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Slurry flow, gravitational settling and a proppant
transport model for hydraulic fractures
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The goal of this study is to analyse the steady flow of a Newtonian fluid mixed
with spherical particles in a channel for the purpose of modelling proppant transport
with gravitational settling in hydraulic fractures. The developments are based on a
continuum constitutive model for a slurry, which is approximated by an empirical
formula. It is shown that the problem under consideration features a two-dimensional
flow and a boundary layer, which effectively introduces slip at the boundary and
allows us to describe a transition from Poiseuille flow to Darcy’s law for high
proppant concentrations. The expressions for both the outer (i.e. outside the boundary
layer) and inner (i.e. within the boundary layer) solutions are obtained in terms of
the particle concentration, particle velocity and fluid velocity. Unfortunately, these
solutions require the numerical solution of an integral equation, and, as a result, the
development of a proppant transport model for hydraulic fracturing based on these
results is not practicable. To reduce the complexity of the problem, an approximate
solution is introduced. To validate the use of this approximation, the error is estimated
for different regimes of flow. The approximate solution is then used to calculate the
expressions for the slurry flux and the proppant flux, which are the basis for a model
that can be used to account for proppant transport with gravitational settling in a
fully coupled hydraulic fracturing simulator.

Key words: particle/fluid flows, suspensions

1. Introduction

The flow of a slurry is a problem that is relevant to many natural processes, such
as mudflows or landslides, as well as to industrial applications, such as the flow of
a cement slurry. This study, however, addresses the problem of slurry flow in the
context of hydraulic fracturing that is relevant to oil and gas reservoir stimulation
(Economides & Nolte 2000). Typically, proppant is used to prevent the fracture from
closing once the well is depressurized. In this case, modelling the fracture propagation
driven just by a viscous fluid is not sufficient, since the proppant, blended with the
fracturing fluid, alters the properties of the latter. In this situation, it is necessary
to consider the effects associated with the flow of a slurry as well as the proppant
transport in hydraulic fractures. As mentioned in Adachi et al. (2007), for the purpose
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of hydraulic fracturing, the slurry is typically modelled as a Newtonian fluid, whose
viscosity dependence on proppant content is calculated based on an empirical formula.
Moreover, the particle distribution across the fracture is assumed to be uniform and
only the slip velocity due to gravity is considered. While all the aforementioned
simplifications could potentially lead to sufficiently accurate results in some cases,
it is nearly impossible to judge the accuracy without having a higher-level, more
accurate model. To obtain a more accurate model, this study aims to analyse the
steady flow of a slurry in a channel based on a recently introduced constitutive
model (Boyer, Guazzelli & Pouliquen 2011), and to establish a framework necessary
to formulate the problem of hydraulic fracturing by a slurry, which accounts for the
proppant transport, gravitational settling, as well as formation and growth of packed
regions.

To simplify the analysis, it is assumed that the proppant particles are spherical
and that they all have the same size. In addition, following the analysis in Boyer
et al. (2011), the fluid is taken to be Newtonian. By assuming that the particles are
sufficiently large and that the fluid is sufficiently viscous, this study is focused on the
case where

Pe→∞, Re→ 0, (1.1a,b)

which corresponds to non-Brownian motion of particles in highly viscous fluids. Here
Pe is the Péclet number and Re is the Reynolds number. This regime has been studied
from both theoretical and experimental prospectives (Leighton & Acrivos 1987; Nott
& Brady 1994; Brady & Morris 1997; Morris & Boulay 1999; Lhuillier 2009), where
one of the main objectives was the study of particle migration in shear flow. In simple
words, the particles try to avoid high shearing and to move towards the regions with
smaller shear rates. Note that this phenomenon is different from the Segre–Silberberg
effect (Segre & Silberberg 1961; Matas, Morris & Guazzelli 2004), since the latter
is observed in the inertial regime, where the viscosity of the carrying fluid is small.
One very important parameter in the analysis of particle migration is the characteristic
time scale for reaching steady-state flow. As noted in Nott & Brady (1994), some
earlier experimental studies failed to show the effect of particle migration, owing to
the fact that the flow was not in the steady-state regime. As also discussed in Nott &
Brady (1994), the characteristic length, required to establish a steady flow for dense
suspensions scales as

L
w
∼
(w

a

)2
, (1.2)

where w is the characteristic width of the channel and a is the particle radius.
A great deal of effort has been devoted to developing an accurate constitutive

model for a mixture of a Newtonian fluid with spherical particles. It started with
Einstein (1906), who introduced a first-order correction to the viscosity of dilute
suspensions. Later, a second-order correction was made by Batchelor & Green (1972).
The most challenging problem, however, was to establish a constitutive model that
captures the behaviour of dense suspensions with high particle concentrations, where
the interaction between particles plays a crucial role. For instance, a comparison of
various approaches for modelling dense suspensions can be found in Stickel & Powell
(2005). Another constitutive model has been recently proposed by Boyer et al. (2011),
where experimental observations were used to establish empirical relations between
shear and normal stresses versus particle concentration. This, the latest model, appears
to be the most accurate to date, and, for this reason, is chosen for the analysis in
this paper.
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The paper is organized in the following way. First, the governing equations for the
slurry flow, based on the empirical constitutive model, are formulated in § 2. Then, the
resulting equations are used to solve the problem of slurry flow in a channel, which
is described in § 3. Recognizing the complexity of the solution, § 3 also introduces an
approximate solution and estimates the errors caused by this approximation. Finally,
§ 4 utilizes the approximate solution of the channel problem to find the mass balance
laws for the slurry and the particles, which feature the average flow of the slurry and
the proppant through the channel.

2. Governing equations for motion of fluid with spherical particles
To formulate the governing equations for the motion of the slurry (i.e. the mixture

of viscous fluid and particles), this study follows an approach described in Morris &
Boulay (1999). The main difference comes from the constitutive behaviour, which is
based on recent experimental results by Boyer et al. (2011). The balances of linear
momentum and mass for the particles are taken in the following forms:

φρp

(
∂vp

∂t
+ vp · ∇vp

)
=−∇ · (Q pp)+ 2∇ · (µp∇s

0v
p)+ φρpg+ f pf , (2.1)

∂φρp

∂t
+∇ · (φρpvp)= 0. (2.2)

Here φ is the volume fraction of the particles, ρp is the particle mass density, vp

is the velocity associated with the macroscopic movement of the particles, pp is
the pressure due to the particle collisions (defined as the time-averaged momentum
transfer per unit area), µp is the effective viscosity associated with the particles,
∇s

0v
p = 1

2(∇vp +∇Tvp − 2
3∇ · vp I) is the deviatoric strain rate tensor, g is the gravity

force per unit mass, and f pf is the interaction force between the viscous fluid and
the particles. As follows from Morris & Boulay (1999), the second-order tensor Q
describes the anisotropy of the normal stresses and can be represented as

Q=
3∑

i=1

λi ei ⊗ ei, (2.3)

where λi are dimensionless constants and ei are unit vectors in the direction of the
flow (i= 1), gradient (i= 2) and vorticity (i= 3). Note that one of the λi is always
equal to unity since the stress magnitude is reflected in pp. The governing equations
for the fluid can be written in a similar fashion as

(1− φ)ρ f

(
∂vf

∂t
+ vf · ∇vf

)
=∇ · σ f + (1− φ)ρ f g− f pf , (2.4)

∂(1− φ)ρ f

∂t
+∇ · ((1− φ)ρ f vf )= 0, (2.5)

where ρ f , p f and vf denote the mass density, pressure, and macroscopic velocity
associated with the fluid, respectively, σ f = −p f I + 2µf∇s

0v
f is the fluid stress

tensor, while µf is the fluid viscosity. Note that the mass density of the mixture is
ρ = (1 − φ)ρ f + φρp, the total pressure (i.e. total normal force per unit area acting
on a wall or imaginary plane, neglecting viscosity) is p= p f + ppn · Q · n, while the
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total shear force also has contributions from both the particles and the fluid. Similar
governing equations were also used by Ouriemi, Aussillous & Guazzelli (2009) in
the context of sediment dynamics.

On considering both the viscous fluid and the particles to be incompressible, the
remaining task is to specify pp, µp, f pf and λi (i = 1, 2, 3). By generalizing the
constitutive model, which is proposed in Boyer et al. (2011), one may take

pp =µf A (φ)−2
√

2∇s
0v

p : ∇s
0v

p, (2.6)

µp =µf

[
5
2
φmA (φ)−1 +

(
µ1 + µ2 −µ1

1+ I0A (φ)−2

)
A (φ)−2

]
, A (φ)= φm

φ
− 1,

(2.7)

where the maximum volume fraction φm = 0.585, and the constants µ1 = 0.32,
µ2 = 0.7 and I0 = 5 × 10−3 are empirical and based on experimental observations.
Note that A (φ)n is a short-hand notation for (A (φ))

n. Since the flow regime under
consideration assumes small Reynolds numbers, the viscous part of the interaction
force can be deduced from Stokes’ law, while the second part of the force comes
from the effect of buoyancy, so that

f pf = η(φ)(1− φ)(vf − vp)+ φ∇ · σ f , η(φ)= 9µfφ

2a2(1− φ)ᾱ , (2.8)

where an additional correction term (1− φ)ᾱ in the expression for η(φ) accounts for
interaction between the particles at high values of φ (see e.g. Morris & Boulay 1999).
Note that these authors defined the slip velocity as vf − 〈v〉 = vf − φvf − (1− φ)vp =
(1 − φ)(vf − vp), so that their α is related to ᾱ by ᾱ = α − 1. This parameter was
chosen to be α = 4 in Morris & Boulay (1999), while according to Garside & Al-
Dibouni (1977) and Davis & Acrivos (1985) α = 5.1 provides a better fit. For this
reason, ᾱ= 4.1 is chosen for further computations. Finally, the values of λi (i= 1, 2, 3)
are estimated in Boyer (2011) as

λ1 = 1.05, λ2 = 1, λ3 = 0.65. (2.9a−c)

As also noted in Boyer (2011), λi satisfy λ1 > λ2 > λ3, λ1' λ2 and λ3' 1
2 . As will be

shown shortly, these values of λi (i= 1, 2, 3) are not essential for the problem under
consideration.

3. Slurry flow in a fracture
3.1. Problem formulation and assumptions

This section aims to analyse the steady motion of a slurry in a fracture, which for
our purposes is modelled as a channel of width w. Since the gravity and the pressure
gradient may act in different directions and the problem is nonlinear (i.e. superposition
does not apply), it is necessary to consider two-dimensional flow inside the fracture.
To this end, we introduce a coordinate system (x, y, z), where x is the horizontal axis
along the fracture, z is the vertical axis, while y is the coordinate across the fracture,
as shown in figure 1.

Assuming a steady flow, the governing equations (2.1) and (2.4) can be reduced to

∇ · (Q pp) = ∂

∂y

(
µp(φ)

∂vp

∂y

)
+ η(φ)1v − φ(ρp − ρ f )gez, (3.1)
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FIGURE 1. (Colour online) Schematics of (a) the hydraulic fracture and (b) the slurry
flow inside it.

∇p̃ f = µf ∂
2vp

∂y2
+µf ∂

21v

∂y2
− η(φ)1v + 〈φ〉(ρp − ρ f )gez, (3.2)

where ∇ = (∂/∂x, ∂/∂z), and vectors vp and 1v = vf − vp also have only x and z
components, 〈φ〉 denotes average particle concentration across the channel, while

p̃ f = p f + (ρ f g+ 〈φ〉(ρp − ρ f )g)z (3.3)

is the pressure that accounts for hydrostatic pressure. The particle pressure and
effective shear viscosity of the particles are given respectively by

pp =µf A (φ)−2

∣∣∣∣∂vp

∂y

∣∣∣∣ , (3.4)

µp =µf

(
5
2
φmA (φ)+µ1 + µ2 −µ1

1+ I0A (φ)−2

)
A (φ)−2, A (φ)= φm

φ
− 1. (3.5)

Here p̃ f = p̃ f (x, z) and pp = pp(x, z) owing to the steady-state property of the flow.

Assumptions
To account for realistic values of the parameters and to simplify the problem, the

following three assumptions are made.

(a) For a continuum constitutive model to apply, it is implicitly assumed that 2a�w.
(b) The particle pressure gradient is neglected. To justify this assumption, note that

the characteristic length of the problem, L (i.e. the length of the fracture), can be
safely assumed to be much bigger than the width of the fracture, w. For instance,
in typical hydraulic fracturing geometries, w/L = O(10−3) or less. In this case,
one can use (3.2) and (3.4) to obtain estimates for p f and pp as

∇p̃ f =O(µf vf w−2), ∇pp =O(µf vp(Lw)−1), (3.6a,b)

which leads to |∇pp/∇p f | =O(w/L)� 1, provided that vf =O(vp). This estimate
shows that the pressure gradient associated with the particles has a negligible
contribution to the momentum change of the mixture. Note that this is true only
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for φ 6= φm. As soon as particles become packed, i.e. φ = φm, they may sustain
notable pressures and the particle pressure may not be neglected. In addition,
it should be noted that ignoring the particle pressure gradient leads to the fact
that the values of λ1 and λ3 are no longer important, because the variation of
particle pressure becomes relevant only across the channel i.e. in the direction
that corresponds to λ2.

(c) There is no gravity force in the y direction, i.e. across the channel. The geometry
of the hydraulic fracture is determined predominantly by confining stresses. For
deep fractures, the vertical stress is typically higher than the horizontal stress, in
which case the fracture propagates in a vertical plane, and thus the projection of
gravity force on the y axis is zero.

3.2. Steady solution
To obtain a steady solution, it is noted that the problem under consideration,
(3.1)–(3.2), features a length scale a� w, which causes the presence of a boundary
layer with width O(a). The analysis of the boundary layer is very important, firstly to
obtain a complete understanding of the problem, and secondly to obtain an accurate
description of the slurry flow for all particle concentrations. This is particularly
important for particle concentrations that are close to φm, as will be shown later. Let
us focus first on the outer solution, i.e. the one that is valid away from the channel
walls. In this situation, the term with the second derivative of 1v in (3.2) can be
neglected. Indeed, when the y coordinate scales with w, one can estimate

∂

∂y

(
µf ∂1v

∂y

)
=O

(
µf1v

w2

)
, η(φ)1v =O

(
φµf1v

a2

)
, (3.7a,b)

so that the term with the second derivative of 1v can be neglected as soon as
a2/(φw2)� 1. In situations when φ = O(a2/w2)� 1, the viscosity associated with
proppant is µp(φ) = O(φ)� 1, which makes the proppant contribution to the slurry
flow negligible and leads to a well-known parabolic velocity profile. The fact that
the term with the derivative of 1v can be neglected should not be confused with
the assumption of smallness of |1v/vp|. For relatively small particle concentrations,
indeed |1v/vp| = O(a2/w2)� 1, while higher concentrations (φ ≈ φm) may lead to
|1v/vp| = O(µ1φ

2a2/(w2(φm − φ)2)) = O(1), or even vp = 0 for φ = φm. As was
mentioned before, the term with the derivative of 1v can be neglected away from
the boundary, but at distances O(a) from the boundary (i.e. in the boundary layer
where the y coordinate scales with a), this term may have a significant contribution.
As a result of the presence of the boundary layer, neither vp nor 1v (calculated
for the outer solution) should satisfy a no-slip boundary condition at the channel
walls. Instead, 1v should approach some constant, while vp should approach another
constant, whose magnitude is O(1v). Naturally, these constants should arise from the
solution of the boundary layer problem.

By neglecting the particle pressure gradient and the second derivative of 1v in (3.2),
integrating the sum of the resultant equations and using (3.5), one can write

∇p̃ f (y− y0)+ (ρp − ρ f )gez

∫ y

y0

(φ − 〈φ〉) dȳ

= (µf +µp(φ))
∂vp

∂y
− τ(y0), y0 < y 6 1

2 w, (3.8)
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[∇p̃ f + (φm − 〈φ〉)(ρp − ρ f )gez]y= τ , |τ |6µ1pp, 0 6 y 6 y0, (3.9)

where τ denotes shear stress. Here, only the solution for y > 0 is considered, owing
to symmetry considerations. As indicated in the solution (3.8)–(3.9), there is a region
with ‘no failure’ (06 y6 y0), i.e. where the particles form a rigid cluster, and a region
with shear motion or failure (y0 < y6 1

2 w). To find the particle pressure, one needs to
evaluate (3.9) at y= y0, add the result to (3.8) evaluated at y=w/2 and use (3.4) to
obtain

pp = wµf |∇p̃ f |
2(µf +µp(φw))A (φw)2

, (3.10)

where φw = φ|y=w/2 is the particle concentration at the wall. Since |τ | = µ1pp at the
plug boundary, equations (3.10) and (3.9) can be used to calculate the plug size as

y0 = w
2
µ1[1+ (φm/〈φ〉 − 1)2G2

ρ + 2(φm/〈φ〉 − 1)Gρ cosψ]−1/2

(1+µp(φw)/µf )A (φw)2
, (3.11)

where

Gρ = (ρ
p − ρ f )g〈φ〉
|∇p̃ f |

and cosψ = |∇p̃ f |−1 ∂ p̃ f

∂z
(3.12a,b)

are two dimensionless parameters that represent the ratio between the gravitational
force and pressure gradient, and the angle between the pressure gradient and the
vertical z axis, respectively. To find a solution for the particle concentration φ, it is
useful to rewrite (3.1) using (3.4) and (3.10) as[(

2y
w

)2

+ 4G2
ρ

[∫ y/w

0
(φ/〈φ〉 − 1) ds

]2

+ 8y
w

Gρ cosψ
∫ y/w

0
(φ/〈φ〉 − 1) ds

]1/2

= (µf +µp(φ))A (φ)2

(µf +µp(φw))A (φw)2
, (3.13)

where y0 < y 6 1
2 w. Given the values of Gρ , cos ψ and φw, φ can be determined

by solving (3.13) numerically via Newton’s method. In this case the solution can be
written in the form φ(s, φw,Gρ, cosψ) or φ(s, 〈φ〉,Gρ, cosψ), where s= y/w.

It is interesting to comment on the existence of a solution of (3.13). Unfortunately,
(3.13) does not always have a solution. A thorough analysis of the existence of the
solution is beyond the scope of this study. For this reason, let us focus on the simple
case when cos ψ = −1. In this situation, the left-hand side of (3.13) is proportional
to the absolute value of the function h(y) = 1 − (wGρ/y)

∫ y/w
0 (φ/〈φ〉 − 1)ds. This

function h(y) is equal to h(y0) = 1 − Gρ(φm/〈φ〉 − 1) at the plug boundary, while
h(w/2)= 1 at the wall. If h(y0) < 0, then at some point y0 < y∗ < w/2 this function
vanishes (provided that it is continuous). However, the right-hand side of (3.13) cannot
vanish, since its minimum value is µ1µ

f /[(µf +µp(φw))A (φw)
2]> 0. In this case, the

necessary condition for the existence of a solution is 1 − Gρ(φm/〈φ〉 − 1) > 0. This
condition bounds the pressure gradient as

− ∂ p̃ f

∂z
> (ρp − ρ f )g(φm − 〈φ〉). (3.14)
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Note that ∂ p̃ f /∂x=0 and −∂ p̃ f /∂z>0 since cosψ =−1, in which case the range over
which the steady solution does not exist (according to (3.14)) is relatively narrow. It
is also possible to explain why there is no steady solution. First, if −∂ p̃ f /∂z> 0, the
slurry should flow in the positive z direction since the average of the corresponding
gravity term in the sum of (3.1) and (3.2) is zero. Since the shear stress is zero at
the centre of the channel, the particles tend to form a plug. If the plug is formed,
then, if (3.14) is not satisfied, the plug starts to sink as the pressure gradient is not
sufficient to sustain it. If the plug sinks (i.e. flows in the negative z direction), and the
average velocity is positive, then, since the shear stress should be continuous, there
is a point at which the shear stress is zero (as its sign is different at the wall and
the boundary of the plug). If the shear stress is zero, then the particle pressure is
zero as well (or there is another plug, which, if it exists, would sink too and cause a
similar problem). Since there is some particle pressure at the central plug (otherwise,
it would not form) and this pressure vanishes somewhere outside of it, then there is
a particle pressure gradient, which moves particles away from the plug. As soon as
particles move away and the concentration in the plug reduces, the particle pressure
at the centre becomes zero (since the shear stress is zero due to symmetry), and this
generates an opposite particle pressure gradient, which tends to form a plug again.
This cyclic process repeats, so no steady solution exists in this case. Also note that
a zero shear rate or a zero particle pressure at a point creates basic problems in the
description (i.e. the model breaks down), which can be overcome by introducing some
non-local description, as is shown in Nott & Brady (1994).

To find the outer solution (i.e. outside of the boundary layer) for the particle
velocity, (3.8) can be integrated as

vp = vp|y=w/2 + v
p
0

= vp|y=w/2 − w2∇p̃ f

µf

∫ 1/2

ŝ

s̄ ds̄
1+µp(φ(s̄))/µf

− w2(ρp − ρ f )gez

µf

∫ 1/2

ŝ

1
1+µp(φ(s̄))/µf

∫ s̄

0
(φ(s)− 〈φ〉)dsds̄, (3.15)

where ŝ=max{y0/w, y/w}, v
p
0 is the solution that satisfies the no-slip condition at the

boundary, while vp|y=w/2 is the integration constant that comes from the solution of the
boundary layer problem. The slip velocity for the outer solution can be found from
(3.1) and using (3.8) as

1v =−∇p̃ f

η(φ)

∂

∂s

(
µp(φ)s

µf +µp(φ)

)
+ (ρ

p − ρ f )gez

η(φ)

∂

∂s

 µf

∫ s

0
φ ds̄

µf +µp(φ)
+ µp(φ)〈φ〉s
µf +µp(φ)

 ,
(3.16)

where s= y/w is the scaled y coordinate.
To find the inner or boundary layer solution, it is useful to represent the ‘full’

solution as the sum of the outer and the inner, so that φF =φ+ δφ, 1vF =1v+ δ1v
and vp,F = v

p
0 + δvp. By substituting the above expressions into (3.1), (3.2) and (3.4)

and using a Taylor series expansion, one finds that

∂µp

∂φ

∣∣∣∣
w

∂vp

∂y

∣∣∣∣
w

∂δφ

∂y
+µp(φw)

∂2δvp

∂y2
+ η(φw)δ1v = 0, (3.17)
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µf ∂
2δvp

∂y2
+µf ∂

2δ1v

∂y2
− η(φw)δ1v = 0, (3.18)∣∣∣∣ ∂vp

∂y

∣∣∣∣
w

∣∣∣∣−2 (
∂δvp

∂y
· ∂v

p

∂y

∣∣∣∣
w

)
= 2

A (φw)

∂A

∂φ

∣∣∣∣
w

δφ, (3.19)

where ‘|w’ means evaluation of the outer solution at the wall. Note that, since y=O(a)
and |1v/vp|=O(a2/w2) for the inner solution (y=O(w) for the outer solution), it can
be concluded that δφ =O(a/w)� 1, δvp =O(1v)� vp, which validates the use of a
Taylor series expansion. At the same time, δ1v=O(1v), but no expansion has been
used with 1v. The solution of the above system of equations (3.17)–(3.19), which
accounts for both the no-slip boundary conditions and the far-field behaviour, is

δ1v = −V1e−γ1y − V2e−γ2y, (3.20)
δvp = C1V1(1− e−γ1y)+C2V2(1− e−γ2y), (3.21)
δφ = C3e−γ1y, (3.22)

where

V1 =
∣∣∣∣ ∂vp

∂y

∣∣∣∣
w

∣∣∣∣−2 (
1v|w · ∂v

p

∂y

∣∣∣∣
w

)
∂vp

∂y

∣∣∣∣
w

, V2 =1v|w − V1, (3.23a,b)

γ1 =
(

η(φw)

µf (1−B(φw))

)1/2

, γ2 =
(
η(φw)

µf

(
1+ µf

µp(φw)

))1/2

, (3.24a,b)

C1 =−B(φw), C2 =− µf

µf +µp(φw)
, (3.25a,b)

C3 =B(φw)

(
η(φw)

µf (1−B(φw))

)1/2 ∣∣∣∣ ∂vp

∂y

∣∣∣∣
w

∣∣∣∣−2 (
1v|w · ∂v

p

∂y

∣∣∣∣
w

)
A (φw)φ

2
w

2φm
, (3.26a,b)

and the auxiliary function B(φ) is

B(φ)= 2A (φ)

[
2A (φ)+ 5

2
φm + 2(µ2 −µ1)I0A (φ)

(I0 +A (φ)2)2

]−1

. (3.27)

Note that 1vF =1v + δ1v satisfies the no-slip boundary condition since V1 + V2 =
1v|w. The ‘full’ solution for the particle velocity vp,F = v

p
0 + δvp satisfies the no-slip

boundary condition as well. To find vp
x|y=w/2 featured in (3.15), one needs to take a

limit in (3.21) to find
vp|y=w/2 =C1V1 +C2V2. (3.28)

Since C1(φw = 0) = C2(φw = 0) = −1 and C1(φw = φm) = C2(φw = φm) = 0, (3.28)
implies that vf |y=w/2 = 0 for zero proppant concentration and vp|y=w/2 = 0 for the
maximum proppant concentration. Indeed, if there are no particles, the fluid velocity
(outer solution) should satisfy a no-slip boundary condition. At the same time, the
maximum particle concentration corresponds to a rigid plug, which does not move,
so that the particle velocity (outer solution) should satisfy a no-slip condition at
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FIGURE 2. Normalized particle velocity profile and normalized particle volume fraction
versus y/w for Gρ = {0, 1, 4, 10, 100} and 〈φ〉 = 0.2× φm, (a) cosψ = 0, (b) cosψ = 1/2,
(c) cosψ = 1.

the boundary. It is also important to note that the values of γ1 and γ2 are always
O(1/a), and in the limit of small particle concentrations they reach finite values
γ1 ≈ √18/5 a−1 and γ2 ≈ √9/5 a−1. Equation (3.28) is the main outcome of the
analysis of the boundary layer. It is responsible for the boundary condition, which
effectively describes transition between Poiseuille flow at low particle concentrations
and Darcy’s law for high particle concentrations. Avoiding the analysis of the
boundary layer can lead to inaccurate behaviour at higher concentrations, while
the behaviour at small concentrations is, practically, not affected.

To visualize the solution, figure 2 shows the velocity profile v
p
0 (calculated

numerically), normalized by v∗ = (12µf )−1w2|∇p̃ f | and the proppant concentration
variation (calculated numerically), normalized by φm, for different values of the
parameter Gρ ={0, 1, 4, 10, 100}, and for different values of cosψ ={0, 1/2, 1}, while
the average proppant concentration is kept fixed, φ̄ = 〈φ〉/φm = 0.2. As can be seen
from the figure, the presence of the gravitational force leads to a redistribution of the
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particles across the channel. Moreover, the value of cosψ has a small impact on the
particle distribution. In the limiting case when Gρ � 1, the particles are distributed
uniformly everywhere except for the narrow region at the centre (which corresponds
to the plug). For cos ψ = 1 and Gρ = 100, the velocity profile resembles a wedge.
This strange velocity profile can be explained by the fact that the forcing term for
the sum of equations (3.1) and (3.2) behaves like a delta function for Gρ � 1, i.e.
(∂ p̃ f /∂z)(1 + Gρ(φ/〈φ〉 − 1))→ (∂ p̃ f /∂z)wδ(y), where δ(y) denotes the Dirac delta
function. This delta-function-like pressure gradient distribution leads to the wedge-like
velocity profile.

3.3. Approximate steady solution
Numerical solution of (3.13) together with (3.11), (3.15), (3.16) and (3.28) give a
complete solution for the problem. Unfortunately, this solution relies on the numerical
evaluation of the function φ(s, 〈φ〉,Gρ, cosψ), which depends on many parameters and
thus is hard to tabulate for the purpose of implementing into a hydraulic fracturing
simulator. Moreover, as noted in the previous section, a steady solution does not exist
for all ranges of parameters. For these reasons, it is more practicable to introduce an
approximate solution, which would simplify (3.13) and lead to a solution that can be
implemented into a hydraulic fracturing simulator. The ‘full’ solution can then be used
to estimate the error in the approximation.

Clearly, if there is no gravity (i.e. g= 0 and consequently Gρ = 0), (3.13) becomes
an algebraic equation that is easy to solve. Unfortunately, the absence of gravity not
only leads to a simplified slurry flow, but the model also loses the ability to capture
gravitational settling of particles. However, the latter phenomenon is very important
and needs to be accounted for at least approximately. To motivate the approximation
that we are about to make, we observe from the plots of φ/φm in figure 2 that the
proppant distribution does not change appreciably as Gρ is varied (except for Gρ =
100) or as cos ψ varies from 0 to 1. Thus to simplify the solution and to keep the
gravitational settling at the same time, it is assumed that gravity does not affect the
particle distribution, i.e. terms with Gρ can be neglected in (3.8) and (3.9). In other
words, the solution for φ is approximated by

φ(s, 〈φ〉,Gρ, cosψ)≈ φ(s, 〈φ〉, 0, 0), (3.29)

where s= y/w. Note that this assumption is equivalent to replacing 〈φ〉 by φ in the
gravity term in (3.2), instead of neglecting the whole gravity term when gravity is
assumed to be negligible. As a result, the gravity term that causes the gravitational
settling is still accounted for, but in an approximate fashion. In terms of the error,
there are two main quantities that are important for hydraulic fracturing, namely the
slurry flux and the proppant flux. For the cases considered in figure 2, i.e. Gρ =
{1, 4, 10, 100}, the corresponding error (relative to the Gρ = 0 solution) in terms of the
absolute value of the slurry flux and the particle flux is es = {0.02, 0.01, 0.03, 0.14}
and ep = {0.04, 0.07, 0.06, 0.01} for cos ψ = 0, es = {0.03, 0.11, 0.18, 0.24} and
ep = {0.005, 0.04, 0.08, 0.09} for cos ψ = 1/2, and es = {0.07, 0.20, 0.29, 0.29} and
ep = {0.06, 0.15, 0.20, 0.15} for cos ψ = 1. Here the slurry flux is calculated as an
integral of v

p
0, while the particle flux is calculated as an integral of φv

p
0. This shows

that, even in the worst case of Gρ = 100, the flux error is less than 30 %. Also,
there is an error in the direction of the flux, but the direction can be corrected by
the presence of an extra hydrostatic pressure gradient inside the fracture. So the error
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in the direction of the flow affects the hydrostatic pressure inside the fracture. Note
that, for other average particle concentrations, the order of magnitude of the error
does not change appreciably. For instance, for φ̄ = 〈φ〉/φm = 0.5, the corresponding
errors are es = {0.03, 0.11, 0.14, 0.16} and ep = {0.04, 0.13, 0.19, 0.23} for cosψ = 0,
es = {0.01, 0.02, 0.03, 0.09} and ep = {0.02, 0.05, 0.07, 0.17} for cos ψ = 1/2, and
es = {0.02, 0.06, 0.08, 0.01} and ep = {0.02, 0.06, 0.06, 0.04} for cosψ = 1.

To estimate the error distribution over the fracture, it is useful to provide an estimate
for the parameter Gρ . One may calculate the pressure gradient as |∇p̃ f | = 12µf |V|/w2,
where µf is the intrinsic fluid viscosity, w is the width of the channel and V is the
average fluid velocity. By taking µf = 0.1 Pa s, w = 1 cm, 〈φ〉 = 0.1, ρp − ρ f =
1300 kg m−3 and |V| = 0.1 m s−1, one may estimate Gρ as

Gρ = 〈φ〉(ρ
p − ρ f )gw2

12µf |V| ≈ 1, (3.30)

which shows that the effect of gravity is relatively small for the considered parameters.
However, Gρ might increase noticeably for wider and slower fractures. Typically,
hydraulic fractures are narrow and propagate rapidly at early stages, while they
become wider and slow down later in their evolution. In this case, it is important to
monitor the criterion (3.30) for mature fractures. Note that, for a better estimate, one
needs to insert the effective viscosity in (3.30), which further decreases the value of
Gρ . Also note that both the fracture width w and the average fluid velocity V reach
their respective maxima at the well bore (the velocity is singular if a point source is
used). In this case, the parameter Gρ reaches its maximum some distance away from
the well bore, and is negligible near the well bore and near the crack tip. Given the
fact that the parameter Gρ may vary significantly over the fracture and may cause
a relatively small error only in a localized region, the solution (3.29) can be used
throughout the fracture as an adequately accurate approximation.

Using the approximation (3.29) and (3.10), (3.13) can be inverted to find

A (φ)= F
(
|∇p̃ f | y− y0

pp

)
, (3.31)

where F is a function that can be calculated numerically (or evaluated using the
formula for the roots of a fourth-degree polynomial). For future reference it is noted
that the asymptotic behaviour of the function F is

F(s) s→0= F0(s)= 2s
5φm

, F(s) s→∞= F∞(s)=
√

s. (3.32a,b)

Using the definition of A (φ) from (3.5), one may express the particle concentration
from (3.31) as

φ(y)= φm

1+ F
(
|∇p̃ f | y− y0

pp

) , y0 < y 6 1
2 w, (3.33)

φ(y)= φm, 0 6 y 6 y0. (3.34)

It is also useful to introduce the averaged particle concentration normalized by φm as

φ̄ = 〈φ〉
φm
= 2

w

∫ w/2

0

φ(y)
φm

dy, (3.35)
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so that 0 6 φ̄ 6 1. By inverting the latter relation, the particle pressure and the half-
width of the rigid cluster zone can be computed as

pp =w|∇p̃ f |Π(φ̄), y0 =µ1wΠ(φ̄), (3.36a,b)

where Gρ = 0 (or φ = 〈φ〉) is used in (3.11) to calculate y0, and Π(φ̄) is a function
that is evaluated numerically. Note that the asymptotic behaviour of the function Π(φ̄)
for small and high average volume concentrations of particles is

Π(φ̄)
φ̄→0= Π0(φ̄)= 1

8 φ̄
2, Π(φ̄)

φ̄→1= Π1(φ̄)= 1
2µ1
−
√

5φm(1− φ̄)
4µ3

1
. (3.37a,b)

Equation (3.36) allows us to replace the particle pressure pp by the normalized average
volume fraction φ̄, in which case (3.33) and (3.34) can be rewritten as

φ = φm

1+ F
(

max
{

y/w
Π(φ̄)

−µ1, 0
}) . (3.38)

The function Π(φ̄) is directly related to the particle concentration at the wall through
the relation

φw = φm

1+ F
(

1
2Π(φ̄)

−µ1

) , (3.39)

so that the above relation φw = φw(φ̄) can be alternatively used instead of Π(φ̄).
To find the velocity distribution, we integrate (3.4), use (3.36) and the fact that v

p
0∝

∇p̃ f to obtain

vp = vp|y=w/2 + v
p
0 = vp|y=w/2 − w2Π(φ̄)

µf
∇p̃ f

∫ 1/2

max{y/w, µ1Π(φ̄)}

[
F
(

s
Π(φ̄)

−µ1

)]2

ds.

(3.40)
As an illustration, figure 3 shows the velocity profiles given by (3.40) and the
corresponding particle concentration profiles, computed using (3.38) versus y/w.
Figure 3 clearly indicates the presence of the rigid zone; however, the size of this
zone becomes more pronounced only for high values of φ̄, i.e. high concentrations.
Also note that the velocity profile deviates from a parabolic shape for higher φ̄ and
has a blunted profile, which was also shown in Nott & Brady (1994) and Eskin &
Miller (2008).

To capture the difference between the fluid and particle velocities, the slip velocity
can be deduced from (3.1), (3.4), (3.10), (3.13) and (3.16) as

1v = vf − vp =−1−B(φ)

η(φ)
∇p̃ f + (ρp − ρ f )gez

φ

η(φ)
, (3.41)

where φ = φ(y) is taken from (3.38) and B is given in (3.27). Figure 4 shows the
normalized slip velocity for the case when g= 0, i.e. |1v∇p̃ f |/v∇p̃ f

∗ , and for the case



580 E. V. Dontsov and A. P. Peirce

0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5(a) (b)

0 0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

FIGURE 3. (a) Normalized velocity of the slurry and (b) normalized particle volume
fraction versus y/w for different values of φ̄ = {0.2, 0.4, 0.8, 0.95}. The dashed line in
panel (a) indicates the parabolic profile associated with φ̄ = 0.

0.5(a) (b)

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.81.0

FIGURE 4. (a) Normalized slip velocity due to the pressure gradient |1v∇p̃ f |/v∇p̃ f

∗ and
(b) normalized settling velocity |1vg|/vg

∗ versus scaled y/w coordinate for different values
of φ̄ = {0.2, 0.4, 0.8, 0.95}.

when ∇p̃ f = 0, i.e. |1vg|/vg
∗, versus y/w for different values of φ̄. The slip velocities

are normalized respectively by

v∇p̃ f

∗ =
2a2

9µf
|∇p̃ f |, vg

∗ =
2a2

9µf
(ρp − ρ f )g. (3.42a,b)

As can be seen from the figure, the two slip velocities have qualitatively similar
profiles, although their magnitudes are different.

To find vp|y=w/2, one may simplify (3.28) using (3.41) to give

vp|y=w/2 = −C1
1−B(φw)

η(φw)
∇p̃ f +C2(ρ

p − ρ f )gez
φw

η(φw)

+ (C1 −C2)
(ρp − ρ f )g

|∇p̃ f |2
∂ p̃ f

∂z
φw

η(φw)
∇p̃ f , (3.43)

where the values of C1 and C2 are given in (3.25).
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To summarize, the particle, fluid and slurry velocities are given respectively by

vp = vp|y=w/2 + v
p
0, (3.44)

vf = vp|y=w/2 + v
p
0 +1v, (3.45)

vs = φvp + (1− φ)vf = vp|y=w/2 + v
p
0 + (1− φ)1v, (3.46)

where vp|y=w/2 is given in (3.43), v
p
0 stems from (3.40), while 1v is calculated

according to (3.41).

3.4. Estimation of the characteristic length to establish a steady flow
The governing equations adopted for this study open the possibility to estimate the
characteristic length required to establish a steady flow, which is an alternative to (1.2).
By using the current problem geometry, assuming that initially φ(y)= const., and that
the velocity profile is parabolic, i.e. vp= 6w−2(w2/4− y2)〈vp〉, the y component of the
particle pressure gradient can be estimated from (3.4) as

∂pp

∂y
=−µf A (φ)−2 12|〈vp〉|

w2
, (3.47)

where |〈vp〉| is an average velocity of the flow. Using the previous equation together
with (2.1), the y component of the velocity of the particles can be found as

vp
y =−

8
3
φ(1− φ)ᾱ
(φm − φ)2

a2

w2
|〈vp〉|. (3.48)

The characteristic time required to establish steady flow is t∗ = w/(2|vp
y|), while the

corresponding length is L= |〈vp〉|t∗, so that

L
w
= 3

16
(φm − φ)2
φ(1− φ)ᾱ

w2

a2
. (3.49)

Relation (3.49) is in agreement with (1.2), compatible with the adopted model, and
provides a more accurate estimate for different values of φ. As an example, for φ =
0.1, a = 0.4 mm and w = 1 cm, the length required to establish a steady flow is
approximately equal to 4 m. For this set of problem parameters, if the fracture is
longer than 4 m (while the width is 1 cm), then the assumption of steady flow is
appropriate.

3.5. Comparison to the model in Lecampion & Garagash (2014)
It is interesting to compare the model for slurry flow in a channel, developed in this
section, to that independently developed in Lecampion & Garagash (2014), as these
models are both based on the same empirical constitutive relations published in Boyer
et al. (2011). The main difference comes from the fact that the model in Lecampion
& Garagash (2014) neglects the slip velocity and gravitational settling at the outset,
and uses a slightly modified constitutive model. However, the importance of including
the slip velocity and performing the associated boundary layer analysis is twofold.
Firstly, one obtains a more complete understanding of the problem. Secondly, the
boundary layer analysis enables us to capture the complete transition from Poiseuille
flow for low particle concentrations, for which the slip velocity is negligible, to
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Darcy’s law for high particle concentrations, for which slip velocity is a primary
mechanism for fluid transport (i.e. filtration). If one neglected either the slip velocity
or the boundary layer, Darcy’s law would not be recovered in the limiting case. The
boundary layer analysis also highlights the appropriate boundary conditions for the
outer (macroscopic) solution, which is used to construct the lubrication equations for
hydraulic fracture modelling. The boundary conditions for the model in Lecampion
& Garagash (2014) are no-slip throughout for all values of φ. Our results show
that a no-slip boundary condition is a good approximation for dilute suspensions
without gravitational settling and before entering the infiltration limit, at which
Darcy’s law applies. However, in the infiltration limit or with gravitational settling,
a slip boundary condition is required for the outer solution. Therefore, our analysis
highlights the applicability of the model in Lecampion & Garagash (2014) and
establishes its limitations in the filtration and settling regimes. Naturally, the results
of Lecampion & Garagash (2014) can be recovered if both gravity and slip velocity
are neglected in the current approach. Despite the fact that the effect of gravity is
simplified in our approximate solution, the rigorous introduction of the gravity force
in the complete solution enabled us to obtain a reference solution, from which we
estimated the level of applicability of our approximation.

4. Mass transport equations

The goal of this section is to connect the developments of § 3 to the hydraulic
fracturing problem. To achieve this, the fracture is represented by a channel with a
variable width w(x, z, t), and it is assumed that the flow at any point is always in
equilibrium or in a steady-state condition. To formulate the governing equations for
the mass transport in a one-dimensional setting, it is necessary to integrate (2.2) and
(2.5) over y from −w/2 to w/2 and to derive equations for averaged quantities (note
that the coordinate system is the same as that assumed in § 3). By using symmetry,
the relation (3.35) and noting that, for any function h(t, s), one has

2
∂

∂t

∫ w/2

0
h(t, s) ds= 2

∫ w/2

0

∂h(t, s)
∂t

ds+ h(t,w/2)
∂w
∂t
, (4.1)

equations (2.2) and (2.5) can be integrated to obtain

∂w
∂t
+∇ · qs + g= 0, (4.2)

∂wφ̄
∂t
+∇ · qp = 0, (4.3)

where the following boundary conditions have been used:

vp
y|y=w/2= 1

2
∂w
∂t
, vp

y|y=0= 0, vf
y|y=w/2= 1

2
∂w
∂t
+ g

1− φ|y=w/2
, vf

y|y=0= 0. (4.4a−d)

Here the leak-off, g, appearing in (4.2), is introduced through the above velocity
boundary condition and enables us to account for the fluid losses due to the filtration
into surrounding rock.
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The slurry and particle fluxes are computed on the basis of (3.40)–(3.46) as

qs = − w3

12µf
Qs(φ̄)∇p̃ f − a2w

12µf
D(φ̄)∇p̃ f − a2w

12µf
(ρp − ρ f )gezGs(φ̄)

− a2w
12µf

(ρp − ρ f )g

|∇p̃ f |2
∂ p̃ f

∂z
S(φ̄)∇p̃ f , (4.5)

qp = −w(w2 −w2
cr)

12µf
Qp(φ̄)∇p̃ f − a2w

12µf
(ρp − ρ f )gezGp(φ̄)

− a2w
12µf

(ρp − ρ f )g

|∇p̃ f |2
∂ p̃ f

∂z
φ̄S(φ̄)∇p̃ f , (4.6)

where

Qs(φ̄) = 24Π(φ̄)
∫ 1/2

0

∫ 1/2

max{s, µ1Π(φ̄)}

[
F
(

s′

Π(φ̄)
−µ1

)]2

ds′ ds, (4.7)

Qp(φ̄) = 24Π(φ̄)
∫ 1/2

0

φ(s)
φm

∫ 1/2

max{s, µ1Π(φ̄)}

[
F
(

s′

Π(φ̄)
−µ1

)]2

ds′ ds, (4.8)

D(φ̄) = 16
3

∫ 1/2

0

1−B(φ(s))
φ(s)

(1− φ(s))ᾱ+1 ds

− 8
3

1−B(φw)

φw
(1− φw)

ᾱB(φw), (4.9)

Gs(φ̄) = 8
3
µf (1− φw)

ᾱ

µf +µp(φw)
− 16

3

∫ 1/2

0
(1− φ(s))ᾱ+1 ds, (4.10)

S(φ̄) = 8
3

(
B(φw)− µf

µf +µp(φw)

)
(1− φw)

ᾱ, (4.11)

wcr(φ̄) = a

√
8
3

1−B(φw)

φwQp(φ̄)
φ̄(1− φw)ᾱB(φw), (4.12)

Gp(φ̄) = 8
3
µf φ̄(1− φw)

ᾱ

µf +µp(φw)
, (4.13)

φw(φ̄) is given in (3.39), while B is defined in (3.27). To understand the nature
of the (1 − φ|y=w/2)

−1 multiplier in the leak-off velocity, one can add a thin virtual
layer of pure fluid right next to the boundary. Then the y component of the velocity
associated with the leak-off in this virtual layer is g. However, since the fluid is
incompressible, the jump in the volume fraction φ between the thin layer of fluid and
bulk slurry causes a jump in the velocity. To preserve the volume, one should have
(1−φ|y=w/2)v̂

f
y|y=w/2= g, which implies that v̂f

y|y=w/2= (1−φ|y=w/2)
−1g, where v̂f

y|y=w/2

is the component of vf
y|y=w/2 that accounts for the leak-off.

Noting that φw ≈ 1
2 φ̄φm for small values of φ̄, the asymptotic behaviour of the

functions defined in (4.7)–(4.13) can be computed with the help of (3.32) and (3.37)
as

Qs
0(φ̄)= 1, Qs

1(φ̄)=
4

5φmµ1
(1− φ̄)3/2, (4.14a,b)
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Qp
0(φ̄)=

6
5
φ̄, Qp

1(φ̄)=
4

5φmµ1
(1− φ̄)3/2, (4.15a,b)

D0(φ̄)=−5
3
((ᾱ + 2)φm − 1) φ̄, D1(φ̄)= 8(1− φm)

ᾱ

3φm
, (4.16a,b)

Gs
0(φ̄)=

2
3
φ̄φm(2ᾱ − 1), Gs

1(φ̄)=−
8
3
(1− φm)

ᾱ+1, (4.17a,b)

S0(φ̄)= 5
3
φmφ̄, S1(φ̄)= 16

3

(
2

5φm

)2 √
5φmµ1 (1− φm)

ᾱ(1− φ̄)1/2, (4.18a,b)

wcr,0(φ̄)= 5
3

a, wcr,1(φ̄)= 4µ3/4
1 a

31/251/4φ
1/2
m
(1− φm)

ᾱ/2(1− φ̄)−1/2, (4.19a,b)

Gp
0(φ̄)=

8
3
φ̄, Gp

1(φ̄)=
32
15
(1− φm)

ᾱ 1− φ̄
φm

. (4.20a,b)

For the purpose of fast numerical evaluations of the functions (4.7)–(4.13), their
values are first calculated accurately for a small set of φ̄, then divided by the
corresponding asymptotic behaviour (4.14)–(4.20) and finally stored. In this case, the
stored quantities are all O(1), which allows us to use spline interpolation and the
asymptotic formulas (4.14)–(4.20) to restore the values of all functions in a fast and
accurate manner. As an illustration, figure 5 plots the functions Qs, Qp, D, wcr/a, Gs,
Gp, S and φw/φm versus the normalized, average particle concentration φ̄.

The critical width, appearing in (4.19), effectively precludes the proppant in areas
where the fracture is narrow. But, as can be seen in figure 5, for most particle
concentrations, this width is of the order of 1.5× a, while it becomes unbounded for
a very narrow region near φ̄ ≈ 1. The particles, however, cannot physically be in a
channel whose width is smaller than the particle diameter. Moreover, the bridging of
the proppant may occur earlier when the fracture width is equal to several particle
diameters. For this reason, there is a need to introduce a ‘blocking’ function, which
would prevent the proppant entering the narrow regions. To this end, let us introduce

B
(w

a

)
= 1

2
H
( w

2a
−N

)
H
(

wB −w
2a

)[
1+ cos

(
π

wB −w
2a

)]
+H

(
w−wB

2a

)
, (4.21)

where N represents ‘several’ particle diameters (i.e. three), H denotes the Heaviside
step function, while wB = 2a(N + 1), which provides a smooth vanishing of the
function and helps the numerical implementation. To effectively prevent the proppant
from moving into the narrow regions, the proppant flux in (4.6) needs to be multiplied
by (4.21), in which case the proppant flux that is calculated according to

qp
B = B

(w
a

)
qp (4.22)

accounts for the proppant stalling in the narrow fracture regions.
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FIGURE 5. Variation of functions Qs, Qp, D, wcr/a, Gs, Gp, S and φw/φm versus
normalized average particle concentration φ̄.

4.1. Comments on the model
It is instructive to understand the physical meaning of all terms in the expressions for
the fluxes in (4.5) and (4.6). The first term in the slurry flux is a Poiseuille flow-type
term, where Qs(φ̄) can be understood as the inverse of the effective viscosity of the
mixture. As φ̄ approaches 1, the effective viscosity goes to infinity as (1 − φ̄)−3/2,
as can be seen from (4.14). The second term in the slurry flow can be related to
Darcy’s law. Indeed, according to Darcy’s law, the total flux through the channel is
proportional to the pressure gradient, the permeability and the width of the channel.
The permeability is proportional to the average squared pore size, which is, in
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turn, proportional to a2 and some dimensionless function of φ̄. Since a/w� 1, for
most particle concentrations, the flux is dominated by Poiseuille’s law. However, in
the plugged regions (φ̄ ≈ 1), one has Qs(φ̄) ≈ 0, while D(φ̄) > 0, so that the flux
is governed mainly by Darcy’s law. The remaining two terms represent the effect
of gravity. In particular, they signify that, when the slurry is in a static position,
i.e. qs = 0, the pressure is not equal to the hydrostatic pressure. Instead, there is a
pressure gradient in addition to the hydrostatic pressure, which balances the shear
stresses at the wall caused by the gravitational settling of particles. With regard to
the flux of particles, the first term corresponds to the flux of particles ‘carried’ by the
fluid, i.e. the advective term. The last two terms of the particle flux capture the effects
associated with gravitational settling of the particles. One may also observe strange
non-monotonic variation of wcr in figure 5. This is, unfortunately, one drawback of
the constitutive model. This constitutive model is based on fitting. So while µp(φ̄)
may be accurate, the accuracy of its derivative may deteriorate significantly. Function
B, (3.27), for instance, depends on the derivative of µp(φ̄), and wcr depends on B;
see (4.12).

4.2. Simplified model
Despite the fact that (4.6) gives a complete answer for a broad range of parameters,
the fact that the smallest fracture width where the proppant can be present is bounded
by several particle diameters can be used to further simplify the result. The function
wcr, shown in figure 5, is very steep, but monotone in the region φ̄ ≈ 1, so can be
inverted and be written in the form φ̄wcr(wcr/a). Let us consider the case when N =
3 in (4.21) and try to estimate the quantity w2 − w2

cr that appears in (4.6). In the
worst case of w= 6a, this quantity vanishes for 1− φ̄wcr(6)=O(10−4). Moreover, 1−
φ̄wcr(2)=O(10−3), in which case w2

cr/w
2< 1/9 for all possible values of w (for which

proppant can be inside the fracture). This shows that, if the term with wcr is neglected,
a noticeable error may be introduced only for near-maximum concentrations 1− φ̄ <
O(10−3). To see whether the variations of φ̄ in the region 1− φ̄ <O(10−3) affect the
slurry flow, one needs to compare the terms with Qs(φ̄) and D(φ̄) in the slurry flux. To
find the particle concentration, which characterizes the transition from Poiseuille’s to
Darcy’s flow regime, one needs to express the relation w2Qs(φ̄)= a2D(φ̄) in the form
φ̄P−D(w/a). For the worst case w= 6a, it can be shown that 1− φ̄P−D(6)= O(10−2).
As a result, wcr can be neglected, as D(φ) already dominates the flow for 1 − φ̄ <
O(10−3) and its variations in this range are negligible (so that the error of 0.1 % in
φ̄ does not lead to noticeable changes in the slurry flow). Moreover, the variations of
D are approximately equal to 5 % when 1 − φ̄ = O(10−2), in which case D(φ̄) can
be approximated by φ̄D(1) (note that D(φ̄) should vanish for φ̄ = 0). The estimation
of the smallness of w2

cr/w
2 is valid for the extreme case when w= 6a. In situations

when w/a > 6, the asymptotic behaviour of Qs and wcr, (4.14) and (4.19), can be
used to find that 1− φ̄P−D(w/a)∝ (a/w)4/3 for the Poiseuille-to-Darcy transition, while
1− φ̄wcr(w/a)∝ (a/w)2. This shows that the separation between the two characteristic
values of 1− φ̄ increases for bigger fracture widths (while they both decrease), which
allows us to safely neglect wcr in (4.6) and use an approximation for D(φ̄).

Since a/w� 1, the gravity terms featured in (4.5) and (4.6) become important only
for small values of the vertical pressure gradient, i.e. ∂ p̃ f /∂z = O(a2/w2(ρp − ρ f )g).
This situation may occur when the hydraulic fracture is surrounded by stress barriers,
since some hydraulic fracturing models even assume constant pressure in each vertical
cross-section (see Adachi, Detournay & Peirce 2010). Owing to the presence of stress
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barriers, the pressure gradient in these fractures is predominantly horizontal, which
could make the vertical component of the pressure gradient sufficiently small to cause
∂ p̃ f /∂z=O((a2/w2)(ρp− ρ f )g). Note, however, that the absolute value of the pressure
gradient may be big, and so Gρ , defined in (3.12), could be small. The fact that
(∂ p̃ f /∂z)/|∇p̃ f |� 1 allows us to neglect terms in (4.5) and (4.6) that are proportional
to (∂ p̃ f /∂z)/|∇p̃ f | � 1, which reduces the complexity of the fluxes. Moreover, it is
useful to introduce

p̂ f = p f − p f
h = p f + ρ f gz+ (ρp − ρ f )gφmφ̄z+ (ρp − ρ f )g

∫ z

0

a2Gs(φ̄)

w2Qs(φ̄)+ a2φ̄D(1)
dz′,

(4.23)
which allows us to simplify (4.5) and (4.6) (also using the simplifications discussed
in the previous paragraph) to

qs =− w3

12µf
Q̂s
(
φ̄,

w
a

)
∇p̂ f , (4.24)

qp
B = B

(w
a

)
Q̂p
(
φ̄,

w
a

)
qs − B

(w
a

) a2w
12µf

(ρp − ρ f )gezĜp
(
φ̄,

w
a

)
, (4.25)

where

Q̂s
(
φ̄,

w
a

)
= Qs(φ̄)+ a2

w2
φ̄D(1), (4.26)

Q̂p
(
φ̄,

w
a

)
= w2Qp(φ̄)

w2Qs(φ̄)+ a2φ̄D(1)
, (4.27)

Ĝp
(
φ̄,

w
a

)
= Gp(φ̄)− w2Gs(φ̄)Qp(φ̄)

w2Qs(φ̄)+ a2φ̄D(1)
. (4.28)

Here p f
h is the ‘true’ hydrostatic pressure in the sense that there is no motion

of the slurry if p f = p f
h . In terms of fluid-driven fracture problems, hydrostatic

pressure is important for buoyancy-driven fractures (see e.g. Lister 1990), while it
is commonly neglected for other industrial hydraulic fracturing problems. In the
simplified model (4.24)–(4.25), functions (4.26)–(4.28) determine the motion of the
slurry and proppant. The function Q̂s describes the slurry flow, and, in particular,
accounts for the Poiseuille-to-Darcy transition of the flow. Clearly, Q̂p describes
convective proppant transport, while Ĝp captures gravitational settling. The fact that
the model captures the Poiseuille-to-Darcy transition of the flow implies that both
proppant transport and plugging (i.e. the formation of a zone with nearly maximum
proppant concentration) are accounted for autonomously. As an illustration, figure 6
plots the variations of Q̂p and Ĝp versus φ̄ for different values of w/a= {6, 10, 100}.
One can see that the parameter w/a is important only in the regions with high
particle concentration and leads to a smooth transition of functions Q̂p and Ĝp to
zero. It should be noted that there is almost no visual difference between Qs and
Q̂s. At the same time, qualitatively, there is a significant difference, since Qs goes to
zero as φ̄→ 1, while Q̂s approaches a small constant. For the purpose of numerical
calculations, the variation of functions Q̂p and Ĝp versus w/a can be approximated
by taking either a limit w/a→∞ or w/a = 6, depending on the numerical scheme.
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FIGURE 6. Variation of functions Q̂p and Ĝp versus normalized average particle
concentration φ̄ for different values of w/a= {6, 10, 100}.

As figure 6 shows, the error induced by such an approximation may slightly alter the
dynamics of the plug (i.e. the region with a nearly maximum concentration), while
the proppant transport at smaller concentrations will not be affected.

In the current simplified formulation, the functions Q̂s, Q̂p and Ĝp that enter
(4.24)–(4.25) are based on this specific model for the slurry flow. In practical
applications, however, all the assumptions of the model may not always be met
and the model may deviate from the observations. For instance, the particles may be
aspherical, or a mixture of particles with different sizes may be used. If a similar
model cannot be derived, for example, owing to lack of a constitutive relation for the
mixture, one possible solution is to keep all the terms in (4.24) and (4.25), but to
modify the functions Q̂s, Q̂p and Ĝp to fit the data. For instance, one could measure
the effective viscosity and permeability of the mixture and modify the functions
accordingly. This formulation, therefore, represents a broad class of models, which
could satisfy experimental observations, capture the Poiseuille-to-Darcy transition of
the slurry flow, as well as particle transport and settling.

5. Summary
This paper studies the steady flow of a Newtonian fluid mixed with spherical

particles under the influence of gravitational settling based on a continuum approach.
The constitutive behaviour of the mixture is taken from an empirical model, where
both the shear stress and particle pressure are expressed in terms of functions of
the particle concentration. The solution obtained shows that the particles form a
rigid cluster in the centre, and its size depends on the average concentration of the
particles over the width. The velocity profile is shown to deviate from the classical
parabolic shape for higher concentrations owing to a non-uniform distribution of
particles. Also, the solution features a boundary layer, whose size is of the order of
the particle radius. While the effect of the boundary layer is minimal for relatively
small particle concentrations, it becomes crucial when the particle concentration is
close to the maximum value. Unfortunately, the complicated nature of the solution
obtained makes the result less valuable for hydraulic fracturing applications, as the
implementation of such a complex model into a hydraulic fracturing simulator would
be extremely cumbersome. For this reason, an approximate solution is introduced. To
provide an estimate for the error that is introduced by the approximation, the ‘full’
solution is compared to the approximate solution for different regimes of the flow.
It is shown that, even in the worst case when the pressure gradient is much weaker
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than the gravity force, the errors in the slurry flux and proppant flux do not exceed
30 %. For more realistic parameters, the error becomes even lower, of the order of
10 %.

The simplified approximate solution of the channel flow makes it possible to
calculate the average fluxes for the slurry and the particles. These fluxes form the
basis for the analysis of hydraulic fracturing by a slurry and the corresponding
proppant transport problem. The simplified model (4.24)–(4.25) is now in a form that
can be implemented in a hydraulic fracturing model that couples elasticity with slurry
flow, and captures proppant transport, gravitational settling and plug formation.
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