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This study revisits the problem of a steadily propagating semi-infinite hydraulic
fracture in which the processes of toughness-related energy release, viscous dissipation
and leak-off compete on multiple length scales. This problem typically requires the
solution of a system of integro-differential equations with a singular kernel, which is
complicated by the need to capture extremely disparate length scales. In this study the
governing equations are rewritten in the form of one non-singular integral equation.
This reformulation enables the use of standard numerical techniques to capture the
complete multiscale behaviour accurately and efficiently. This formulation also makes
it possible to approximate the problem by a separable ordinary differential equation,
whose closed-form solution captures the multiscale behaviour sufficiently accurately
to be used in practical applications. We also consider a similar reformulation of the
equations governing the propagation of a buoyancy-driven semi-infinite hydraulic
fracture. The resulting numerical solution is able to capture the near-tip multiscale
behaviour efficiently and agrees well with published solutions calculated in the
large-toughness limit.

Key words: boundary layer structure, magma and lava flow, porous media

1. Introduction

A detailed near-tip analysis of a planar hydraulic fracture shows (Peirce &
Detournay 2008) that the governing equations reduce to those of a steadily
propagating semi-infinite hydraulic fracture under conditions of elastic plane strain.
It is therefore important to analyse the problem of a semi-infinite hydraulic fracture,
as it governs the behaviour of the tip region of arbitrarily shaped finite hydraulic
fractures and influences their global behaviour. Recognizing the necessity of accurate
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fracture tip modelling, the hydraulic fracturing methodology known as the implicit
level set algorithm (ILSA) (Peirce & Detournay 2008) was developed to embed the
solution of the appropriate semi-infinite hydraulic fracture into every fracture tip
element. This procedure is shown to produce accurate results even on a relatively
coarse mesh (Lecampion et al. 2013). This technique has also been used in the
context of the extended finite element method to model the propagation of hydraulic
fractures (Gordeliy & Peirce 2013). It is therefore important to develop a fast and
accurate solution methodology to solve the semi-infinite fracture problem so that it
can be used to increase the performance of various hydraulic fracturing simulators in
this multiscale environment.

To analyse the problem of a propagating semi-infinite hydraulic fracture, we adopt
a mathematical model that assumes that (i) the fracturing fluid is Newtonian, (ii) the
fluid front coincides with the fracture tip (i.e. there is no fluid lag), (iii) the material
is brittle and is linear elastic, and (iv) the leak-off is modelled by a one-dimensional
diffusion process via Carter’s model, which is applicable when the diffusion length
scale is much smaller than the fracture length (Carter 1957). Other studies that
involve a steadily propagating semi-infinite hydraulic fracture consider the effects
of power-law fluid (Desroches et al. 1994; Lenoach 1995), account for the fluid
lag (Garagash & Detournay 2000) or include poroelastic effects (Kovalyshen &
Detournay 2013). However, most of these studies focus on some limiting regimes
of propagation (Detournay 2004). The first problem we consider has already been
addressed in Garagash, Detournay & Adachi (2011), where a special numerical
scheme with built-in asymptotic solutions was used. Unfortunately, due to the
complexity of that numerical approach, it is not possible to obtain a rapid solution
for the purpose of embedding it into a hydraulic fracturing simulator that exploits
the tip asymptotics such as the ILSA strategy (Peirce & Detournay 2008). A partial
solution was obtained (Peirce 2015) in which the pre-computed semi-infinite fracture
toughness-to-viscous solution was interpolated to capture the multiscale fracture tip
behaviour in the hydraulic fracturing simulator ILSA. In this case the tip solution
without leak-off was utilized, so that one-dimensional interpolation could be used to
provide satisfactory precision, albeit at a noticeably increased computational cost. A
similar interpolation-based scheme for the tip solution with leak-off does not seem
feasible since two-dimensional interpolation is required. This would substantially
complicate the algorithm, might introduce significant numerical errors and would
dramatically degrade the overall computational performance of the hydraulic fracture
simulator.

To address this problem, following Garagash et al. (2011), this study first outlines
the equations that govern the problem of a semi-infinite hydraulic fracture with
leak-off in § 2.1. Then, § 2.2 reformulates the original governing integro-differential
equations with a singular kernel used in Garagash et al. (2011) in the form of a
single integral equation with a non-singular kernel. This allows us to use standard
numerical techniques to obtain the multiscale solution rapidly. In § 2.3 we use this new
formulation to approximate the problem by a separable ordinary differential equation
whose closed-form solution captures the multiscale behaviour with sufficient accuracy
and simplicity that it can be readily used to model the tip behaviour in hydraulic
fracture simulators such as ILSA (Peirce & Detournay 2008). Applications of the
proposed formulation are not limited to the class of multiscale semi-infinite hydraulic
fracture problems described above but include other similar problems. To demonstrate
this, § 3 considers the problem of a buoyancy-driven plane strain hydraulic fracture
(see, e.g. Spence & Turcotte 1985, Lister 1990, Roper & Lister 2007) by rewriting the
governing equations in terms of a single integral equation with a non-singular kernel.
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2. A semi-infinite hydraulic fracture with leak-off

2.1. Problem formulation and regimes of propagation
We consider the problem of a one-dimensional semi-infinite hydraulic fracture
propagating with a velocity V under plane strain elastic conditions (Garagash et al.
2011). To deal with this problem, it is convenient to introduce a moving coordinate
system, in which the fracture tip is always located at the origin and the x denotes
the distance from a point inside the fracture to the tip. As follows from Peirce &
Detournay (2008) and Garagash et al. (2011), the lubrication equation that describes
the fluid flow along the fracture can be written as

w2

µ′
dp
dx
= V + 2C′V1/2 x1/2

w
, (2.1)

where w is the fracture width, p is the fluid pressure, V is the fracture propagation
velocity, while µ′= 12µ is the scaled fluid viscosity and C′= 2CL is the scaled Carter
leak-off coefficient. We note a typographical error in Garagash et al. (2011), in which
the factor of two is missing in front of the leak-off term in (2.1), which propagates
into the remaining results. Assuming that the rock is a linear elastic medium, the
equilibrium of the rock surrounding the fracture can be expressed as the following
integral equation which relates the fluid pressure to the fracture width:

p(x)= E′

4π

∫ ∞
0

dw(s)
ds

ds
x− s

, (2.2)

where E′ = E/(1− ν2) is the plane strain elastic modulus. The latter equation can be
inverted (Garagash & Detournay 2000) to obtain

w= K ′

E′
x1/2 + 4

πE′

∫ ∞
0

K(x, s)p(s) ds, (2.3)

where K ′=√32/πKIc, KIc denotes the fracture toughness and the kernel is given by

K(x, s)= ln
∣∣∣∣x1/2 + s1/2

x1/2 − s1/2

∣∣∣∣− 2
x1/2

s1/2
. (2.4)

To close the system (2.1) and (2.3), one needs to include a fracture propagation
criterion, which states that

w= K ′

E′
x1/2, x→ 0. (2.5)

As can be seen from (2.5), the fracture width vanishes at the fracture tip. This
implies that the pressure gradient in (2.1) should be infinite at the tip to ensure that
the fracture velocity is finite. This feature makes the system (2.1), (2.3) and (2.5)
challenging to solve numerically.

An asymptotic analysis of (2.1), (2.3) and (2.5) shows that there are three limiting
regimes of propagation, namely toughness (denoted by k), leak-off (denoted by m̃)
and viscous (denoted by m) (see, e.g. Garagash et al. 2011). The toughness regime
corresponds to the situation in which the effects of fluid viscosity and leak-off can be
neglected. The leak-off propagation regime occurs in situations when both the fracture
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FIGURE 1. (a) The parametric triangle (after Garagash et al. 2011), which indicates three
regimes of propagation: the toughness regime (k vertex), the leak-off regime (m̃ vertex)
and the viscous regime (m vertex). Lines inside the triangle show possible trajectories
(assuming a spatial coordinate increasing away from the tip) in parametric space. (b) The
schematics of a fracture and the regions where the asymptotic solutions apply.

toughness is small and the fluid flow inside the fracture is primarily balanced by the
flux due to the fluid leaking into the surrounding rock. The viscous propagation regime
corresponds to the situation in which both the fracture toughness and the leak-off are
negligible. These asymptotic (vertex) solutions are respectively given by

wk = K ′

E′
x1/2, wm̃ = βm̃

(
4µ′2VC′2

E′2

)1/8

x5/8, wm = βm

(
µ′V
E′

)1/3

x2/3, (2.6a−c)

where βm̃ = 4/(151/4(
√

2− 1)1/4) and βm = 21/335/6.
Knowledge of only the vertex solutions is not sufficient, since hydraulic fractures

are known to transition from one vertex to another (Detournay 2004). With regard
to the semi-infinite hydraulic fracture problem under consideration, these regimes
occur at different length scales within the fracture, see figure 1. The toughness
regime is present near the fracture tip, and, as one moves further from the tip (if the
leak-off is significant), the leak-off regime appears, followed by the viscous regime at
infinity. The transition is often schematically illustrated as a path inside a parametric
triangle (Garagash et al. 2011), see figure 1. Vertices represent single-process limiting
solutions (2.6), while lines with arrows indicate possible transition paths from the
k vertex (near the tip) to the m vertex (far-field behaviour). It should be noted that
without leak-off the transition occurs solely along the mk edge, while in the case of
large leak-off the transition occurs along the m̃k and mm̃ edges. The coloured zones
inside the triangle indicate the regions of applicability of the vertex solutions. To
determine the solution in the transition regimes (the inner white area of the parametric
triangle), one has to solve (2.1), (2.3) and (2.5) numerically. The numerical analysis
of this problem has proven to be very challenging due to the multiple length scales
involved and the singular behaviour of the fluid pressure at the tip. This study
introduces an alternative approach, which allows us to avoid solving a singular
problem and enables us to find the fracture geometry at all length scales in a
numerically efficient way.

2.2. Alternative problem formulation and numerical solution
One of the biggest obstacles to solving the system of (2.1), (2.3) and (2.5) numerically
lies in an accurate evaluation of the flux in (2.1), given that the fluid pressure is
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singular at the fracture tip. To mitigate the problem, this section aims to rewrite the
system of equations in a form in which the fluid pressure does not enter the problem.
We first note that the elasticity equation (2.3) can be integrated by parts to yield

w= K ′

E′
x1/2 − 4

πE′

∫ ∞
0

F(x, s)
dp
ds

ds, (2.7)

where

K(x, s)= ∂F(x, s)
∂s

, F(x, s)= (s− x) ln
∣∣∣∣x1/2 + s1/2

x1/2 − s1/2

∣∣∣∣− 2x1/2s1/2. (2.8a,b)

It should be noted here that

lim
s→∞

F(x, s)p(s)= 4x lim
s→∞

p(s)= 0, lim
s→0

F(x, s)p(s)=−4x1/2 lim
s→0

s1/2p(s)= 0,

(2.9a,b)

since for the viscous far-field solution p(s) ∝ s−1/3 as s→∞ and for the toughness
near-tip solution p(s) ∝ ln(s) as s→ 0, see, e.g. Garagash et al. (2011). Then, the
pressure gradient can be substituted into (2.7) from the lubrication equation (2.1) to
find

w(x)= K ′

E′
x1/2 − 4

πE′

∫ ∞
0

F(x, s)
µ′

w(s)2

[
V + 2C′V1/2 s1/2

w(s)

]
ds. (2.10)

Equation (2.10) is an integral equation for w(x) only, which already simplifies the
original problem since the pressure, which is singular at the tip, is not a part of the
solution. It should be noted that a similar integration by parts was also performed in
Spence, Sharp & Turcotte (1987) and Lister (1990). Moreover, an equation similar
to (2.10) was formulated in Spence et al. (1987), but it was only used for the
asymptotic analysis. By introducing the scaled quantities

w̃= E′w
K ′x1/2

, χ = 2C′E′

V1/2K ′
, x̃= (x/l)1/2, s̃= (s/l)1/2, l=

(
K ′3

µ′E′2V

)2

, (2.11a−e)

equation (2.10) can be further reduced to

w̃(x̃)= 1+ 8
π

∫ ∞
0

G(s̃/x̃)
[

1
w̃(s̃)2

+ χ

w̃(s̃)3

]
ds̃, (2.12)

where l is the length scale, the dimensionless parameter χ characterizes the leak-off
and the kernel is

G(t)= 1− t2

t
ln
∣∣∣∣1+ t
1− t

∣∣∣∣+ 2. (2.13)

It should be noted that a similar length scale l is used in Garagash et al. (2011) to
describe the transition regime along the mk edge (denoted by lmk there). In this scaling,
the propagation condition (2.5) reduces to

w̃(0)= 1. (2.14)

Given the fact that the kernel G(t) is positive and not singular (G(0) = 4, G(t) ≈
4/(3t2) for t� 1), and that w̃ > 1, the integral equation (2.12) is amenable to direct
numerical solution, without introducing any asymptotic behaviour into the solution.
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FIGURE 2. (a) Variation of the scaled fracture opening w̃ versus the scaled distance x̃ and
leak-off parameter χ . The red, green and blue areas indicate the regions of applicability
of the toughness, leak-off and viscous vertex solutions (2.15). The black line indicates the
solution that corresponds to χ = 103. (b) Numerical solution for χ = 103 versus x̃ (black
line) and vertex asymptotic solutions m (viscous, blue line), m̃ (leak-off, green line) and
k (toughness, red line).

It is instructive to check whether the vertex solutions can be deduced directly
from (2.12). The first term on the right-hand side of (2.12) represents the effect of
fracture toughness, the second term (the first term under the integral sign) represents
the effect of the fluid viscosity and the third term represents the effect of leak-off.
By substituting w̃ = Cx̃α into (2.12) and keeping only one term that corresponds to
either toughness, viscosity or leak-off, we obtain

w̃k = 1, w̃m̃ = βm̃χ
1/4x̃1/4, w̃m = βmx̃1/3, (2.15a−c)

which correspond exactly to the asymptotic solutions (2.15) in the scaled coordinates.
It should be noted here that the values of βm and βm̃ are calculated based on the fact
that ∫ ∞

0

G(t)
tα

dt= 2π

α(2− α) tan
(π

2
α
)
, (2.16)

where −1<α< 1 (the integral does not converge for values of α that are outside this
interval).

In order to solve (2.12) numerically, the integral is discretized using Simpson’s rule,
and the resultant system of nonlinear algebraic equations is solved using Newton’s
method. To capture all the length scales present in the solution, grid points are
distributed uniformly on a logarithmic scale. To mitigate the error caused by a finite
upper limit of the integral in (2.12), the fracture opening solution that corresponds
to the last several grid points (on the logarithmic scale) is discarded. Figure 2(a)
shows the variation of the solution, w̃, versus χ and x̃. To indicate the regions of
applicability of the vertex solutions (2.15), these solutions are shifted upwards by
10−2 on a log scale (to highlight regions where the relative difference between the
numerical and asymptotic solutions is smaller than 2.3 %) and then superimposed
on the numerical solution. It should be noted that this map of the regimes is very
similar to the schematics in Garagash et al. (2011). Figure 2(b) shows the variation
of the scaled fracture opening versus x̃ for χ = 103, which corresponds to the black
line shown in figure 2(a). The vertex asymptotic solutions are superimposed. One can
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observe a transition from the toughness-dominated regime, to the leak-off and, finally,
to the viscous-dominated regime. This transition is consistent with the schematics
shown in figure 1.

2.3. Approximate analytical solution
Numerical solution of (2.12) provides an accurate way of solving the problem under
consideration. For some practical applications, e.g. for implementing this solution in a
hydraulic fracturing simulator such as ILSA (Peirce & Detournay 2008), it is desirable
to obtain an easily evaluated approximate solution that is reasonably accurate. To
derive such an approximate solution, one can differentiate (2.12) to obtain

dw̃(x̃)
dx̃
=− 8

π

∫ ∞
0

G′(s̃/x̃)
s̃
x̃2

[
1

w̃(s̃)2
+ χ

w̃(s̃)3

]
ds̃, w̃(0)= 1. (2.17)

Knowing that the solution has a form w̃∝ x̃δ, where 0 6 δ 6 1/3 varies slowly with
x̃, one can rewrite the latter equation as

dw̃(x̃)
dx̃
=− 8

π

∫ ∞
0

G′(s̃/x̃)
x̃2δ−1

s̃2δ−1

ds̃
x̃

[
s̃2δ

w̃(s̃)2x̃2δ

]
− 8

π

∫ ∞
0

G′(s̃/x̃)
x̃3δ−1

s̃3δ−1

ds̃
x̃

[
χ s̃3δ

w̃(s̃)3x̃3δ

]
.

(2.18)

The terms in square brackets vary slowly with s̃. Moreover, the function G′(t)/tα
(t = s̃/x̃, α is some power) resembles a Delta function on a logarithmic scale. For
these reasons, one can approximate (2.18) by replacing the integral kernels by the
appropriate Delta functions, and arrive at the following implicit first-order ordinary
differential equation:

w̃′ = C1(δ)

w̃2
+ χC2(δ)

w̃3
, δ = x̃

w̃′

w̃
, w̃(0)= 1, (2.19a−c)

where the coefficients C1 and C2 are calculated using (2.16) as

C1(δ)= 4(1− 2δ)
δ(1− δ) tan(πδ), C2(δ)= 16(1− 3δ)

3δ(2− 3δ)
tan
(

3π

2
δ

)
. (2.20a,b)

The coefficients C1 and C2 vary monotonically and slowly with δ (note that 0 6 δ
6 1/3). For instance, C1(0) = C2(0) = 4π ≈ 12.6, C1(1/3) = β3

m/3 ≈ 10.4, while
C2(1/3) = 32/π ≈ 10.2. Due to the small variations in the magnitudes of C1 and
C2, one may treat them as constants, in which case (2.19) reduces to a separable
differential equation, whose implicit solution is

w̃3− 1− 3
2

b(w̃2− 1)+ 3b2(w̃− 1)− 3b3 ln
(

b+ w̃
b+ 1

)
= 3C1(δ)x̃, b= C2(δ)

C1(δ)
χ. (2.21)

To obtain a zeroth-order approximate solution from (2.21), one may use a constant
approximation for δ. Since the 1/w̃2 term in (2.19) is important for the viscous
solution, for which δ = 1/3, one may take C1(1/3) = β3

m/3. Since the χ/w̃3 term is
important for the leak-off regime, for which δ = 1/4, one may take C2(1/4)= β4

m̃/4.
In this case, the zeroth-order solution, w̃0, can be obtained from

w̃3
0−1− 3

2
b0(w̃2

0−1)+3b2
0(w̃0−1)−3b3

0 ln
(

b0 + w̃0

b0 + 1

)
=β3

mx̃, b0= 3β4
m̃

4β3
m

χ ≈0.9912χ.

(2.22)
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FIGURE 3. (a) The discrepancy of the zeroth-order solution w̃0 and the δ-correction w̃δ

compared with the numerical solution versus the number of elements used in the numerical
solution N. (b) Variation of the scaled fracture width versus x̃ for χ = 0 (mk edge):
calculated by Garagash et al. (2011) (markers), zeroth-order approximation (blue line),
δ-correction (red line) and the numerical solution (black line).

It can be easily shown that the zeroth-order solution captures all vertex solutions (2.15)
precisely and describes the transition regions approximately. To obtain a correction
that accounts for different values of δ, a so-called δ-correction, one may use (2.19)
(with C1(1/3)= β3

m/3 and C2(1/4)= β4
m̃/4) to calculate δ as

δ = β
3
mx̃(w̃0)

3w̃3
0

(
1+ b0

w̃0

)
, (2.23)

where x̃(w̃0) is calculated using (2.22). By substituting (2.23) into (2.21), one may
obtain a δ-corrected solution w̃δ. It is possible to continue the iteration procedure, but
one iteration is sufficient for all practical applications.

It is also possible to obtain simple expressions for two out of the three edge
solutions, see the parametric triangle in figure 1. To find the approximate solution
that corresponds to the mk edge (no leak-off), let χ = 0, then (2.21) and (2.23) can
be simplified to

w̃δ,mk = (1+ 3C1(δ)x̃)1/3, δ = 1
3

β3
mx̃

1+ β3
mx̃
, (2.24a,b)

while the zeroth-order solution is simply w̃0,mk= (1+β3
mx̃)1/3. To find the approximation

for the m̃k solution, one can take χ� 1 to simplify (2.21) and (2.23) as

w̃δ,m̃k = (1+ 4χC2(δ)x̃)1/4, δ = 1
4

β4
m̃χ x̃

1+ β4
m̃χ x̃

. (2.25a,b)

The corresponding zeroth-order solution is w̃0,m̃k = (1+ χβ4
m̃x̃)1/4. Unfortunately, it is

not possible to extract a simple explicit solution for the mm̃ edge from (2.21).
To illustrate the accuracy of the approximate analytical solution, figure 3(a) shows

the errors of the zeroth-order approximate solution and the δ-corrected solution,
defined respectively as max{|w̃δ − w̃|/w̃} and max{|w̃0 − w̃|/w̃}, where w̃ is the
numerical solution that is calculated using N points in x̃. Here, the maximum is
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calculated over 10−8 6 x̃ 6 1018 and 10−2 6 χ 6 104, which corresponds to the
parameter span shown in figure 2. For small values of N, the error due to numerical
discretization dominates, and one can observe a convergence rate of approximately
4, which reflects the fact that Simpson’s rule is used to discretize the integral
in (2.12). For larger values of N, the discretization error becomes smaller than the
errors corresponding to the approximate solutions. This leads to an error ‘saturation’,
at which the limiting values of the error reflect the accuracy of the approximate
solution. The zeroth-order solution, w̃0, has an accuracy of approximately 1.1 %,
while the δ-correction, w̃δ, substantially increases the accuracy to 0.14 %. Since the
approximate solutions are able to capture all vertex solutions precisely, the error is
concentrated in the transition zones. For both approximations, the maximum error is
reached in the transition from the k to the m vertex, which corresponds to χ = 0
and x̃≈ 10−1.5. Figure 3(b) shows the variation of the scaled fracture opening versus
x̃ for χ = 0, i.e. along the mk edge. A comparison is made between the numerical
solution by Garagash et al. (2011), the numerical solution of (2.12), as well as two
approximations w̃0 and w̃δ stemming from (2.24). All solutions agree well with one
another, although w̃0 is clearly less accurate than w̃δ.

3. Buoyancy-driven plane strain fracture

To illustrate the versatility of the approach developed in § 2.2, this section aims
to analyse the problem of a buoyancy-driven hydraulic fracture (Spence et al. 1987;
Roper & Lister 2007). As follows from Roper & Lister (2007), the lubrication
equation (2.1), in this case, needs to be replaced by

w2

µ′

(
dp
dx
+1ρg

)
= V, (3.1)

where the leak-off is removed and the 1ρg term captures the effect of buoyancy. Here,
1ρ is the difference between the mass densities of the rock and the fracturing fluid,
while g denotes the gravitational acceleration. By using a similar procedure to that in
§ 2.2 (including notation and scaling (2.11)), the analogue of (2.12) becomes

w̃(x̃)= 1+ 8
π

∫ ∞
0

G(s̃/x̃)
[

1
w̃(s̃)2

− g̃s̃2

]
ds̃, g̃= 1ρgl3/2

K ′
, (3.2)

where g̃ is the normalized gravity and l is the length scale defined in (2.11). The
integral equation (3.2) is solved numerically by using Simpson’s rule to discretize the
integral and Newton’s method to solve the system of nonlinear algebraic equations.
Since the integral

∫∞
0 G(s̃/x̃)s̃2 ds̃ does not converge, it is essential to keep both terms

under the integral sign in (3.2) together. It should also be noted that an ordinary
differential equation similar to (2.19) can be derived from (3.2). Its solution is less
accurate (since the assumption w̃ ∝ x̃δ is no longer valid), but is used as an initial
guess for Newton’s method.

In order to compare the results with the numerical solution (Peirce 2010), which
uses a Hermite cubic collocation scheme, we first make a conversion between scaled
variables. The normalized fracture toughness, K, the normalized fracture half-width, H,
and the normalized coordinate, X, used in Peirce (2010) are related to our variables as

K = 1
2 g̃1/8, H = 24/3g̃1/3x̃w̃, X = 25/3g̃2/3x̃2. (3.3a−c)

It should be noted that Roper & Lister (2007) give the asymptotic solution H0 =
(X1/2(2 − X)3/2)/2 (valid for K� 1) in terms of the aforementioned quantities (3.3).
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FIGURE 4. Comparison between the numerical solution of (3.2) (black solid lines) and
the numerical solution by Peirce (2010) (black dashed lines) for the buoyancy-driven
hydraulic fracture for different values of K. (a) Solutions written in terms of the scaling
in Peirce (2010), see (3.3); the magenta dashed line indicates the approximate solution
H0 = (X1/2(2 − X)3/2)/2 (valid for K � 1) (Roper & Lister 2007). (b) Solutions written
in terms of the scaling (2.11); the blue and red dashed lines indicate the viscous and
toughness asymptotic solutions (2.15) respectively. The solution by Peirce (2010) works
poorly for small K.

Figure 4(a) compares the numerical solution of (3.2) (black solid lines) with the
numerical solution by Peirce (2010) (black dashed lines) for different values of
the normalized fracture toughness K. The analytic solution H0 is represented by
the dashed magenta line. Figure 4(b) compares the same solutions, but in terms of
the quantities w̃ and x̃, and plotted on a log–log scale. The viscous and toughness
asymptotic solutions (2.15) are represented by dashed blue and red lines respectively.
Both numerical algorithms give nearly identical results for large values of the
normalized fracture toughness K. At the same time, there is a visible difference for
K 6 1. This happens because the algorithm in Peirce (2010) is designed to capture the
toughness propagation regime and relies on the toughness asymptotic solution for the
tip element; see figure 4(b), where all dashed black lines originate from the toughness
asymptote (shown by the dashed red line). The toughness asymptotic solution works
poorly in situations when the transition from the toughness to the viscous regime of
propagation happens on a length scale comparable to the element size, as indicated
in figure 4. At the same time, the new numerical formulation works well for all
values of K.

4. Summary

This paper introduces an alternative formulation for the multiscale analysis of a
steadily propagating semi-infinite hydraulic fracture. The key feature of the approach
lies in rewriting the system of governing equations as a single integral equation
with a non-singular kernel, whose solution is directly related to the fracture width.
This approach is used to provide an accurate numerical solution for a propagating
semi-infinite hydraulic fracture with leak-off. Because the new formulation features
a non-singular kernel, and does not involve a calculation of the fluid pressure,
standard numerical techniques are used to obtain accurate results rapidly. The resulting
numerical solution is able to resolve multiscale behaviour and to capture all known
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asymptotic solutions of the problem. This approach is also used to reduce the problem
to an approximate separable ordinary differential equation whose analytic solution
captures all known asymptotic solutions of the problem exactly, and provides a
highly accurate estimation of the fracture width in transition regions. To highlight
the versatility of the new formulation, it is applied to solve the problem of a
steadily propagating semi-infinite buoyancy-driven plane strain hydraulic fracture. The
results agree well with published numerical solutions that were developed for the
toughness-dominated regime of propagation. In addition, the multiscale behaviour
at the fracture tip, associated with the transition from the toughness to the viscous
regime of propagation, is easily captured using the new formulation.
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