat the fracture growth near the
layer interfaces. While it is possible to derive a Green’s function for an elastic material with bonded layers [57,58],
the tip asymptote required to capture the transition between two bonded layers with distinct elastic properties has yet
to be determined. Finally, the inclusion of an arbitrary variation of the far-field compressive stress σ h(x, y) can be
incorporated without noticeable changes to the algorithm.

2.2. Governing equations

This section outlines the governing equations of the mathematical model for a single planar hydraulic fracture that
are consistent with the assumptions summarized in the previous section. The (x, y) coordinate system is defined in
the plane that contains the fracture, where a source with intensity Q(t) is located at the origin, see Fig. 1. The primary
quantities of interest in a hydraulic fracture problem are the time histories of the fracture width w(x, y, t) (fracture
opening is in the out-of-plane direction), the fluid pressure p(x, y, t), the fluid flux q(x, y, t), and the position of the
front C(t). The solution depends on the volumetric injection rate Q(t), the far-field compressive stress σ h

i , i = 1, 2, 3,
(perpendicular to the fracture plane), and the four material parameters µ′, E ′, K ′, and C ′ defined as

µ′
= 12µ, E ′

=
E

1 − ν2 , K ′
= 4


2
π

1/2

K I c, C ′
= 2CL . (2.1)
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Fig. 1. Left picture shows the schematics of a planar fracture with a footprint A(t) inscribed within the curve C(t). The point source with intensity
Q(t) is located at the origin of the (x, y) coordinate system. The normal velocity of the front is denoted by V , while s signifies the distance from
the fracture tip. A geometry with three layers is considered, where the far-field compressive stress varies from one layer to another. Right picture
shows the fracture aperture variation in the near tip region.

Here E ′ is the plane strain modulus, and µ′ is the scaled fluid viscosity, while K ′ and C ′ are the scaled fracture
toughness and leak-off coefficient respectively. These scaled quantities are introduced to keep equations uncluttered
by numerical factors. The front C(t), and the field quantities w(x, y, t), p(x, y, t), and q(x, y, t) are governed by a
set of equations arising from linear elastic fracture mechanics, lubrication theory, conservation of fluid volume, and
the associated boundary conditions that are described next.

2.2.1. Elasticity
In view of the rock homogeneity and linear elasticity assumptions, the elasticity equation that relates the fracture

aperture w to the compressive stress field along the crack (which is related to the fluid pressure p) can be condensed
into a single hypersingular integral equation [60,61]

p(x, y, t) = σ h(y) −
E ′

8π


A(t)

w(x ′, y′, t)dx ′dy′
(x ′ − x)2 + (y′ − y)2

3/2 , (2.2)

where A(t) denotes the fracture footprint, i.e. the area enclosed by the crack front C(t) (see Fig. 1) and σ h(y) is the
prescribed in-situ geological stress field, which for the three layer system considered in this paper can be written as

σ h(y) = σ h
2 + (σ h

3 − σ h
2 )H


y −

1
2 H


+ (σ h

1 − σ h
2 )H


−y −

1
2 H


,

where H denotes Heaviside step function and σ h
i (i = 1, 2, 3) are the values of the compressive stress in the three

considered layers, as shown in Fig. 1.

2.2.2. Lubrication
Utilizing the assumptions that the fracturing fluid is Newtonian and that the flow is laminar, the fluid flux inside

the crack can be calculated based on Poiseuille’s law

q = −
w3

µ′
∇ p, (2.3)

where ∇ = (∂/∂x, ∂/∂y) is the gradient operator in the fracture plane. Due to the assumed incompressibility of the
fluid, the continuity equation reads

∂w

∂t
+ ∇ · q +

C ′

√
t − t0(x, y)

= Q(t)δ(x, y), (2.4)

where the term involving C ′ captures fluid leak-off according to Carter’s model and t0(x, y) signifies the time instant
at which the fracture front was located at the point (x, y). Eqs. (2.3) and (2.4) can be combined to yield the Reynolds
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lubrication equation

∂w

∂t
=

1
µ′

∇ ·


w3

∇ p


−
C ′

√
t − t0(x, y)

+ Q(t)δ(x, y). (2.5)

Since this study focuses on the case when the fluid front within the fracture and the fracture front coalesce (so there is
no fluid-lag), the governing equation (2.5) applies within the whole fracture.

2.2.3. Boundary conditions at the moving front C(t)
In order to describe the fracture front evolution, the boundary conditions at the front C(t) should be specified. By

using the classical LEFM solution for the mode I crack tip [53], the fracture propagation criterion is

lim
s→0

w

s1/2 =
K ′

E ′
, if V > 0, lim

s→0

w

s1/2 =
K ′

I

E ′
, if V = 0, (2.6)

where s is the distance to the crack front, V is the normal velocity of the front (see Fig. 1), and K ′

I is the unknown
scaled stress intensity factor. We note here that the fracture is assumed to be in limit equilibrium as soon as it
propagates (i.e. K ′

I = K ′, where K ′ is the scaled fracture toughness, see (2.1)). At the same time, if the fracture
does not propagate, then the stress intensity factor is below the critical value, i.e. K ′

I < K ′. The situation when V = 0
corresponds to the case of partial fracture closure near the tip region. Note that complete fracture closure (K ′

I = 0),
in which case the fracture front starts to recede, is beyond the scope of this study.

For the case of coalescent fluid and fracture front the propagation condition (2.6) should be supplemented by a zero
flux boundary condition [56] at the fracture tip, which can be written as

lim
s→0

w3 ∂p

∂s
= 0. (2.7)

The evolution of the fracture front C(t) (and the associated normal velocity V ) is implicitly determined by Eqs. (2.6)
and (2.7).

3. Multiscale tip asymptotic behavior

3.1. Motivation for using a multiscale tip asymptotic solution

The LEFM-based propagation condition (2.6) sets a condition at the fracture tip, which can be used to locate the
fracture boundary. However, the validity region of this asymptotic solution is often limited to a small region near the
fracture tip (see e.g. [44] for the analysis of the near tip behavior). In other words, in order to resolve the LEFM
behavior (2.6) near the fracture tip (within the adopted mathematical model), one would need to use a very fine mesh,
which would lead to excessive computational costs. In order to avoid this situation, the LEFM near tip solution for the
fracture aperture (2.6) can be replaced by a suitable asymptotic solution with an increased validity region, i.e.

w(s) ≈ wa(s), s ≪ L , (3.1)

where wa(s) is the fracture width variation in the near tip region, and L is the characteristic length of the fracture.
The meaning of (3.1) is that the fracture aperture should follow the specified solution, wa(s), in the tip region, where
the latter region is defined relative to the characteristic size of the fracture, L . Note that wa(s) → (K ′/E ′)s1/2 for
s → 0, which is in agreement with (2.6), but this limit may not always be reached at the computational length scale
even for s ≪ L , hence the need to use the tip asymptotic solution wa(s). As can be seen on the right picture in Fig. 1,
the near tip solution can be calculated by considering a semi-infinite hydraulic fracture that propagates steadily with
a velocity V under plane strain elastic conditions. This property of planar hydraulic fractures was derived rigorously
in [22]. In the context of the adopted mathematical model involving all the processes of viscous dissipation, toughness
energy release, and leak-off, the problem of a tip region was first analyzed in [44] and then revisited in [49], where
both studies clearly establish the multiscale nature of the solution. The following sections are devoted to the problem
of the tip region and describe a closed form approximation for wa(s) that was obtained in [49].
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3.2. Problem formulation and vertex solutions

As shown in [22,44], the behavior of the solution in the tip region of a hydraulic fracture is governed by the problem
of a semi-infinite hydraulic fracture propagating steadily with the velocity V under plane strain elastic conditions.
Consistent with Fig. 1, we introduce a moving coordinate system, in which s denotes the distance from the tip to a
point inside the fracture. In this case, the governing equations for the near tip problem can be written as [22,44,49]

w2
a

µ′

dpa

ds
= V + 2C ′V 1/2 s1/2

wa
, pa(s) =

E ′

4π


∞

0

dwa(s′)

ds′

ds′

s − s′
, wa =

K ′

E ′
s1/2, s → 0, (3.2)

where wa is the fracture width for the semi-infinite crack problem, pa is the corresponding fluid pressure, V is
the fracture propagation velocity, and µ′, C ′, E ′, and K ′ are the scaled material properties defined in (2.1). Here
the first equation is the integrated fluid balance equation (2.5) that is reduced in the limit to a one-dimensional
flow, the elasticity equation (2.2) reduces to the second equation in (3.2), and the third equation is the propagation
condition (2.6). Note that (3.2) utilizes an identical mathematical model (and therefore assumptions) as the planar
hydraulic fracture problem under consideration, but applies to a different fracture geometry.

A complete asymptotic analysis of the semi-infinite hydraulic fracture problem, governed by (3.2), was performed
in [44]. In particular, it is important to note that there are three distinct limiting regimes of propagation, namely,
toughness (denoted by k), leak-off (denoted by m̃), and viscous (denoted by m). The fracture width solutions (so-
called vertex solutions) for these regimes are respectively given by

wk =
K ′

E ′
s1/2, wm̃ = βm̃

4µ′2V C ′2

E ′2

1/8
s5/8, wm = βm

µ′V

E ′

1/3
s2/3, (3.3)

where βm̃ = 4/(151/4(
√

2 − 1)1/4) and βm = 21/335/6. The vertex solutions (3.3) represent limiting cases when
either toughness, viscosity, or leak-off dominate the response. However, knowledge of the vertex solutions (3.3) is
not sufficient since the intermediate behavior between these limiting solutions is not captured. In addition, since the
vertex solutions depend on the velocity of crack propagation V , a fracture may change the near tip behavior as the
velocity changes.

There are two possibilities for calculating wa(s). The first entails a numerical solution of (3.2), which is tabulated
for a set of parameters and then used in conjunction with interpolation to obtain wa(s), see [51,52] in which such an
approach is used. Alternatively, an accurate closed form approximation for wa(s), which was obtained in [49], can be
used. This study considers the second approach since it leads to a more efficient numerical scheme.

3.3. Approximate solution

3.3.1. Solution in original scaling
In Section 4.2 we describe an iterative algorithm that uses the asymptotic solution (3.1) to locate the unknown

fracture front. In particular, given a trial width wa associated with the current estimate of the front position, the
asymptotic relation (3.1) is inverted to determine a new estimate of the distance s to the free boundary. In Section 4.3
we describe how the asymptote (3.1) is integrated over the tip elements in order to capture the multiscale tip asymptotic
behavior in a weak sense. Given the fundamental importance of the asymptotic solution (3.1), this section summarizes
the solution for a semi-infinite hydraulic fracture with leak-off, which is governed by (3.2). An approximate solution
to (3.2) that can be evaluated extremely efficiently was described in detail in [49]. Therefore, in this section we present
only the key features that are necessary to reproduce the results, while the details of the procedure for obtaining the
solution can be found in [49].

The original solution is written in terms of the following scaled quantities:

w̃ =
E ′wa

K ′s1/2 , χ =
2C ′E ′

V 1/2 K ′
, s̃ = (s/ l)1/2, l =

 K ′3

µ′E ′2V

2
, (3.4)

where w̃ is the fracture width normalized with respect to the toughness asymptote, χ is the leak-off parameter, s̃ is
the square root of the normalized distance from the fracture tip, while l is the characteristic length scale. For future
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reference, it is instructive to note that the vertex solutions (3.3) can be rewritten using (3.4) as

w̃k = 1, w̃m̃ = βm̃χ1/4s̃1/4, w̃m = βm s̃1/3. (3.5)

As follows from [49] the zeroth-order approximate solution can be written implicitly as

w̃3
0 − 1 −

3
2

b0(w̃
2
0 − 1) + 3b2

0(w̃0 − 1) − 3b3
0 ln

b0 + w̃0

b0 + 1


= β3

m s̃, b0 =
3β4

m̃

4β3
m

χ ≈ 0.9912 χ. (3.6)

This zeroth-order approximation captures all vertex solutions (3.5) precisely in the limiting cases, while the error in
the transition regimes does not exceed 1.1%. To obtain the so-called δ-correction, it is assumed that w̃ ∝ s̃δ , where
the power δ is computed on the basis of (3.6) as

δ =
s̃

w̃0

dw̃0

ds̃
=

β3
m s̃(w̃0)

3w̃3
0


1 +

b0

w̃0


, 0 6 δ 6 1/3. (3.7)

The latter values of δ from (3.7) are substituted into

w̃3
δ − 1 −

3
2

b(w̃2
δ − 1) + 3b2(w̃δ − 1) − 3b3 ln

b + w̃δ

b + 1


= 3C1(δ)s̃, b =

C2(δ)

C1(δ)
χ, (3.8)

where

C1(δ) =
4(1 − 2δ)

δ(1 − δ)
tan


πδ


, C2(δ) =

16(1 − 3δ)

3δ(2 − 3δ)
tan

3π

2
δ

. (3.9)

The solution w̃(x̃, χ) is implicitly defined by (3.7)–(3.9), and the scaling (3.4) can be used to obtain unscaled results.
It is shown in [49] that the error introduced by the approximation (3.8) does not exceed 0.14% for a wide range of
parameters that captures all transition regions (note that the vertex solutions (3.5) are captured precisely). A description
of the multiscale behavior of the solution wa(s) is beyond the scope of this study and can be found in [44,49], while,
at the same time, the approximation (3.8) is one of the key components of the numerical scheme for the planar fracture
problem since it is used in the multiscale propagation condition (3.1).

3.3.2. Solution in a new scaling

Unfortunately, the original scaling (3.4) prevents us from obtaining a solution directly for the case of a zero fracture
toughness, i.e. K ′

= 0 (since w̃ is not defined). This situation may occur when a hydraulic fracture propagates along
a pre-existing fracture or between two un-bonded interfaces, so the model should be able to capture this limit. Since
the problem is solely concealed by the scaling (3.4), we introduce a different set of variables, namely

K̂ =
1
w̃

=
K ′s1/2

E ′w
, Ĉ =

χ

w̃
=

2C ′s1/2

V 1/2w
, ŝ =

s̃

w̃3 =
µ′V s2

E ′w3 , (3.10)

where 0 6 K̂ 6 1 is related to scaled fracture toughness, Ĉ > 0 represents the leak-off, and ŝ is the scaled s
coordinate. Using (3.10), Eq. (3.8) can be rewritten as

ŝ =
1

3C1(δ)


1 − K̂ 3

−
3
2

Ĉb̂(1 − K̂ 2) + 3Ĉ2b̂2(1 − K̂ ) − 3Ĉ3b̂3 ln
 Ĉb̂ + 1

Ĉb̂ + K̂


≡ f (K̂ , Ĉb̂, C1),

b̂ =
C2(δ)

C1(δ)
. (3.11)

The zeroth-order approximation (3.6) can be written using the same short-hand notation as in (3.11) as

ŝ = f


K̂ ,
3β4

m̃

4β3
m

Ĉ,
β3

m

3


≡ g0(K̂ , Ĉ). (3.12)
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Eq. (3.7) written in terms of the variables (3.10) transforms to

δ =
β3

m

3


1 +

3β4
m̃

4β3
m

Ĉ


g0(K̂ , Ĉ) ≡ ∆(K̂ , Ĉ). (3.13)

By substituting (3.13) into (3.11), the δ-corrected solution (3.8) can be written as

ŝ = f


K̂ , Ĉb̂

∆(K̂ , Ĉ)


, C1


∆(K̂ , Ĉ)


≡ gδ(K̂ , Ĉ), (3.14)

where the functions C1(δ) and b̂(δ) are defined respectively in (3.9) and (3.11). Eq. (3.14) is the definition of the
function gδ , where the latter is essentially equal to the function f defined in (3.11), in which the relations C1(δ) and
b̂(δ) are computed using (3.9) and (3.11), and δ is calculated using (3.13). Clearly, the formulation (3.14) permits
zero values of the fracture toughness K ′

= 0, since it corresponds to the case K̂ = 0 and the function gδ(0, Ĉ) is
well-defined. It should be noted here that the function gδ is defined for 0 6 K̂ 6 1 and Ĉ > 0. The situations in which
K̂ < 0 or Ĉ < 0 are not physical, however it is possible to encounter a situation in which K̂ > 1. The case K̂ > 1
corresponds to the situation when the stress intensity factor is below the fracture toughness, in which case the fracture
does not propagate, as indicated in (2.6). To impose this condition, the function gδ is set to zero for K̂ > 1 and wa
is set to the toughness solution with an unknown stress intensity factor K ′, in which case (3.14) can be expressed in
dimensional form using (3.10) as

s2V µ′

E ′w3
a

= gδ

 K ′s1/2

E ′wa
,

2s1/2C ′

wa V 1/2


,

K ′s1/2

E ′wa
6 1 and V > 0,

wa =
K ′

I s1/2

E ′
,

K ′s1/2

E ′wa
> 1 and V = 0,

(3.15)

where K ′

I is the unknown scaled stress intensity factor (note a notation difference between the stress intensity factor
K ′

I and the fracture toughness K ′).
Eq. (3.15) provides an approximate implicit closed-form solution for the fracture aperture variation in the tip region

wa(s) that is described in (3.1). The latter solution captures all limiting solutions (3.3) together with all possible
transition regions, see [49] for more details. Note here that gδ is a relatively simple function, so that a numerical
evaluation of the solution through the implicit relation (3.15) is computationally efficient, as compared to a numerical
solution of (3.2) combined with interpolation. Once the solution is obtained from (3.15), it is then used in the numerical
scheme for the whole fracture to impose the propagation condition (3.1).

3.3.3. Moments of the solution
As will be shown later, the numerical algorithm for a planar hydraulic fracture requires not only the asymptotic

solution wa(s), but its zeroth (fracture volume) and first moments. By using the fact that w̃ ∝ s̃δ together with the
scaling (3.4), and the fact that δ varies slowly, these moments can be expressed as

M0(s) =

 s

0
wa(s′) ds′

≈
2 wa(s)s

3 + δ
, M1(s) =

 s

0
wa(s′)s′ ds′

≈
2 wa(s)s2

5 + δ
. (3.16)

Since 0 6 δ 6 1/3 (which can be seen from (3.5)), even a constant approximation δ = 1/6 leads to an error of only
5% for M0 and 3% for M1. To decrease these errors, one may use (3.13) to calculate δ = ∆(K̂ , Ĉ) for given values
of K̂ and Ĉ . This reduces the error in the approximation for M0 to 1%, and that for M1 to 0.4%. To achieve an even
better approximation, one needs to use the value of δ at a point inside the interval [0, s̃]. One possibility is to use a
Taylor series expansion of (3.7) to obtain

δ(s̃(1 − p)) ≈

1 − p + p g0(K̂ , Ĉ)(β3

m + β4
m̃Ĉ)


∆(K̂ , Ĉ) ≡ ∆p(K̂ , Ĉ, p), (3.17)

where 0 6 p 6 1 is a parameter. By substituting (3.17) into (3.16), we can express the moments as

M0(s) =
2 wa(s)s

3 + ∆p(K̂ , Ĉ, p0)
, M1(s) =

2 wa(s)s2

5 + ∆p(K̂ , Ĉ, p1)
, (3.18)
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where the function ∆p is defined in (3.17), and K̂ and Ĉ are evaluated at the point s and are given in (3.10). It is shown
through a series of numerical experiments that p0 = 0.377 corresponds to the smallest error of 0.14% for the volume
M0, while p1 = 0.260 corresponds to the smallest error of 0.05% for the first moment M1. Here the error is computed
as a maximum relative discrepancy between the numerical solution (which utilizes numerical integration in (3.16))
and the approximations (3.18). For completeness, it should be noted that the case V = 0 in (3.15) is captured by
setting ∆p(K̂ , Ĉ, p) = 0 for K̂ > 1.

In summary, to implement the propagation condition (3.1) into a planar model the numerical scheme requires the
knowledge of the functions gδ and ∆p that allow us to calculate the fracture width at a distance s away from the tip
wa(s) using (3.15), as well as the zeroth and first moments of the solution (3.18).

3.4. Parametric triangle

In order to visualize the “position” of the asymptotic solution wa relative to the vertex solutions (3.3), it is useful to
represent wa as a point in a phase space comprising a parametric triangle (see e.g. [44]) whose vertices represent the
three vertex solutions. To draw this triangle in a quantitative manner, let us first introduce shape functions associated
with the vertex solutions (3.3) and the universal asymptotic solution wa (3.15) as follows

Nk =
nk

nk + nm + nm̃
, Nm̃ =

nm̃

nk + nm + nm̃
, Nm =

nm

nk + nm + nm̃
, (3.19)

nk =
wk

wa − wk
, nm̃ =

wm̃

wa − wm̃
, nm =

wm

wa − wm
.

Note that the values of Nk , Nm̃ , and Nm are in the interval [0, 1], and that the shape functions satisfy the partition
of unity property Nk + Nm̃ + Nm = 1. By selecting the location of the vertices as (xm, ym) = (0, 0), (xm̃, ym̃) =

(1/2,
√

3/2), and (xk, yk) = (1, 0), a point inside the triangle is determined by

xtr = xm Nm + xm̃ Nm̃ + xk Nk, ytr = ym Nm + ym̃ Nm̃ + yk Nk . (3.20)

In other words, first the shape functions (3.19) are calculated for a given asymptotic solution wa at point s (note
that the vertex solutions in (3.19) are evaluated at the same distance from the tip s), and then the position inside the
parametric triangle is determined from (3.20).

It is also useful to fill the parametric triangle with a colormap to be able to indicate the location in phase space at
which a given computational element is operating. Thus the elements that utilize the asymptotic solution for tracking
the moving fracture front can be colored according to the position of the asymptotic solution inside the parametric
triangle. This will enable us to determine the relative position of the asymptotic solution inside the parametric triangle
by inspecting the color of the element. To specify the color filling of the triangle, we adopt the RGB color model, in
which the intensity of each color component is in the interval [0, 1] and the intensities of the constituent red, green,
and blue colors are calculated by using the corresponding values of the shape functions Nk , Nm̃ , and Nm (3.19), so
that [r, g, b] = [Nk, Nm̃, Nm]. Fig. 2 shows triangles depicted according to this description. The blue-colored region
corresponds to the situation in which the asymptotic solution wa is close to the viscous asymptote wm . The green-
colored region corresponds to the situation in which the asymptotic solution wa is close to the leak-off asymptote
wm̃ . The red-colored region corresponds to the situation in which the asymptotic solution wa is close to the toughness
asymptote wk . The left panel in Fig. 2 also shows contour lines indicating regions where the vertex solutions (3.5)
apply to within either a 4% or 8% error. The right panel in Fig. 2 indicates the trajectories of the semi-infinite fracture
solution wa for different values of the leak-off parameter χ . Each trajectory represents the solution wa(s) as s varies
from 0 to ∞ for a given constant value of χ . All trajectories start at the k vertex (associated with small distances from
the tip s) and end at the m vertex (for large values of s). It is important to note that the solution that corresponds to the
case V = 0 in (3.15) can lie outside of the triangle, but is displayed at the k vertex for convenience.

4. Implementing the universal tip asymptote within the Implicit Level Set Algorithm (ILSA)

4.1. Discrete equations

This study adopts a discretization, in which the (x, y) plane that contains the fracture is tessellated into a fixed
uniform rectangular mesh ∪Am,n as shown in Fig. 3. The elements are centered at (xm, yn) and have dimensions ∆x
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Fig. 2. Left panel: the parametric triangle with contour lines indicating the regions where vertex solutions (3.3) apply to within 4% and 8% error.
Right panel: the parametric triangle with the trajectories that correspond to the semi-infinite fracture solution wa for different values of the leak-off
parameter χ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Left panel: schematics of a hydraulic fracture footprint with mesh, where At are the tip elements, As are the survey elements, and Ac are
the channel elements. Right panel: schematics of the procedure for locating a moving fracture front. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

and ∆y. The fracture footprint A(t) is then covered by rectangular elements Am,n such that A ⊆ ∪Am,n . Note that this
discretization is very similar to the one used in [22,51]. To implement the ILSA scheme it is important to distinguish
three different types of elements Am,n that intersect A, namely the channel, the tip, and the survey elements. The tip
elements At are partially filled elements that contain the fracture front C and are denoted by the light gray color in
Fig. 3. The channel elements Ac are completely filled elements and are indicated by light blue and dark gray coloring
in Fig. 3. The survey elements As are a subset of the channel elements Ac that have at least one common face with a
tip element and are indicated by the dark gray coloring in Fig. 3. The survey elements are used to locate the moving
fracture front.

A piece-wise constant approximation for the fracture width is employed, so that

w(x, y, t) =


m,n

wm,n(t)Hm,n(x, y), Hm,n(x, y) =


1 for (x, y) ∈ Am,n
0 for (x, y) ∉ Am,n .

(4.1)

The lubrication equation (2.5), integrated in time from t − ∆t to t and over the element Am,n , is discretized via the
finite volume method to yield

wm,n(t) − wm,n(t − ∆t) = ∆t [A(w)p]m,n + Sm,n, (4.2)

where Sm,n is the source/leak-off term and

[A(w)p]m,n =
1

∆x

w3
m+

1
2 ,n

µ′

pm+1,n − pm,n

∆x
−

w3
m−

1
2 ,n

µ′

pm,n − pm−1,n

∆x



+
1

∆y

w3
m,n+

1
2

µ′

pm,n+1 − pm,n

∆y
−

w3
m,n−

1
2

µ′

pm,n − pm,n−1

∆y


, (4.3)
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where the edge widths are given by wm±
1
2 ,n =

1
2 (wm±1,n + wm,n) and wm,n±

1
2

=
1
2 (wm,n±1 + wm,n). Zero flux

boundary conditions (2.7) are implemented in tip elements by removing the terms associated with the element faces
having zero boundary fluxes from the difference operator (4.3). Eq. (4.2) can be expressed on the following succinct
form:

w(t) = w(t − ∆t) + ∆tA(w)p + S, (4.4)

where w is the vector that contains all width values wm,n , p is the vector that contains all pressure values pm,n , and
S is the vector that contains all the source/leak-off terms Sm,n . Here A(w) and p in (4.4) are evaluated at time t , so
that time integration is performed using the backward Euler scheme. This implicit formulation is important to ensure
stability when using a relatively large time step. Explicit time integration would require a very small time step since
the system (4.4) is very stiff [22].

In order to incorporate the propagation condition (3.1), it is essential to distinguish between the channel and tip
elements. In this setting, all the variables can be split as follows:

w = [wc, wt
], p = [pc, pt

], S = [Sc, St
], (4.5)

where quantities with the superscript “c” correspond to the channel elements, while quantities with the superscript “t”
refer to the tip elements. This decomposition is essential since the tip widths wt are determined using the propagation
condition (3.1), while the tip pressures pt are treated as unknowns.

The elasticity equation (2.2) for channel elements can be solved using constant displacement discontinuity
(DD) [60] elements to yield

pc
m,n(t) = σ hc

m,n +


k,l

Cm−k,n−lwk,l(t),

Cm−k,n−l = −
E ′

8π


(xm − x)2 + (yn − y)2

(xm − x)(yn − y)

x=xk+∆x/2, y=yl+∆y/2

x=xk−∆x/2, y=yl−∆y/2

,

(4.6)

where pc
m,n are the fluid pressure values at the channel element centers and σ h

m,n are the corresponding values of the
geological stress. The latter Eq. (4.6) can be conveniently written in the following matrix form

pc
= σ hc

+ Cw, (4.7)

where the coefficients of the fully populated matrix C are determined from (4.6).
The source/leak-off term for channel elements is discretized using the midpoint rule

Sc
m,n = −2C ′

[


t − tm,n −


t − ∆t − tm,n] +
δmm0,nn0

∆x∆y
Q(t)∆t. (4.8)

Here the trigger times tm,n are defined as the time instants at which the fracture front crosses the midpoint of the
given element Am,n , and are calculated using interpolation of the front position history. The term δmm0,nn0 denotes the
Kronecker delta, where the indexes m0 and n0 correspond to the element located at the origin where the fluid source
is applied.

As follows from (4.4), (4.5), (4.7), and (4.8), the remaining task is to determine wt and St , which are both related to
the fracture front dynamics and are considered next. Once wt and St are calculated, Eq. (4.4) can be solved for wc and
pt using either fixed point iteration, Picard iteration, or Newton iteration [34]. Efficient preconditioners for solving
this system of equations can be found in [62,63]. Further details of the numerical solution are omitted for brevity and
can be found in [22,51].

4.2. Locating the fracture front using the level set algorithm

In order to determine distance to the moving fracture front, we are going to assume that the fracture width follows
the asymptotic solution (3.15) from the survey elements to the crack front. In this situation, having determined the
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trial fracture widths ws at the survey elements, the new location of the fracture front si corresponding to ws
i can be

calculated using (3.1) by determining the value of si that satisfies

s2
i Viµ

′

E ′(ws
i )

3 = gδ

 K ′s1/2
i

E ′ws
i

,
2s1/2

i C ′

ws
i V 1/2

i


, Vi =

si − si,0

∆t
, (4.9)

where si,0 is the known position of the fracture front at the previous time step and the quantities with the subscript “i”
correspond to the i th survey element. Here si and si,0 are the distances from the i th survey element to the fracture front
at the current and previous time steps respectively. In a situation when the fracture front moves, Eq. (4.9) is solved
numerically to determine si for the current set of survey elements using Newton’s method. If the fracture front does
not propagate, then the velocity is zero and hence the fracture front does not move. This is automatically captured
by (4.9) since the function gδ is vanishes for K ′s1/2

i /(E ′ws
i ) > 1, which in turn leads to Vi = 0 and si = si,0.

To track the fracture front efficiently in the plane, we introduce a signed distance function T (x, y), which is equal
to the negative distance to the fracture front at every point (x, y). In this case, the function T is a level set function
that defines C, since T (x, y) < 0 for all points (x, y) that lie within the fracture boundary curve C(t), points for which
T (x, y) > 0 lie outside C(t), while the fracture boundary curve C(t) is defined by the level set T (x, y) = 0. Knowing
the distances from all survey elements to the crack front, we can formulate an initial condition for the function T as

T (xi , yi ) = −si for all (xi , yi ) ∈ As . (4.10)

To calculate the values of T in the narrow band of elements that includes all the tip elements At , the Eikonal equation
is solved

|∇T | =

∂T
∂x

2
+

∂T
∂y

2
= 1. (4.11)

A simple first order scheme [64,65] to discretize the Eikonal equation (4.11) is used. To illustrate the procedure for
calculating the T function, the right panel in Fig. 3 shows the schematics for calculating the value of T3 knowing the
values T1 and T2 in the neighboring elements. The value of T3 can be calculated either via a first-order discretization
of (4.11) or by geometric considerations [22] using the formula

T3 =
T1 + βT2 + Θ

1 + β2 , (4.12)

where Θ =


∆x2(1 + β2) − β2∆T 2, β = ∆x/∆y, and ∆T = T2 − T1. The fast marching method [64] is then used

to extend the initial values of T (4.10) to a narrow band that includes the fracture front. Knowing the T values in the
tip elements, the location and orientation of the fracture front are defined by [22]

ℓ = −
T1 + T2

2
, tan α =

β(Θ − ∆T )

Θ + β2∆T
, (4.13)

where ℓ is the distance from the front to the farthest interior corner of a tip element and α is the inclination of the
fracture front (see Fig. 3). Finally, the normal velocity field of the fracture front in the tip elements can be determined
using

V j =
T (x j , y j , t − ∆t) − T (x j , y j , t)

∆t
, (x j , y j ) ∈ At . (4.14)

It should be noted here that the velocities V j can be different from the velocities that are associated with the motion
of the front calculated in (4.9).

4.3. Tip volume calculation

Since the displacement discontinuity method assigns the width field in partially filled tip elements wt to be the
average volume of fluid contained in those elements, it is necessary to determine the fluid volume in the tip elements.
Once the current location ℓ, orientation α, and normal front speed V are calculated for some tip element using the
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level set scheme described above (here a general tip element is considered, in which case the index is omitted), the
fluid volume corresponding to the tip asymptote can be calculated [22]. As can be seen from the right panel in Fig. 3,
the fluid occupies the polygonal region ADE FG. The fluid volume in ADE FG can be calculated as

VADEFG = VABC − H(ℓ − ∆y sin α)VGFC − H(ℓ − ∆x cos α)VDBE, (4.15)

where VABC is the volume of fluid inside the triangle ABC (note that G and F disappear when ℓ < ∆y sin α, likewise
D and E disappear when ℓ < ∆x cos α), VGFC is the fluid volume inside the triangle G FC (which is accounted for as
soon as the triangle G FC exists), VDBE is the fluid volume inside the triangle DB E (which is accounted for as soon
as the triangle DB E exists), and H denotes the Heaviside step function. Therefore, it is sufficient to calculate the fluid
volume associated with the asymptote wa over a triangular region. To this end, the fluid volume for the asymptotic
solution within the triangle ABC can be calculated as

VABC =
1

sin α cos α

 ℓ

0
swa(ℓ − s) ds =

1
sin α cos α

 ℓ

0
(ℓ − ξ)wa(ξ) dξ

=
ℓM0(ℓ) − M1(ℓ)

sin α cos α
≡ V△(ℓ), (4.16)

where the moments M0 and M1 are calculated using (3.18). By using the definition of V△(ℓ) in (4.16) and calculating
the volumes of the triangles G FC and DB E similarly to (4.16), Eq. (4.15) can be rewritten as

VADEFG = V△(ℓ) − H(ℓ − ∆y sin α)V△(ℓ − ∆y sin α) − H(ℓ − ∆x cos α)V△(ℓ − ∆x cos α). (4.17)

Since the function V(ℓ) is not defined for α = 0 and α = π/2, these two cases have to be considered separately and
lead to VADEFG = ∆yM0(ℓ) and VADEFG = ∆x M0(ℓ) respectively. Finally, the average fracture aperture in the j th
tip element wt

j is calculated as

wt
j =

1
∆x∆y


V△(ℓ) − H(ℓ − ∆y sin α)V△(ℓ − ∆y sin α)

− H(ℓ − ∆x cos α)V△(ℓ − ∆x cos α), α ≠ 0, α ≠
π

2
,

∆yM0(ℓ), α = 0,

∆x M0(ℓ), α =
π

2
,

(4.18)

where ℓ and α correspond to the distance to the front and its orientation (see the right picture in Fig. 3) in the j th tip
element. The collection of all wt

j allows us to obtain wt . Also note that the tip volume (4.18) implicitly depends on
the front velocity V since the fracture width asymptotic solution wa(ℓ) depends on the velocity, the moments M0(ℓ)

and M1(ℓ) depend on wa(ℓ), and V△(ℓ) in (4.16) depends on the moments.
In situations when the front moves, i.e. V > 0, Eq. (3.15) allows us to find wa(ℓ), and eventually calculate tip

volumes using (4.18). The case V = 0 needs to be considered separately since wa(ℓ) can be calculated using (3.15)
only after the stress intensity factor is computed. To determine the latter stress intensity factor, let us consider the
situation shown on the right panel in Fig. 3. Since V = 0, then according to (3.15) the tip solution is wa = K ′

I s1/2/E ′.
By denoting the width in the survey elements by ws

1 and ws
2 and the corresponding distances to the front s1 = −T1

and s2 = −T2, the scaled downstream stress intensity factor can be computed using least-squares as

K ′

I = E ′
ws

1s1/2
1 + ws

2s1/2
2

s1 + s2
. (4.19)

Once the stress intensity factor is obtained, the fracture width wa(ℓ) is calculated using the second equation in (3.15)
and (4.19). Then the moments are calculated using (3.18), and, finally, the fracture widths in the tip elements with
zero velocity are calculated using (4.16) and (4.18).

4.4. Leak-off from the tip elements

To calculate the leak-off volume in the tip elements St , we again make reference to the right panel in Fig. 3, in
which a typical tip element is shown. To simplify calculations, it is assumed that the time history of the front velocity
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V (t) = dℓ(t)/dt is known and that the front orientation does not change, i.e. α(t) = α. Similar to the analysis in
Section 4.3, firstly, the leak-off from the triangular area ABC (see Fig. 3) is considered. As follows from (2.5) and
(4.2), the leak-off volume from the triangular region ABC is determined by the following integral:

LABC = −
2C ′

sin α cos α

 ℓ

0


t − t0(s) s ds = −

C ′

sin α cos α

 √
t−tA

0

 t−tA−ζ 2

0
V (t ′ + tA) dt ′

2
dζ

≡ L△(t, tA), (4.20)

which is obtained using integration by parts and the variable change ζ =
√

t − t0(s), and where tA is time at which
the fracture front enters the element at point A. Note that L△(t, tA) signifies total leak-off from the triangular region
ABC during the time period from tA to t . In the situation when V = const., Eq. (4.20) reduces to

L△(t, tA) = −
8
15

C ′V 2(t − tA)5/2

sin α cos α
, V = const., (4.21)

which provides a quick estimate for the leak-off if the velocity is constant. Since the fractured area becomes
rectangular for α = 0 or α = π/2 and (4.20) is not valid, the leak-off from the tip element is given by to the
following integral:

L�(t, tA) = −2C ′

 ℓ

0


t − t0(s) ds = −2C ′

 √
t−tA

0

 t−tA−ζ 2

0
V (t ′ + tA) dt ′


dζ, (4.22)

which for V = const. reduces to

L�(t, tA) = −
4
3

C ′V

t − tA

3/2
, V = const. (4.23)

As for the tip volume calculations (4.15), the leak-off in the polygon ADE FG can be calculated knowing the
contribution of the triangles ABC , G FC , and DB E if α ≠ 0 and α ≠ π/2, or using the result (4.22) if α = 0
or α = π/2. This can be summarized as

L(t) =


L△(t, tA) − H(t − tG)L△(t, tG) − H(t − tD)L△(t, tD), α ≠ 0, α ≠

π

2
,

∆yL�(t, tA), α = 0,

∆x L�(t, tA), α =
π

2
,

(4.24)

where the times tG and tD are the time instants at which the fracture front was located at G and D respectively, and
are implicitly defined through the relations ℓ(tG) = ∆y sin α and ℓ(tD) = ∆x cos α. Finally, since the leak-off term
in (2.5) is integrated in time from t − ∆t to t for a given tip element in the discretized equations (4.4), the leak-off
term for the j th tip element can be calculated as

St
j =

1
∆x∆y


L(t) − L(t − ∆t)


. (4.25)

The collection of St
j , calculated using (4.20)–(4.25) for all tip elements allows us to obtain St . For the purpose of

having an efficient numerical implementation, a switch between (4.20) and (4.21), as well as (4.22) and (4.23) is
implemented based on the velocity history V (t). For example, if |V (t) − V (tA)|/V (tA) > 0.2 (i.e. when the velocity
varies substantially within the element) then the scheme uses (4.20) and (4.22) instead of (4.21) and (4.23).

4.5. Outline of the numerical scheme

In order to better understand the structure of the algorithm, it is useful to briefly describe the primary components of
the whole numerical scheme. In order to advance the fracture from time t − ∆t to t , the system of nonlinear algebraic
equations is solved iteratively. At each iteration, the following steps are performed:

• Solve (4.4) and (4.5) for wc and pt . The footprint location, wt , and St are taken from the previous iteration (from
the previous time step for the first iteration).
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• Calculate distance to the new fracture front from each survey element using (4.9) and the updated widths within
the survey elements ws .

• Solve the Eikonal equation (4.11) knowing the updated distances from the survey elements to the fracture front.
Determine distance to the front ℓ, front orientation α, and front velocity V for each tip element.

• Calculate tip widths wt and leak-off St using (4.18) and (4.25) respectively, where the latter two equations utilize
the values of ℓ, α, and V obtained in the previous step.

• Check convergence. Move to next time step if converged or repeat the iteration loop if not.

Adaptive time stepping is used, in which the time step is reduced if the convergence is not reached after a certain
number of iterations.

5. Numerical results

5.1. Radial solution

In order to validate the numerical algorithm ILSA described in Section 4, we first consider the case of a radial
fracture (i.e. an axisymmetric crack geometry), which occurs in situations when the fracture diameter is smaller than
H , or when σ h

1 = σ h
2 = σ h

3 , see Fig. 1. This section compares the ILSA predictions with the numerical solution for
a radial hydraulic fracture [52], that utilizes a similar mathematical model, axisymmetry, and also uses the universal
asymptotic solution for the tip element. The latter universal asymptote, however, is obtained by interpolation of the
numerically calculated solution for a semi-infinite fracture. The Explicit Moving Mesh Algorithm (EMMA) was used
to generate the results for a radial fracture, where the latter algorithm is described in [52].

As follows from [52], the solution can be written in dimensionless form as

Ω(ρ, τ ) =
w

εL
, Π (ρ, τ ) =

p

εE ′
, γ (τ ) =

R

L
, (5.1)

where Ω is the normalized fracture opening, Π is the scaled fluid pressure, γ is the normalized fracture radius (R is
the fracture radius), while 0 6 ρ 6 1 is the scaled radial coordinate and τ = t/tmk is the scaled time. The length scale
L and the parameter ε that appear in (5.1) are expressed in terms of the problem parameters as

ε =

 µ′

E ′tmk

1/3
, L =

 Q3
0 E ′t4

mk

µ′

1/9
, tmk =

µ′5 E ′13 Q3
0

K ′18

1/2
. (5.2)

All the results depend on a single dimensionless parameter (apart from time) that represents the strength of the leak-
off, and can be written as

φ =
µ′3 E ′11C ′4 Q0

K ′14 . (5.3)

The EMMA algorithm provides the solution in the form of Ω(ρ, τ ), Π (ρ, τ ), and γ (τ) for a given value of φ, while
the dimensional quantities can be restored via (5.1)–(5.3).

In order to compare the ILSA predictions to the EMMA solution, we set µ′
= E ′

= K ′
= Q0 = 1, and, as follows

from (5.3), C ′
= φ1/4, which applies to the rest of this section. In this situation, all the scaling quantities that appear

in (5.2) are equal to unity, in which case the scaled (EMMA) and unscaled (ILSA) solutions can be compared directly.
In addition to comparing the length, fracture width, and fluid pressure, it is useful to compare the efficiencies.

Efficiency is defined here as the ratio between the fracture volume, and the total fluid volume pumped into the fracture.
For ILSA, the efficiency can be calculated as

η(t) =
1

Q0t


A(t)

w(x, y, t) dxdy, (5.4)

while for EMMA, the efficiency is

η(t) =
2πγ 2

τ

 1

0
Ω(ρ, τ ) ρdρ. (5.5)
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Fig. 4. ILSA results for an axisymmetric hydraulic fracture geometry plotted for: (a) φ = 10−6 and τ = 0.67, (b) φ = 1 and τ = 0.22,
(c) φ = 10−6 and τ = 170. Left picture (for each row) plots the variation of the fracture aperture versus spatial coordinate x (black solid line),
the universal asymptotic solution (3.15) (dash–dot line with the color corresponding to the location on the parametric triangle), and the vertex
solutions (3.3). The latter vertex solutions are indicated by the dashed red line (the toughness asymptotic solution), dashed blue line (the viscous
asymptotic solution), dashed green line (the leak-off asymptotic solution). The middle picture shows one quarter of the fracture footprint, the mesh,
and highlights the survey elements that are used to locate the moving fracture front. The color filling of such elements correspond to the location
of the asymptotic solutions on the parametric triangle used to locate the front. The right picture shows the parametric triangle with the black points
corresponding to all survey elements. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

In the absence of leak-off, the efficiency is equal to unity due to the global volume balance. For non-zero leak-off, the
efficiency decreases with time and eventually approaches zero.

To illustrate the capabilities of the ILSA scheme, Figs. 4 and 5 show the ILSA results for different values of φ at
different time instants. The left panel (on all plots) shows the variation of the calculated fracture aperture versus x
(solid black line), together with the universal asymptotic solution (3.15) (dash–dot line with the color corresponding to
the location on the parametric triangle), and the vertex solutions (3.3) (for which s = γ −x). The toughness asymptotic
solution is shown by the dashed red line, the viscous asymptotic solution is shown by the dashed blue line, while
the leak-off asymptotic solution is shown by the dashed green line. The middle picture shows the fracture footprint
(solid black line, only one quarter is shown due to symmetry), the mesh, and highlights the survey elements that are
used to locate the fracture front. The color filling of these elements corresponds to the location of the corresponding
asymptotic solutions inside the parametric triangle. It is important to recall here that the asymptotic solution used
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Fig. 5. The same as in Fig. 4, but for: (a) φ = 10−6 and τ = 3.8, (b) φ = 1 and τ = 0.019, (c) φ = 1 and τ = 220, (d) φ = 10−4 and τ = 6.1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for the survey elements changes with distance. For this reason, different survey elements utilize slightly different
asymptotic solutions due to the small difference in the distance to the fracture front, and accordingly have slightly
different color filling. The right picture shows the parametric triangle with the black points that correspond to all
survey elements. Note that there is a cloud of such points (as opposed to a single point), since the survey elements use
slightly different asymptotes to locate the fracture front. Fig. 4(a) plots the ILSA results for φ = 10−6 and τ = 0.67,
where the survey elements use a solution that is close to the m vertex. Fig. 4(b) plots the ILSA results for φ = 1 and
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Fig. 6. Comparison between the ILSA (black solid lines) and EMMA (dashed gray lines) numerical solutions in terms of fracture aperture
(left) and fluid pressure (right) spatial variations for: (a) φ = 10−4, and (b) φ = 1. The results are shown at the same time instants
τ = {10−1, 1, 10, 102, 103

}. Arrows schematically indicate the evolution of the solutions with time τ .

τ = 0.22, where the survey elements use a solution that is close to the m̃ vertex. Fig. 4(c) plots the ILSA results for
φ = 10−6 and τ = 170, where the survey elements use a solution that is close to the k vertex. Fig. 5(a) plots the ILSA
results for φ = 10−6 and τ = 3.8, where the survey elements use a solution that is between the m and k vertices.
Fig. 5(b) plots the ILSA results for φ = 1 and τ = 0.019, where survey tip elements use a solution that is between the
m and m̃ vertices. Fig. 5(c) plots the ILSA results for φ = 1 and τ = 220, where the survey elements use a solution
that is between the k and m̃ vertices. Finally, Fig. 5(d) plots the ILSA results for φ = 10−4 and τ = 6.1, where the
survey elements use a solution that is approximately in the middle of the parametric triangle. It is interesting to note
that despite the fact that the asymptotic solution is used only for the tip element, the actual region of validity for this
solution is larger and spreads over a few elements in the tip region (this depends on the mesh size). For this reason,
it is possible to use a relatively coarse mesh together with the asymptotic solution for the tip element to obtain an
accurate result. Note that the results shown in Figs. 4 and 5 use µ′

= E ′
= K ′

= Q0 = 1, and C ′
= φ1/4.

To provide a quantitative validation of the ILSA scheme, Fig. 6 compares the fracture opening and fluid
pressure profiles inside a radial fracture calculated using ILSA (solid black lines), and the numerical scheme for
an axisymmetric fracture EMMA (dashed gray lines) [52] for φ = 10−4 (Fig. 6(a)), and for φ = 1 (Fig. 6(b)) at the
same time instants τ = {10−1, 1, 10, 102, 103

}. Note here that since ILSA utilizes µ′
= E ′

= K ′
= Q0 = 1, the

fracture aperture calculated by ILSA is equal to Ω , the fluid pressure is equal to Π (see (5.1) and (5.2)), while ρ is
simply the x coordinate that is normalized by the fracture half-length in the x direction. One can clearly see from the
results, that both numerical approaches provide nearly identical results, which validates the ILSA method for the case
of a radial fracture. The values of φ = 10−4 and φ = 1 are chosen so that the asymptotic solution for the survey
elements pass through the middle of the triangle for the case of φ = 10−4, and almost reaches the m̃ vertex for φ = 1,
see Figs. 4 and 5.

To provide a further comparison between the ILSA and EMMA solutions, Fig. 7 plots the time histories of the
fracture radius and efficiency for different values of the leak-off parameter φ = {10−6, 10−4, 10−2, 1, 102, 104

}. The
EMMA scheme uses a moving mesh, in which case the algorithm is able to capture the fracture whose length varies
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Fig. 7. Comparison between the ILSA and EMMA numerical solutions for an axisymmetric hydraulic fracture in terms of radius and efficiency
time histories for φ = {10−6, 10−4, 10−2, 1, 102, 104

}. Arrows schematically indicate the solutions that correspond to different values of φ. Black
markers show the time instants, at which the ILSA algorithm was restarted on a coarser mesh.

Fig. 8. Hydraulic fracture footprints calculated for the symmetric stress barrier geometry (5.6)–(5.8) for φ = 10−4 (top picture), φ = 10−2 (middle
picture), and φ = 1 (bottom picture) at the time instants t = {100, 400, 900, 1800, 3600} s. Survey elements are colored according to the location
of the corresponding asymptotic solution in the parametric triangle. Black circular markers inside the parametric triangles show positions of all
survey elements for the footprint that corresponds to the last time instant t = 3600 s. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 9. Variation of fracture width, w, and fluid pressure, p, versus x at y = 0 (left pictures) and versus y at x = 0 (right pictures) calculated for
the symmetric stress barrier geometry (5.6)–(5.8) and φ = 10−2, plotted at t = {100, 400, 900, 1800, 3600} s.

Fig. 10. Time histories of fracture half-length (top left), height (top right), width at the wellbore (bottom left), and efficiency (bottom right)
calculated for the symmetric stress barrier geometry (5.6)–(5.8) and φ = {10−4, 10−2, 1}. Arrows schematically indicate the direction in which
results shift as the parameter φ increases.

over a span of multiple orders of magnitude. This is not the case with the ILSA method, in which a fixed mesh is
used, and large fractures require significantly more elements, which increases the computational costs. To address
the problem, and to obtain ILSA results for large fractures, the numerical code was restarted on a coarser mesh.
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Fig. 11. Hydraulic fracture footprints calculated for the asymmetric stress barrier geometry (5.6), (5.7), and (5.9) for φ = 10−4 at the time
instants t = {100, 400, 900, 1800, 3600} s. Survey elements are colored according to the location of the corresponding asymptotic solution in the
parametric triangle. Black circular markers inside the parametric triangles show positions of all survey elements for the footprint that corresponds to
the last time instant t = 3600 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Interpolation from the finer mesh to the coarser mesh was used to set up an initial condition. Time instants, at which
the ILSA code was restarted on a coarser mesh are indicated by the black markers in Fig. 7.

5.2. Planar hydraulic fracture in three stress layers

Having validated the numerical algorithm ILSA for the axisymmetric case in Section 5.1, this section aims to apply
it to determine the fracture geometry in situations when the compressive stress varies in a three layer geometry, see
Fig. 1. To this end, it is convenient to specify common problem parameters that are used for calculations as

E = 9.5 GPa, ν = 0.2, µ = 0.1 Pa s, Q0 = 0.01 m3/s, K I c = 1 MPa m1/2, H = 20 m. (5.6)

Three different values of leak-off are considered, namely

C ′
= {0.521, 1.65, 5.21} × 10−5 m/s1/2

=⇒ φ = {10−4, 10−2, 1}. (5.7)

Note that the normalized leak-off parameter φ is calculated using the values of material parameters (5.6), scaling (2.1),
and the definition of φ (5.3). The mesh that is used for all examples is such that ∆x = ∆y = H/21 ≈ 0.95 m. Variable
time stepping is employed to ensure stability, and the value of the initial time step is chosen in the range ∆t = 1−5 s.
Simulations are performed until tend = 3600 s, in which case the number of time steps in each calculation is on the
order of 103.

5.2.1. Symmetric stress barriers
This section focuses on the case when the central layer is surrounded by two layers with larger but equal

compressive stresses (symmetric stress barriers), i.e. σ h
1 = σ h

3 > σ h
2 . Values of the compressive stresses in all layers
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Fig. 12. Hydraulic fracture footprints calculated for the asymmetric stress barrier geometry (5.6), (5.7), and (5.9) for φ = 10−2 at the time instants
t = {100, 400, 900, 1800, 3600} s. Survey elements are colored according to the location of the corresponding asymptotic solution in the parametric
triangle. Black circular markers inside the parametric triangles show positions of all survey elements for the footprint that corresponds to the last
time instant t = 3600 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

are prescribed as follows:

σ h
1 = 7.75 MPa, σ h

2 = 7 MPa, σ h
3 = 7.75 MPa. (5.8)

Figs. 8–10 plot the results of the numerical calculations for the parameters (5.6), (5.7), and (5.8).
Fig. 8 shows the fracture footprints that are calculated for three different values of leak-off φ = {10−4, 10−2, 1}

and are plotted at t = {100, 400, 900, 1800, 3600} s. Thick solid black lines indicate the boundaries between adjacent
geological layers. Survey elements are colored according to the asymptotic solution that is used to locate the fracture
front. This coloring procedure, as well as the properties of the parametric triangle are described in Section 3.4. Black
circular markers inside the parametric triangles indicate the locations of all survey elements that correspond to the
largest footprint (i.e. the one plotted at t = 3600 s). One can clearly observe that the change of the leak-off parameter
φ causes a substantial change of the asymptotic solution that is used in calculations, and affects the fracture size. In
addition, different parts of the same fracture use different solutions due to variation of fracture front velocity, which
highlights the importance of using the universal asymptotic solution.

To illustrate the variation of the fracture width and pressure, Fig. 9 shows the variation of the width and pressure
along the x axis (y = 0) and along the y axis (x = 0) at t = {100, 400, 900, 1800, 3600} s. Only the case of φ = 10−2

is considered for brevity, since the results for other values of φ are qualitatively similar. Since, in this example, the
fracture grows monotonically with time, curves that correspond to larger fracture size represent larger times. It is
interesting to observe effect of the stress barrier on the fracture width variation along the y axis, which suppresses
the width after y > 1

2 H = 10 m. Also, the pressure is nearly constant along the y coordinate, which validates the
assumption of uniform pressure that is used in pseudo-3D models [66,19].

Fig. 10 plots the time histories of the fracture half-length, height, width at the wellbore (x = y = 0), and efficiency
for different values of leak-off φ = {10−4, 10−2, 1} for the symmetric stress barrier case. Here the fracture half-length
is calculated as the fracture extension along the x axis, i.e. at y = 0, while the fracture height is determined at x = 0.
As for the radial fracture, the efficiency is defined as the ratio between fracture volume and the total pumped fluid
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Fig. 13. Hydraulic fracture footprints calculated for the asymmetric stress barrier geometry (5.6), (5.7), and (5.9) for φ = 1 at the time instants
t = {100, 400, 900, 1800, 3600} s. Survey elements are colored according to the location of the corresponding asymptotic solution in the parametric
triangle. Black circular markers inside the parametric triangles show positions of all survey elements for the footprint that corresponds to the last
time instant t = 3600 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Variation of fracture width, w, and fluid pressure, p, versus x at y = 0 (left pictures) and versus y at x = 0 (right pictures) calculated for
asymmetric stress barrier geometry (5.6), (5.7), (5.9) and φ = 10−2, plotted at t = {100, 400, 900, 1800, 3600} s.



E.V. Dontsov, A.P. Peirce / Comput. Methods Appl. Mech. Engrg. 313 (2017) 53–84 77

Fig. 15. Time histories of fracture half-length (top left), height (top right), width at the wellbore (bottom left), and efficiency (bottom right)
calculated for asymmetric stress barrier geometry (5.6), (5.7), (5.9) and φ = {10−4, 10−2, 1}. Arrows schematically indicate the direction in which
results shift as the parameter φ increases.

volume (5.4). An increase in leak-off reduces the fracture length and height, which is consistent with the results shown
in Fig. 8. The fracture aperture and efficiency also become smaller.

5.2.2. Asymmetric stress barriers
A problem with asymmetric stress barriers, for which σ h

3 > σ h
1 > σ h

2 , is examined next. In particular, the
simulations are performed for the parameters (5.6), (5.7), and the following values of compressive stresses:

σ h
1 = 7.25 MPa, σ h

2 = 7 MPa, σ h
3 = 7.75 MPa. (5.9)

Figs. 11–15 plot results of the numerical calculations.
Similar to Fig. 8, Figs. 11–13 plot fracture footprints at t = {100, 400, 900, 1800, 3600} s for three different values

of the leak-off parameter φ = {10−4, 10−2, 1}. The primary difference is the smaller value of the stress barrier for the
bottom layer, which makes it easier for the fracture to grow downwards. This, in turn, slows the propagation through
the upper layer, in which case the asymptotic solutions that are used to calculate fracture growth are closer to the “k”
vertex (asymptotic solution exactly corresponds to the “k” vertex for zero velocity).

Fig. 14 plots the variation of fracture width and pressure versus x at y = 0 and versus y at x = 0 for the
asymmetric stress barrier case for φ = 10−2. This figure is an analog of Fig. 9. The most significant difference occurs
in the variation of width and pressure along the y axis. In particular, the fracture is substantially wider within the
weaker stress barrier, while the pressure is smaller. The maximum opening is not located at the wellbore, but is shifted
towards the weaker stress barrier.

Fig. 15 plots time histories of the fracture half-length, height, width at the wellbore (x = y = 0), and efficiency for
different values of leak-off φ = {10−4, 10−2, 1} for the asymmetric stress barrier case. As for the symmetric stress
barrier case, the fracture half-length is calculated as the fracture extension along the x axis, i.e. at y = 0, while the
fracture height is determined at x = 0. Note, however, that the half-length defined above is slightly smaller than the
maximum fracture extension in the horizontal direction, as can be seen from Figs. 11–13. This happens because the
smaller stress barrier causes asymmetry of the fracture front in the central layer. As in Fig. 10, larger leak-off results
correspond to smaller fracture length and height, wellbore width, and efficiency. Despite the fact that Figs. 10 and 15
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Fig. 16. Hydraulic fracture footprints calculated for the stress drop geometry (5.6), (5.7), and (5.10) for φ = 10−4 at the time instants
t = {100, 400, 900, 1800, 3600} s. Survey elements are colored according to the location of the corresponding asymptotic solution in the parametric
triangle. Black circular markers inside the parametric triangles show positions of all survey elements for the footprint that corresponds to the last
time instant t = 3600 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

indicate qualitatively similar behavior for the symmetric and the asymmetric stress barrier cases, there is a noticeable
quantitative difference.

5.2.3. Stress drop problem
Finally, the problem with a stress drop, for which σ h

3 > σ h
2 > σ h

1 , is considered. The calculations are performed
for the parameters (5.6), (5.7), and the following values of compressive stresses:

σ h
1 = 6.5 MPa, σ h

2 = 7 MPa, σ h
3 = 7.25 MPa. (5.10)

The results of the numerical calculations are summarized in Figs. 16–20.
Figs. 16–18 show the hydraulic fracture footprints for the stress drop problem at t = {100, 400, 900, 1800, 3600} s

for three different values of the leak-off parameter φ = {10−4, 10−2, 1}. These figures are the analogs of Fig. 8
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Fig. 17. Hydraulic fracture footprints calculated for the stress drop geometry (5.6), (5.7), and (5.10) for φ = 10−2 at the time instants
t = {100, 400, 900, 1800, 3600} s. Survey elements are colored according to the location of the corresponding asymptotic solution in the parametric
triangle. Black circular markers inside the parametric triangles show positions of all survey elements for the footprint that corresponds to the last
time instant t = 3600 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for the symmetric stress barrier case and Figs. 11–13 for the asymmetric stress barrier case. The presence of a
stress drop drives the fracture to propagate mostly downwards and, as a result, the propagation through the top
layer is practically arrested after some period of time. In this case, the second equation in (3.15) and (4.19) are
used to determine the tip widths for completely immobile regions of the fracture front in the top part of the
fracture.

Fig. 19 plots variation of the fracture width and pressure versus x at y = 0 for the stress drop case for φ = 10−2.
Note here that the variation of fracture aperture and pressure versus x for y = 0 is omitted since it is not informative,
see Figs. 16–18. Since level of the compressive stress is the smallest in the stress drop region, the fracture width
reaches its maximum there (in the stress drop region) for relatively mature fractures. This is also the reason for the
very asymmetric height growth, for which the propagation occurs primary in the bottom part of the fracture. The
pressure levels are substantially different in the bottom and the top parts of the fracture due to the variation in the
compressive stresses. At some point, the top fracture front stops propagating, in which case the characteristic pressure
drop near the tip disappears. In the latter case, the pressure in the top part becomes close to the compressive stress
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Fig. 18. Hydraulic fracture footprints calculated for the stress drop geometry (5.6), (5.7), and (5.10) for φ = 1 at the time instants t =

{100, 400, 900, 1800, 3600} s. Survey elements are colored according to the location of the corresponding asymptotic solution in the parametric
triangle. Black circular markers inside the parametric triangles show positions of all survey elements for the footprint that corresponds to the last
time instant t = 3600 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

value σ h
3 = 7.25 MPa. Note that the fluid pressure is higher than the compressive stress in the lower part of the fracture

due to fracture propagation, which together with the viscous fluid flow requires a pressure gradient.
Fig. 20 plots time histories of the fracture width at the wellbore (x = y = 0), and efficiency for different values

of leak-off φ = {10−4, 10−2, 1} for the stress drop case. Note that the fracture half-length, defined as the fracture
extension at y = 0, is not very informative, as can be seen from Figs. 16–18, and therefore is not shown. Due to
significant asymmetry, the height growth history is omitted too. At the same time, it is interesting to observe that the
fracture width at the wellbore has a maximum, after which it decays to a plateau value. This happens because the
fracture growth occurs primarily in the stress drop zone after some time, see Fig. 19. In addition, the wellbore width
varies insignificantly with leak-off. Finally, it is interesting to observe that the efficiency plots for the symmetric,
asymmetric, and stress drop geometric shown in Figs. 10, 15, and 20 are all very similar despite the drastic change in
geometry.
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Fig. 19. Variation of the fracture width (left) and the fluid pressure (right) versus x at y = 0 calculated for the stress drop geometry (5.6),
(5.7), (5.10) and φ = 10−2, plotted at t = {100, 400, 900, 1800, 3600} s.

Fig. 20. Time histories of the fracture width at the wellbore (left), and efficiency (right) calculated for stress drop geometry (5.6), (5.7), (5.10) and
φ = {10−4, 10−2, 1}. Arrows schematically indicate the direction in which results shift as the parameter φ increases.

6. Summary

This paper describes an Implicit Level Set Algorithm (ILSA) for modeling planar hydraulic fractures that is able to
capture, on a relatively coarse mesh, the multiscale behavior associated with the three competing physical processes
of energy release associated with fracture toughness, viscous dissipation due to fluid flow, and fluid leak-off into
the surrounding rock. The model captures the fracture propagation dynamics by coupling the solution of the elastic
equilibrium equations, the lubrication equation associated with fluid conservation and laminar flow of a Newtonian
fluid via Poiseuille’s law, and leak-off into the formation via Carter’s model, and a propagation condition in which the
stress intensity factor at the fracture front is in limit equilibrium with the fracture toughness. The numerical scheme
utilizes the displacement discontinuity method for the elasticity calculations, while the finite volume scheme is used
for the fluid flow. Incorporating leak-off involves the inclusion of a delay term containing the trigger time history,
so that modeling a propagating hydraulic fracture involves solving a fully coupled integro-delay-PDE. Accounting
for the leak-off from tip elements, in which the fracture front has experienced significant speed changes, required the
development of a specialized integration scheme that involves the front velocity history. The fracture front propagation
is tracked using an implicit level set method, which uses a ring of elements that are located inside the fracture and
adjacent to the fracture tip to determine the distance to the fracture front assuming that the fracture width in the tip
region follows the multiscale tip asymptotic solution. The latter tip asymptotic solution comes from a local asymptotic
analysis of the tip region of a hydraulic fracture, which reduces to the problem of a steadily propagating semi-infinite
HF with leak-off in a state of plane strain. This study utilizes a closed form approximate solution of this semi-infinite
problem for the fracture width that captures the combined effects of fracture toughness, fluid viscosity, and fluid leak-
off. This tip asymptotic solution features a rich multiscale behavior, which strongly depends on the velocity of the
crack front. The ILSA scheme developed in this paper makes it possible to account for the three-process multiscale
behavior on a structured rectangular mesh by imposing the appropriate asymptotic behavior in tip elements, down
to the finest length scale, in a weak sense. To our knowledge this is the first hydraulic fracture simulator capable



82 E.V. Dontsov, A.P. Peirce / Comput. Methods Appl. Mech. Engrg. 313 (2017) 53–84

to model arbitrarily shaped planar hydraulic fractures that is able to capture, in a rigorous manner, the full three-
process multiscale dynamics of the propagating hydraulic fracture. In addition, the methodology developed here for
a displacement discontinuity fracture formulation can be utilized to develop multiscale numerical schemes that use
alternative representations of fractures.

To validate the multiscale ILSA scheme, firstly, an axisymmetric fracture geometry is considered and the ILSA
solutions are compared to reference numerical calculations for a radial hydraulic fracture for a wide range of
parameters. Secondly, a sequence of three layer models are considered, in which the three layers correspond to
different values of the compressive stress. Results are presented for symmetric stress barriers, asymmetric stress
barriers, and a stress drop problem. These results highlight the importance of using the multiscale tip asymptotic
solution since different portions of the fracture front propagate at different speeds, so that different asymptotes are
used at different points along the fracture boundary in order to locate the moving fracture front. In addition, the results
provide reference solutions that can be used to check the performance of other numerical algorithms for modeling a
planar hydraulic fracture and to develop more accurate reduced models such as the enhanced P3D model [19].
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