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The goal of this study is to investigate the effect of turbulent fluid flow on the propagation of planar 

hydraulic fractures. Modeling a hydraulic fracture includes solving the elasticity equation that ensures 

the equilibrium of the rock, the fluid volume balance equation, and the fluid flow equation, which are 

solved together with a propagation condition. In this paper, the influence of turbulent flow is condensed 

into a single friction factor that influences the fluid flow equation, i.e. the relationship between the fluid 

flux and the pressure gradient. To capture all possibilities, an approximation for the friction factor, that 

captures the laminar, the turbulent, and the transitional flows is utilized in this study. Results for the 

axisymmetric fracture geometry demonstrate that the solution is dominated by turbulent flow at early 

times and near the source, while transitions to the laminar regime at larger times and close to the frac- 

ture tip. In the situation when turbulence dominates, the fracture is shorter and wider, since there is a 

strong pressure drop in the vicinity of the source, which causes the local fracture width increase. Results 

for a planar fracture propagating in a three stress layer geometry demonstrate that the turbulence leads 

to a more circular fracture that promotes height growth through a high stress zone. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Hydraulic fracturing is a technique used to create tensile cracks

y injecting a pressurized fluid into a rock formation, which is

rimarily applied in petroleum industry to stimulate oil and gas

ells ( Economides and Nolte, 20 0 0 ). High viscosity fluids have

een used for many years for hydraulic fracturing. With the devel-

pment of unconventional resources, in which the rock formations

ypically have much smaller pores, there is a tendency to use low

iscosity fluids, such as a slick water that primarily consists of wa-

er with only a few additives. This transition to slick water results

n a drop in the typical fluid viscosity value by nearly three orders

f magnitude. As a result, the typical Reynolds numbers that are

ssociated with the fluid flow are substantially increased and can

e sufficient for the development of turbulent fluid flow within the

racture. The conventional models for hydraulic fracturing were de-

eloped for the high viscosity fluids and therefore the majority of

he models consider exclusively laminar flow, see e.g. review pa-

ers ( Adachi et al., 2007; Weng, 2015 ). In contrast, this study aims

o account for the possibility of developing the turbulent fluid flow
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nd to investigate its effect on the propagation of planar hydraulic

ractures. 

The effects associated with turbulent fluid flow within hy-

raulic fractures have been considered previously. Early work in-

ludes ( Nilson, 1981; Nilson and Morrison, 1986 ) that focused

n the analysis of gas-driven hydraulic fractures in plane strain

nd Perkins-Kern-Nordgren (PKN) fracture geometries ( Perkins

nd Kern, 1961; Nordgren, 1972 ). In addition, turbulent fluid

ow is known to play a significant role in the modeling of

ydraulically-driven cracks in glaciers ( Tsai and Rice, 2010 ). More

ecent studies address the problem with respect to slick wa-

er hydraulic fracturing of unconventional reservoirs. For instance,

he problem of a PKN fracture without leak-off is considered in

nthonyrajah et al. (2013) , the analysis and scaling-based esti-

ates for the fracture parameters associated with turbulence are

resented in Ames and Bunger (2015) , an analytical approximate

olution for a PKN fracture with large leak-off is developed in

ano et al. (2015) , while a similar solution for the PKN problem

ithout leak-off is published in Zolfaghari et al. (2017b ). An ap-

roximate analytical solution for a plane strain hydraulic fracture

riven by a turbulent flow is derived in Zolfaghari et al. (2017a ).

s can be clearly seen from this paragraph, many studies have fo-

used on simple fracture geometries, such as the PKN geometry,

ue to the possibility of obtaining analytical results and the ease

http://dx.doi.org/10.1016/j.ijsolstr.2017.08.016
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of numerical implementation. In addition, the studies ( Tsai and

Rice, 2010; Ames and Bunger, 2015; Kano et al., 2015; Zolfaghari

et al., 2017b ) utilize the Gauckler-Manning-Strickler ( Manning,

1891; Strickler, 1981 ) friction factor that applies for a fully turbu-

lent fluid flow in a rough channel. Therefore, they focus on the

limit, in which the fully developed turbulent flow is present within

the whole fracture. This is not always the case, since the Reynolds

number is proportional to the fracture width and becomes smaller

in the vicinity of the fracture tip. As a result, there is always a re-

gion near the crack tip, within which the fluid flow is laminar. In

order to capture the transition from laminar to turbulent fluid flow

within the fracture, it is necessary to consider a friction factor that

is able to capture the laminar fluid flow, the fully developed tur-

bulent flow in smooth and rough fractures, and the transitional re-

gion. One such approximation for the friction factor was developed

by Churchill in Churchill (1977) . It was used recently in Dontsov

(2016b ) to analyze the influence of the laminar-to-turbulent tran-

sition of the fluid flow on the tip region of a hydraulic fracture and

to estimate the distance at which the fracture width solution starts

to deviate from the laminar solution due to the effect of turbu-

lence. In addition, a numerical solution that captures the laminar-

to-turbulent transition of a plane strain hydraulic fracture without

leak-off is presented in Zolfaghari et al. (2017a ). Similar to Dontsov

(2016b ), the latter numerical solution also utilizes Churchill’s fric-

tion factor ( Churchill, 1977 ) to capture the laminar-to-turbulent

fluid flow inside the fracture. 

The aim of this paper is two-fold. Firstly, it analyzes the tran-

sition from the laminar to fully turbulent solution for a radial or

axisymmetric hydraulic fracture. Secondly, it employs the Implicit

Level Set Algorithm (ILSA) ( Peirce and Detournay, 2008; Peirce,

2015; Dontsov and Peirce, 2017 ) for a planar hydraulic fracture

to study the effect of turbulent fluid flow on hydraulic fracture

propagation. The ILSA scheme utilizes the approximate solution

for the tip region problem ( Dontsov and Peirce, 2015b ) to ad-

vance the fracture’s moving front, in which case accurate results

can be obtained even on a coarse mesh. Churchill’s friction factor

( Churchill, 1977 ) is used for calculations due to its ability to cap-

ture the laminar, the turbulent, and the transitional regimes of the

fluid flow. Note that the tip solution ( Dontsov and Peirce, 2015b )

that is used in the numerical algorithm assumes laminar flow.

Therefore, the mesh is always kept sufficiently fine that the tip ele-

ment is always within the laminar zone. The paper is organized as

follows. Section 2 presents the governing equations for the prob-

lem. Section 3 analyzes the laminar-to-turbulent transition for the

radial hydraulic fracture geometry. Finally, Section 4 presents the

numerical results obtained using ILSA for a planar hydraulic frac-

ture that propagates in an elastic medium with jumps in the con-

fining stress field and summarizes the influence of turbulence on

the solution. 

2. Mathematical model 

We consider the problem of a planar hydraulic fracture that

propagates in a brittle permeable homogeneous elastic material,

which is subject to a layered compressive stress field. Fig. 1 (a)

shows a schematic of the planar fracture footprint in the ( x, y )

plane, while Fig. 1 (b) shows a schematic of the cross-section of

the fracture along the x axis (( x, z ) plane). The fracturing fluid is

assumed to be Newtonian and the characteristic Reynolds num-

bers associated with the fluid flow are assumed to be sufficiently

large that there is a possibility of having turbulent fluid flow in-

side the fracture. Note that the Reynolds number reduces gradu-

ally as the fracture becomes more narrow near the fracture front,

in which case the flow transitions from (potentially) turbulent near

the wellbore to laminar in the vicinity of the fracture tip, as shown

in Fig. 1 . 
Before proceeding with the governing equations for the prob-

em, it is convenient to introduce the following four scaled mate-

ial parameters that affect the fracture evolution 

′ = 12 μ, E ′ = 

E 

1 − ν2 
, K 

′ = 4 

(
2 

π

)1 / 2 

K IC , C ′ = 2 C L . 

(1)

ere E is the Young’s modulus, ν is the Poisson’s ratio, and μ is the

uid viscosity, while K Ic and C L are the mode I fracture toughness

nd Carter’s leak-off coefficient, respectively. The parameters E ′ , K 

′ ,
nd C ′ are assumed to be constant throughout the medium. 

The elasticity equation that relates the fracture aperture w to

he fluid pressure p along the crack and that ensures the elastic

quilibrium of the material can be condensed into a single hyper-

ingular integral equation ( Crouch and Starfield, 1983; Hills et al.,

996 ) 

p(x, y, t) = σ h (y ) − E ′ 
8 π

∫ 
A (t) 

w (x ′ , y ′ , t)d x ′ d y ′ 

[ ( x ′ − x ) 2 + ( y ′ − y ) 2 ] 
3 / 2 

, (2)

here A (t) denotes area enclosed by the crack front C(t) (see

ig. 1 ) and σ h ( y ) is the prescribed in-situ geological stress field.

or the three layer system considered in this paper σ h ( y ) can be

ritten as 

h (y ) = σ h 
2 + (σ h 

3 −σ h 
2 ) H 

(
y − 1 

2 

H 

)
+ (σ h 

1 −σ h 
2 ) H 

(
−y − 1 

2 

H 

)
, 

here H denotes the Heaviside step function and σ h 
i 

( i = 1 , 2 , 3 )

re the values of the compressive stresses in the three layers, as

hown in Fig. 1 . 

The balance of fluid volume inside the fracture reads 

∂w 

∂t 
+ ∇ · q + 

C ′ √ 

t −t 0 (x, y ) 
= Q 0 δ(x, y ) , (3)

here Q 0 is the injection rate, and the term involving C ′ captures

uid leak-off according to Carter’s model, in which t 0 ( x, y ) signi-

es the time instant at which the fracture front was located at

he point ( x, y ). Note that q = (q x , q y ) and ∇ = (∂ /∂ x, ∂ /∂ y ) are

espectively the flux and the gradient operator that act within the

racture plane. 

To incorporate turbulent fluid flow into a hydraulic fracture

odel, it is necessary to consider the phenomenological Darcy-

eisbach equation, which relates the pressure drop along the flow

o the fluid velocity according to 

∇ p = f D (Re, r) 
ρ

2 

U 

2 

D 

U 

U 

, Re = 

ρUD 

μ
, r = 

ε

D 

, (4)

here ρ is the mass density of the fluid, U is the average fluid

elocity vector and U is its magnitude, D is the hydraulic diam-

ter of the channel, and f D is the dimensionless friction factor.

he latter friction factor depends on the Reynolds number Re and

he relative roughness r , which is related to the absolute sur-

ace roughness ε. Experimentally obtained values of f D are typ-

cally summarized on the so-called Moody chart ( Moody, 1944 ),

hich plots the values for f D ( Re, r ) versus Re for different rough-

esses r . An empirical approximation for f D that is able to capture

oth laminar ( Re � 2300), turbulent ( Re � 40 0 0), and transitional

2300 � Re � 4000) regimes was proposed in Churchill (1977) . The

atter approximation was obtained originally for circular pipes and

djusted in Dontsov (2016b ) for hydraulic fractures. The adjusted

xpression for the friction factor can be written as 

f D = 8 

((
12 

Re 

)12 

+ (A + B ) −1 . 5 
)1 / 12 

, (5)

here the parameters A and B are given by 
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Fig. 1. (a) Schematics of a planar fracture with a footprint A (t) inscribed within the curve C(t) . The point source with intensity Q 0 ( t ) is located at the origin of the ( x, 

y ) coordinate system and the far-field compressive stress varies from one layer to another. Zones of laminar, transitional, and fully turbulent fluid flow inside the fracture 

are shown schematically. (b) The variation of the fracture width along the x direction. Zones of laminar, transitional, and fully turbulent fluid flows inside the fracture are 

schematically shown. (c) Variation of the friction factor versus Reynolds number and relative roughness calculated using (5) . The laminar friction factor is shown by the 

dashed red line and the fully turbulent friction factor, that is calculated using the Colebrook equation ( Colebrook, 1939 ), is shown by the dashed blue lines. ( d ) Variation of 

the viscosity multiplier versus Reynolds number and relative roughness calculated using (7) . (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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 = 

(
2 . 457 f 0 

(
Re, 

ε

D 

))16 

, B = 

(
37530 

Re 

)16 

, 

f 0 (Re, r) = 

∣∣∣log 

((
7 

Re 

)0 . 9 

+0 . 27 r 

)∣∣∣. (6) 

he hydraulic diameter for non-circular pipes is defined as D =
 A/P, where A is the cross-sectional area of the pipe and P is the

erimeter of the pipe. It is equal to D = 2 w for hydraulic fractures

ince the fluid flow in a fracture is locally equivalent to the flow

etween two parallel plates. For the purpose of hydraulic fracture

odeling, it is convenient to factor the “laminar” term in Eq. (5) as

f D = 

96 

Re 
˜ f D , ˜ f D (Re, r) = 

(
1 + ( ̃  A + ̃

 B ) −1 . 5 
)1 / 12 

, (7)

here the new parameters are 

˜ 
 = 

[ 
8 . 511 

Re 1 / 2 
f 0 (Re, r) 

] 16 

, ˜ B = 

(
2566 

Re 

)24 

, Re = 

24 ρUw 

μ′ , 

r = 

ε

2 w 

. (8) 

y substituting (7) into (4) , one finds the expression for the flux in

he form 

 = U w = − w 

3 

μ′ ˜ f D (Re, r) 
∇ p. (9) 

he above expression for the fluid flux resembles the standard re-

ation for laminar flow that is commonly used in hydraulic fractur-

ng simulators, but features an additional multiplier ˜ f D (Re, r) . This

ultiplier has the meaning of an apparent viscosity factor, in the

ense that the pressure drop for the turbulent flow is equivalent

o the pressure drop of a laminar flow with the viscosity multi-

lied by the factor ˜ f D (Re, r) . In addition, the Reynolds number de-

ends on the absolute value of the average velocity U = 

√ 

U 

2 
x + U 

2 
y ,

here U = (U x , U y ) . In this situation, the x and y components of

he flux are coupled. To illustrate the variation of the friction fac-

or f and its apparent viscosity counterpart ˜ f , their dependence
D D 
n the Reynolds number is plotted in Fig. 1 (c and d) for differ-

nt values of relative roughness r . The laminar solution is indi-

ated by the dashed red lines for Re < 2300 and the fully turbu-

ent solution, which is calculated using the Colebrook equation for

e > 40 0 0 ( Colebrook, 1939 ) (the latter is used in the Moody chart),

s shown by the dashed blue lines. Note that the study ( Wang and

ou, 2014 ) provides a recent experimental validation of the Moody

hart. As can be seen from the comparison on the Fig. 1 (c and

), Churchill’s equation is able to accurately capture the laminar

nd fully turbulent flows and smoothly connects the data in the

ransitional zone. Regarding the magnitude of fracture roughness,

t depends on the rock type. To provide a realistic estimate, one

an utilize results of the study ( Wu and Sharma, 2017 ), in which

 fracture surface profile was measured by an optical profiler. The

mplitude of the roughness is shown to be on the order of tens

f micrometers. Given that the hydraulic fracture width is typi-

ally equal to a few millimeters, the relative roughness becomes

 (10 −2 ) , which indicates that if the turbulent flow develops in

ydraulic fractures, it will likely correspond to the flow in rough

hannels, see Fig. 1 (c). 

To describe the fracture front evolution, the classical LEFM so-

ution for the mode I crack tip ( Rice, 1968 ) is employed, so that

im 

s → 0 

w 

s 1 / 2 
= 

K 

′ 
E ′ , if V > 0 , lim 

s → 0 

w 

s 1 / 2 
= 

K 

′ 
I 

E ′ , if V = 0 , (10)

here s is the distance from a point inside the fracture to the frac-

ure front, V is the velocity of the fracture front, and K 

′ 
I is the

tress intensity factor for a non-propagating fracture. However, it

as shown that the validity region of the square root width so-

ution (10) is often very small for fluid-filled cracks ( Desroches

t al., 1994; Lenoach, 1995; Detournay and Garagash, 2003; Gara-

ash et al., 2011; Dontsov and Peirce, 2015b ). Therefore, it is nec-

ssary to use a different solution to accurately capture the propa-

ation of a hydraulic fracture. As a result, the fracture propagation

n the numerical algorithm is prescribed through the relation 

 (s ) = w a (s ) , (11)
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where w a ( s ) is the so-called tip asymptotic solution and s is the

distance from a point inside the fracture to the fracture front.

This solution is obtained by analyzing the problem of a semi-

infinite hydraulic fracture, and was first obtained numerically in

Garagash et al. (2011) for the case of a brittle fracture driven by

a Newtonian fluid in a permeable formation (as considered in this

study). Later, a closed form approximation for this problem (i.e. for

w a ) was obtained in Dontsov and Peirce (2015b ) and this approx-

imate solution is used in this study due to its ability to provide

rapid results. Note that the solution (11) is valid further away from

the fracture tip than the LEFM solution (10) and automatically re-

duces to it for smaller distances to the fracture front. In addition

to the propagation condition (11) , one should also prescribe a zero

flux condition ( Detournay and Peirce, 2014 ) at the fracture front as

lim 

s → 0 
w 

3 ∂ p 

∂s 
= 0 , (12)

which ensures that the crack and fluid fronts coincide since the

model does not account for the effect of fluid lag ( Garagash and

Detournay, 20 0 0 ). Note here that the fluid lag decreases signifi-

cantly in size for large in situ stress and can be estimated to be on

the order of millimeters for deep unconventional reservoirs. Since

the typical element size is measured in meters, the effect of the

fluid lag can be ignored in the computations. 

An Implicit Level Set Algorithm (ILSA) ( Peirce and Detournay,

2008; Peirce, 2015; Dontsov and Peirce, 2017 ) is used to ob-

tain the numerical solution for the problem (2), (3), (7) –(9), (11) ,

and (12) . A similar problem for the case of laminar fluid flow was

solved numerically recently using the ILSA scheme in Dontsov and

Peirce (2017) . Since the primary difference in the numerical algo-

rithm used for the current problem is the presence of the viscosity

multiplier ˜ f D in (9) , which does not require noticeable changes to

the algorithm, readers are referred to Dontsov and Peirce (2017) for

details of the numerical implementation of the ILSA scheme. A dif-

ferent numerical algorithm is used for the case of an axisymmet-

ric hydraulic fracture. It utilizes the radial symmetry and a mov-

ing mesh to provide a computationally efficient numerical solution.

Such an algorithm for a radial hydraulic fracture driven by laminar

fluid flow can be found in Dontsov (2016a ) and is therefore is not

included into this paper. The ILSA scheme yields similar results for

the axisymmetric problem, which are not presented here. 

3. Laminar-to-turbulent transition for an axisymmetric 

hydraulic fracture 

Firstly, we consider the case of an axisymmetric hydraulic frac-

ture. This situation occurs when the fracture diameter is less than

the height of the primary layer, H , see Fig. 1 (a), or when σ h 
1 

= σ h 
2 

=
σ h 

3 
. To cater for slick water hydraulic fracture treatments, the fol-

lowing material parameters are chosen for the calculations 

E ′ = 9 . 9 × 10 

9 Pa , μ′ = 1 . 2 × 10 

−2 Pa ·s , 
K 

′ = 1 . 6 × 10 

6 MPa ·m 

1 / 2 , C ′ = 0 m / s 1 / 2 , 

Q 0 = 0 . 2 m 

3 / s , ε = { 10 

−4 , 10 

−5 , 10 

−6 } m , 

ρ = 10 0 0 kg / m 

3 
. (13)

The time interval for calculations is selected as 0.1 < t < 10 3 s.

For the case of no turbulence and no leak-off, the fracture can

propagate in the viscosity dominated, in the toughness dominated

regime, or be in the transitional region between the two ( Dontsov,

2016a; Madyarova, 2003 ). The time scale that characterizes this

transition is 

 mk = 

(μ′ 5 E ′ 13 Q 

3 
0 

K 

′ 18 

)1 / 2 

, 

which for the parameters (13) , is equal to t mk ≈ 2 × 10 3 s.

The corresponding dimensionless time τ = t/t is in the
mk 
ange of 5 × 10 −5 < τ < 0 . 5 . The transition between the viscos-

ty dominated and the toughness dominated regimes occurs for

.045 � τ � 2.6 × 10 6 ( Dontsov, 2016a ), while the fracture propa-

ates in the viscosity regime for smaller times and in the tough-

ess regime for larger times. The range of the dimensionless time

or the considered problem parameters indicates that the hydraulic

racture propagates almost entirely within the viscosity dominated

or M ) regime. At larger times, it starts to transition towards the

oughness dominated solution. Note that the above propagation

egimes ignore the effects of turbulence. However, since the tur-

ulence effectively increases the viscosity, it is expected that the

verall dominance of the viscosity over toughness can only in-

rease. Also, this analysis demonstrates that once the turbulent ef-

ects diminish, the solution should correspond to the laminar vis-

osity dominated solution. 

Results of the numerical calculations for the axisymmetric hy-

raulic fracture for the parameters (13) are shown in Fig. 2 . Note

hat three different values of surface roughness are considered.

he solid black lines indicate the numerical solution for the case

hen the turbulent fluid flow is considered (i.e. the flow can be

ither turbulent, laminar, or to be in transition). The dashed blue

ines correspond to the numerical solution that assumes laminar

uid flow throughout the fracture. Note that the numeral solu-

ion is used for the laminar case since the laminar solution is

t the onset of the transition from the viscosity dominated to

he toughness dominated regime of propagation and the use of

he limiting viscosity-dominated M solution may cause some dis-

repancies. The approximate solution for the radial hydraulic frac-

ure ( Dontsov, 2016a ) could have been used as well. Also note

hat the same discretization is used for the laminar and tur-

ulent numerical solutions. Fig. 2 (a) shows the variation of the

racture radius that is normalized by the laminar solution ver-

us time, Fig. 2 (b) shows the variation of the fracture width at

he wellbore (also normalized by the laminar solution) versus

ime, Fig. 2 (c) shows the spatial variation of the fracture aper-

ure for t = { 1 , 10 , 100 } s, and Fig. 2 (d) shows the spatial vari-

tion of the fluid pressure at t = 100 s. Only one time instant

or the pressure plot is selected since the addition of other pres-

ure solutions leads to multiple overlapping, which reduces leg-

bility of the figure. As can be seen from Fig. 2 (a and b), there

s a transition with time from the turbulence dominated solution

o the laminar viscosity dominated solution. In addition, the tran-

ition region increases for smaller values of roughness. It should

e noted here that the turbulence dominated solution is actually

 viscosity-turbulent solution, which is different from the leak-

ff-turbulent solution that occurs for large values of leak-off, as

hown in Dontsov (2016b ) for the case of a semi-infinite hydraulic

racture. 

One peculiar feature of the solution is that the fracture width at

he wellbore does not change with time for the turbulent regime,

ven though the fracture grows in the radial direction, as can be

een from Fig. 2 (c). The near wellbore behavior is dominated by

urbulence due to the large fluid velocities near the concentrated

ource. In particular, the fracture becomes locally wider and there

s a much more significant pressure drop near the wellbore, see

ig. 2 (d). For the point source, as considered in this study, the fluid

ressure has a singularity at the origin. The fluid flux is q ∝ 1/ r near

he origin, the pressure gradient for the laminar case is ∂ p / ∂ r ∝ q ,

hile for the turbulent case it can be shown that ∂ p / ∂ r ∝ q 2 . So

hat the pressure has a logarithmic singularity p ∝ log r for the lam-

nar case and a much stronger singularity p ∝ 1/ r for the turbulent

ase. Note that the strong pressure drop near the wellbore occurs

ven when the fracture radius is nearly equal to the corresponding

adius for the laminar solution (see the t = 100 s case). This in-

icates that the turbulent fluid flow may affect the near wellbore
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Fig. 2. The solid black lines indicate the numerical solution for the case when turbulent flow within the axisymmetric hydraulic fracture is possible. The dashed blue lies 

indicate the numerical solution for the case when solely laminar fluid flow is considered. The dashed magenta lines indicate the turbulence dominated solution that is 

obtained using scaling considerations, see (15) . (a) Hydraulic fracture radius (normalized by the laminar solution) versus time. (b) Hydraulic fracture aperture at the source 

(normalized by the laminar solution) versus time. (c) Spatial variation of the fracture width at different time instants t = { 1 , 10 , 100 } s for ε = 10 −4 m. ( d ) Spatial variation 

of the fluid pressure at t = 100 s for ε = 10 −4 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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eatures even in situations when the fracture’s global behavior fol-

ows the laminar solution. 

To better understand the behavior of a radial hydraulic fracture

riven by turbulent fluid flow, and, in particular, to quantify why

he fracture width does not change with time (see Fig. 2 (c)), it is

ecessary to consider the fracture behavior in the limit when the

ully developed turbulent flow occurs within the most of the frac-

ure. Rigorous analysis of the multiscale hydraulic fracture behavior

as was done in Dontsov, 2016a; Madyarova, 2003 for laminar flow)

or the case of the turbulent flow is beyond the scope of this study.

nstead, a qualitative explanation based on scaling will be given

nd only the transition from the turbulence dominated to the vis-

osity dominated regime will be considered. Firstly, the toughness

an be neglected since the viscosity dominates for the laminar case

nd turbulence can only increase the apparent viscosity. In the ab-

ence of leak-off and toughness, the elasticity Eq. (2) , the continu-

ty Eq. (3) , the flux Eq. (9) , and the friction factor relation (7) (sim-

lified for large Reynolds numbers, see Dontsov (2016b )) can be

ritten as 

p ∼ E ′ w 

R 

, 
w 

t 
∼ q 

R 

∼ Q 0 

R 

2 
, q ∼ w 

3 

μ′ ˜ f D 

p 

R 

, ˜ f D ∼ ρq 

μ′ f 2 
0 

, 

(14) 

here the “ ∼ ” symbol indicates the equivalence of scales. The

 0 , defined in (6) , varies slowly with the parameters, in which

ase it is treated as a time-independent constant. The scaling rela-

ions in (14) allow us to obtain temporal variations for the fracture

idth, radius, and pressure as 

 t = C w 

(
Q 0 

f 0 

)1 / 2 ( ρ

E ′ 
)1 / 4 

, R t = C R 
(

f 0 Q 0 

)1 / 4 
(

E ′ 
ρ

)1 / 8 

t 1 / 2 , 
p t = C p E 
′ 
(

Q 0 

f 3 
0 

)1 / 4 ( ρ

E ′ 
)3 / 8 

t −1 / 2 , (15) 

here the subscript “t ” is added to indicate that the scaling is valid

or the situation when turbulent flow dominates the response, and

 w 

, C R , C p are time independent constants. The above equation in-

icates that the fracture width magnitude does not change with

ime, which is consistent with the results shown in Fig. 2 (c). To

urther illustrate the validity of (15) , the dashed magenta lines in

ig. 2 show the temporal variations of the fracture width and ra-

ius calculated using (15) . Note that the proportionality constants

re C w 

= 0 . 94 for the fracture width and C R = 0 . 98 for the frac-

ure radius in (15) . Here the value of f 0 is calculated assuming that

he Reynolds number is equal to infinity. It can be easily shown

hat the roughness primarily determines the value of f 0 for large

eynolds numbers. Since the fracture width is found to be inde-

endent of time for the turbulence dominated regime, there is no

ariation of the relative roughness and hence the function f 0 can

ndeed be treated as a time-independent constant. Note that the

alue of C p depends on the spatial location inside the fracture at

hich the pressure is evaluated. Since the latter is singular at the

ellbore, this location cannot be taken at the origin. 

To estimate the transition time from the turbulence dominated

o the viscosity dominated (laminar) solution, we need to consider

olution for the radial hydraulic fracture solution propagating in

he viscosity dominated regime, which can be summarized as fol-

ows ( Dontsov, 2016a; Madyarova, 2003 ) 

 m 

= 1 . 19 

(μ′ 2 Q 

3 
0 t 

E ′ 2 
)1 / 9 

, R m 

= 0 . 69 

(
Q 

3 
0 E 

′ t 4 
μ′ 

)1 / 9 

. (16)
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Fig. 3. Fracture footprints for the PKN fracture geometry for different values of surface roughness: (a) ε = 10 −4 m, (b) ε = 10 −5 m, (c) ε = 10 −6 m. The black solid lines 

indicate the numerical ILSA solution that accounts for the laminar-to-turbulent fluid flow. The dashed blue lines indicate the ILSA solution, in which the fluid flow is forced 

to be laminar. The dashed magenta lines show the predictions of the analytical solution for a completely turbulent PKN fracture (20) . The grey contour lines inside the 

fractures indicate constant values of the viscosity multiplier ˜ f D (7) . The parametric triangles indicate the tip asymptotic solutions that are used to advance the fracture front. 

The black circular markers inside the triangles correspond to the turbulent ILSA solution and the white crosses represent the laminar ILSA solution. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
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By considering either w m 

= w t or R m 

= R t the characteristic time

scale for the transition can be obtained using (15) and (16) as 

 tm 

= C tm 

ρ9 / 4 Q 

3 / 2 
0 

f 9 / 2 
0 

μ′ 2 E ′ 1 / 4 
. (17)

The proportionality constant C tm 

in the above expression depends

on whether w m 

= w t or R m 

= R t is used. For the w m 

= w t case

 tm 

= 0 . 12 . On the other hand, for the R m 

= R t case C tm 

= 1 . 8 ×
10 −3 . As a result, the transition time for the fracture width case

(in which it is assumed that ε = 10 −4 m) is 630 s and for the frac-

ture radius case is 9.5 s, which is consistent with the results shown

in Fig. 2 (a) and (b). 
Fig. 4. Time histories of the fracture half-length ( a ) and wellbore width ( b ) for PKN fractu

the numerical ILSA solution that accounts for the laminar-to-turbulent fluid flow. The da

laminar. The dashed magenta lines show the predictions of the analytical solution for a co

in this figure legend, the reader is referred to the web version of this article.) 
The transition time in (17) with the proportionality constant

 tm 

= 1 . 8 × 10 −3 can be used to estimate whether the laminar or

urbulent solution should be used to estimate the hydraulic frac-

ure radius. In particular, if the treatment time t is such that

 � t tm 

, then the turbulent solution applies, however, if t 	 t tm 

then

he laminar solution should be used. Note that the above conclu-

ion applies only for the fracture radius estimation and for the

ransition from the turbulence dominated to the viscosity dom-

nated regime, i.e. assuming no leak-off and negligible fracture

oughness. Similar analyses can be performed for the other cases to

uantify the effect of toughness, leak-off, and the associated tran-

itions. 
re geometry for different values of surface roughness. The black solid lines indicate 

shed blue lines indicate the ILSA solution, in which the fluid flow is forced to be 

mpletely turbulent PKN fracture (20) . (For interpretation of the references to color 
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Fig. 5. Variation of the fracture width along the x axis ( a ) and the y axis ( b ) and variation of the fluid pressure along the x axis ( c ) and the y axis ( d ) for PKN fracture 

geometry for ε = 10 −4 m. The black solid lines indicate the numerical ILSA solution that accounts for the laminar-to-turbulent fluid flow. The dashed blue lines indicate 

the ILSA solution, in which the fluid flow is forced to be laminar. The dashed magenta lines show the predictions of the analytical solution for a completely turbulent PKN 

fracture (20) . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Fracture footprints for the fracture geometry with symmetric stress barriers. The black solid lines indicate the numerical ILSA solution that accounts for the laminar- 

to-turbulent fluid flow. The dashed blue lines indicate the ILSA solution, in which the fluid flow is forced to be laminar. The grey contour lines inside the fractures indicate 

the constant values of the viscosity multiplier ˜ f D (7) . The parametric triangle indicates the tip asymptotic solutions that are used to advance the fracture front. The black 

circular markers correspond to the turbulent ILSA solution and the white crosses represent the laminar ILSA solution. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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. Numerical solution for the three stress layers geometry 

sing an Implicit Level Set Algorithm (ILSA) 

This section presents the numerical results obtained using the

ydraulic fracturing simulator ILSA for the planar fracture propa-

ating in the three stress layer system shown in Fig. 1 (a). The de-

ault parameters that are used in all simulations are 

E ′ = 9 . 9 × 10 

9 Pa , μ′ = 1 . 2 × 10 

−2 Pa · s , 

K 

′ = 1 . 6 × 10 

6 MPa · m 

1 / 2 , C ′ = 0 m/s 
1 / 2 

, 

 0 = 0 . 2 m 

3 / s , ε = 10 

−4 m , ρ = 10 0 0 kg / m 

3 
, 
H = 20 m , (18) 

nless otherwise stated. 

Figs. 3–5 present the results for the PKN fracture geometry, for

hich 

h 
2 = 7 MPa , (19) 

nd the fracture propagation is restricted to the central layer,

hich is equivalent to having very large values for σ h 
1 

and σ h 
3 

.

ig. 3 plots the fracture footprints at t = 25 s for different values

f surface roughness. The numerical ILSA solution is compared to
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Fig. 7. Time histories of the fracture half-length and half-height ( a ) and wellbore width ( b ) for the fracture geometry with symmetric stress barriers. The black solid lines 

indicate the numerical ILSA solution that accounts for the laminar-to-turbulent fluid flow. The dashed blue lines indicate the ILSA solution, in which the fluid flow is forced 

to be laminar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Variation of the fracture width along the x axis ( a ) and the y axis ( b ) and variation of the fluid pressure along the x axis ( c ) and the y axis ( d ) for the fracture 

geometry with symmetric stress barriers. The black solid lines indicate the numerical ILSA solution that accounts for the laminar-to-turbulent fluid flow. The dashed blue 

lines indicate the ILSA solution, in which the fluid flow is forced to be laminar. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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its analog that is forced to have laminar fluid flow and to the ana-

lytical solution developed in Zolfaghari et al. (2017b ) that assumes

a fully turbulent flow in a rough channel. The latter can be sum-

marized as 

l(t) = 2 . 1619 

Q 0 

H 

(
H 

2 E ′ 

2 ε1 / 3 Q 

3 
0 
ρ

)3 / 16 

t 13 / 16 , 

w (x, t) = 0 . 8122 

(
2 ε1 / 3 Q 

3 
0 ρ

H 

2 E ′ 
)3 / 16 

t 3 / 16 (1 − ξ ) 3 / 7 (1 + 0 . 05497 ξ ) , 

ξ = 

x 

l(t) 
, 
p(x, t) = 0 . 8122 

(εQ 

9 
0 ρ

3 E ′ 13 

2 

13 H 

22 

)1 / 16 

t 3 / 16 (1 − ξ ) 3 / 7 (1 + 0 . 05497 ξ ) . 

(20)

he parametric triangle indicates the asymptotic solutions that

re used to advance the fracture front in the ILSA scheme, see

ontsov and Peirce (2017) for details. The black circular markers

nside the triangle correspond to the turbulent ILSA solution and

he white crosses are related to the laminar ILSA solution. The re-

ults indicate that the viscosity-dominated tip asymptote (the m

ertex) is used in all calculations. The grey contour lines inside

he fracture footprint indicate constant values of ˜ f D (7) , which is

 parameter that reflects the apparent fluid viscosity multiplier.
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Fig. 9. Fracture footprints for the fracture geometry with asymmetric stress barriers. The black solid lines indicate the numerical ILSA solution that accounts for the laminar- 

to-turbulent fluid flow. The dashed blue lines indicate the ILSA solution, in which the fluid flow is forced to be laminar. The grey contour lines inside the fractures indicate 

the constant values of the viscosity multiplier ˜ f D (7) . The parametric triangle indicates the tip asymptotic solutions that are used to advance the fracture front. The black 

circular markers correspond to the turbulent ILSA solution and the white crosses represent the laminar ILSA solution. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Fracture footprints for the fracture geometry with stress drop configuration. The black solid lines indicate the numerical ILSA solution that accounts for the laminar- 

to-turbulent fluid flow. The dashed blue lines indicate the ILSA solution, in which the fluid flow is forced to be laminar. The grey contour lines inside the fractures indicate 

the constant values of the viscosity multiplier ˜ f D (7) . The parametric triangle indicates the tip asymptotic solutions that are used to advance the fracture front. The black 

circular markers correspond to the turbulent ILSA solution and the white crosses represent the laminar ILSA solution. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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he results in Fig. 3 indicate that the turbulence makes the frac-

ure shorter and that the approximate PKN solution (20) is able

o accurately estimate the fracture length only for the largest con-

idered value of surface roughness ε = 10 −4 m. Smaller values of

he surface roughness lead to inaccurate estimates of the fracture

ength. The analytical solution predicts a fracture that is longer

han the laminar solution for ε = 10 −6 m case, which is not consis-

ent since the turbulence should always make the fracture shorter.

ig. 4 plots the time histories of the fracture length and wellbore

idth for the ILSA numerical solution (solid black lines), laminar

LSA solution (dashed blue lines), and the approximate turbulent

KN solution (dashed magenta lines). The results agree with the

revious observation that the turbulence introduces additional vis-
ous resistance, which makes the fracture shorter as compared to

he laminar solution, and that the approximate PKN solution is

ble to capture the turbulent behavior only for the large rough-

ess case. The discrepancy between the numerical ILSA solution

nd the analytical solution (20) comes from the fact that the lat-

er utilizes the Gauckler-Manning-Strickler ( Manning, 1891; Strick-

er, 1981 ) friction factor that applies for a fully turbulent fluid flow

n a rough channel. In particular, this model assumes a constant

riction factor, which applies for large Reynolds numbers and rel-

tively large values of roughness as shown by the flat horizontal

urves in Fig. 1 (c) (for 0.01 � r � 0.05). Consequently, it does not

rovide a good estimate for the cases with smaller roughness that

re closer to the smooth channel case. In addition, the values of
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Fig. 11. Time histories of the fracture half-length and half-height (a) and wellbore width (b) for the fracture geometry with stress drop configuration. The black solid lines 

indicate the numerical ILSA solution that accounts for the laminar-to-turbulent fluid flow. The dashed blue lines indicate the ILSA solution, in which the fluid flow is forced 

to be laminar. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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the effective viscosity multiplier (shown by the grey solid lines)

are smaller for the ε = 10 −5 m and ε = 10 −6 m cases. This shows

that the effect of turbulent flow is less pronounced for these values

of roughness, which may also be the reason for the disagreement

between the numerical and the analytical solutions. Fig. 5 plots

the fracture width and pressure along the x and y axes at t = 25 s

for ε = 10 −4 m. Comparison between the numerical ILSA solution

and the laminar solution indicates that the fracture is shorter and

wider if turbulence is considered. In addition, there is a strong

pressure spike and a less pronounced width spike in the vicinity of

the wellbore, which is caused by the turbulent flow. This behavior

is similar to that for a radial fracture, see Fig. 2 . The analytical solu-

tion (20) is able to accurately estimate the fracture width and pres-

sure variations, but does not account for the pressure spike near

the wellbore. Note that the characteristic fracture width is equal

to a few millimeters, in which case the normalized roughness

ε/ (2 w ) = O (10 −2 ) for ε = 10 −4 m. This value of the normalized

roughness corresponds to the “flat” behavior of the friction fac-

tor for large Reynolds numbers (see Fig. 1 (c)), so that the analytic

model (20) gives good results in this case. However, if the rough-

ness is reduced to ε = 10 −5 m or less, then ε/ (2 w ) = O (10 −3 ) or

less and the constant Gauckler-Manning-Strickler friction factor no

longer applies, in which case (20) underestimates the effective vis-

cosity. 

To investigate the effect of turbulent fluid flow on the hydraulic

fracture geometry for more complex cases, Figs. 6–13 present the

results for various layered stress configurations. There are three

main cases: symmetric stress barrier, asymmetric stress barrier,

and stress drop. They represent typical situations, in which there

are only three layers present in the formation. In addition, to study

the effect of fluid leak-off, an additional stress drop case is consid-

ered. These solutions provide useful physical insights of the effect

of turbulent flow for various cases and can also be used as refer-

ence solutions to evaluate accuracy of the reduced models, such as

pseudo-3D models, see e.g. Dontsov and Peirce (2015a) for the case

of the laminar fluid flow. 

Figs. 6–8 present the results for the symmetric stress barrier

case, for which the compressive stresses are prescribed as 

σ h 
1 = σ h 

3 = 7 . 5 MPa , σ h 
2 = 7 MPa . (21)

Fig. 6 plots the fracture footprints at t = 25 s. The numerical ILSA

solution is compared to the numerical ILSA solution that is forced

to have laminar fluid flow. Fig. 7 presents the results for the frac-

ture half-length, the half-height, and the wellbore width versus

time. Fig. 8 shows the fracture width and pressure along the x and
 axes at t = 25 s. These results demonstrate that the additional

esistance that is associated with the turbulent flow tends to pro-

uce a fracture with a more circular shape, which is not surprising

ince the turbulence effectively increases the fluid viscosity, which

n turn causes a more circular fracture shape. By “more circular”

e mean that the fracture length is smaller than that for the lami-

ar solution and the fracture height is larger. In addition, the frac-

ure is noticeably wider at the wellbore, as is clearly indicated in

ig. 7 (b). The pressure and width peaks near the wellbore, which

re associated with turbulent flow, are also present. 

Fig. 9 shows the fracture footprint results for the asymmetric

tress barrier fracture geometry, for which the compressive stresses

re taken as 

h 
1 = 7 . 25 MPa , σ h 

2 = 7 MPa , σ h 
3 = 7 . 5 MPa . (22)

he results also indicate that the fracture tends to be more circular

ue to the turbulent flow. One interesting observation is that the

racture height growth through the higher stress barrier is more

ubstantial in the laminar-to-turbulent ILSA solution compared to

he laminar solution. Therefore, turbulent flow may facilitate cross-

ng a high stress layer. 

Figs. 10–12 present the results for the stress drop case, for

hich the compressive stresses are taken as 

h 
1 = 6 . 5 MPa , σ h 

2 = 7 MPa , σ h 
3 = 7 . 25 MPa . (23)

igs. 10–12 plot similar quantities as Figs. 6–8 . As for the asym-

etric stress barrier case, the turbulent fluid flow promotes the

racture growth through the larger stress zone and reduces growth

hrough the lower stress zone. In this case, the fracture footprint is

ffectively shifted upwards due to the turbulent flow. Fig. 11 plots

ime histories of the fracture dimensions as well as the wellbore

idth. As can be seen from the figure, the fracture dimensions

ppear to be closer to each other if the turbulence is considered,

hich also indicates that the fracture tends to be more circular in

hich case all the dimensions coincide. In addition, the fracture is

early twice as wide at the wellbore compared to the predictions

f the laminar solution. Fig. 12 provides a more detailed explana-

ion by showing the fracture width and pressure profiles. In par-

icular, it clearly demonstrates that the fracture width centroid is

hifted upwards, which causes a substantial increase in the well-

ore width. 

Since the stress drop case demonstrated the strongest influence

f the turbulent flow, Fig. 13 shows the additional effect of fluid

eak-off on the solution for the same stress drop geometry. In par-
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Fig. 12. Variation of the fracture width along the x axis ( a ) and the y axis ( b ) and variation of the fluid pressure along the x axis ( c ) and the y axis ( d ) for the fracture 

geometry with stress drop configuration. The black solid lines indicate the numerical ILSA solution that accounts for the laminar-to-turbulent fluid flow. The dashed blue 

lines indicate the ILSA solution, in which the fluid flow is forced to be laminar. (For interpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Fig. 13. Fracture footprints for the fracture geometry with stress drop configuration with leak-off. The black solid lines indicate the numerical ILSA solution that accounts 

for the laminar-to-turbulent fluid flow. The dashed blue lines indicate the ILSA solution, in which the fluid flow is forced to be laminar. The grey contour lines inside the 

fractures indicate the constant values of the viscosity multiplier ˜ f D (7) . The parametric triangle indicates the tip asymptotic solutions that are used to advance the fracture 

front. The black circular markers correspond to the turbulent ILSA solution and the white crosses represent the laminar ILSA solution. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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ticular, the value of the leak-off coefficient is taken as 

 

′ = 6 . 9 × 10 

−5 m/s 1 / 2 , 

which makes the fracture efficiency (ratio between the fracture

volume and the total injected volume) approximately 70% at t =
25 s. Apart from having an overall smaller fracture and using dif-

ferent tip asymptotic solutions, the results appear to be similar to

those shown in Fig. 10 for the no leak-off case. 

To summarize, the results presented for the three stress layers

geometry demonstrate that hydraulic fractures driven by turbulent

fluid flow tend to be more circular and wider. In addition, the tur-

bulent fluid flow promotes fracture growth into higher stress lay-

ers, which for the stress drop case shifts the whole fracture foot-

print significantly. Finally, fluid leak-off did not provide an addi-

tional substantial influence on the hydraulic fracture, apart from

making the whole fracture smaller. 

5. Summary 

This study investigates the effect of turbulent fluid flow on pla-

nar hydraulic fractures. A friction factor that is able to capture the

laminar, the turbulent, and the transitional fluid flow within the

fracture is incorporated since the flow is always laminar in the

vicinity of the fracture tip and can become turbulent further away

from the tip. It is shown that from the hydraulic fracturing point

of view, the turbulent flow effectively increases the fluid viscosity.

The level of increase depends on the local Reynolds number and

the relative surface roughness, which in turn depend on the lo-

cal fluid velocity and the fracture width. As a result, the effective

fluid viscosity variation is not uniform within the fracture. The ef-

fect is the most pronounced near the injection point and causes a

strong pressure drop near the wellbore and a local fracture width

increase. 

Results are presented for different fracture geometries. Firstly,

an axisymmetric or radial fracture is considered. It is shown that

the solution can transition from the turbulence dominated solu-

tion to the viscosity dominated solution with time and the char-

acteristic time scale for this transition is obtained. Time depen-

dence of the fracture radius, width, and pressure for the turbu-

lence dominated regime are obtained based on scaling consider-

ations. An Implicit Level Set Algorithm (ILSA) is used to construct

the solution for a three stress layer geometry. For the simplest PKN

case, in which the fracture is contained within a single layer, the

results are compared to the laminar solution and to the analyti-

cal solution that assumes turbulent fluid flow throughout the frac-

ture. It is shown that the turbulence leads to a shorter fracture,

which is consistent with the fact that the turbulence effectively

increases the fluid viscosity. Also, the analytical solution is able to

accurately estimate the fracture length when the fluid flow is fully

turbulent and the fracture surface is rough. Results for the three

stress layer cases indicate that the turbulent flow tends to produce

a fracture that is more circular and to enhance the fracture growth

through high stress zones. In addition, for the stress drop case, the

whole fracture is effectively shifted by the turbulence towards the

higher stress region. Finally, the addition of fluid leak-off did not

add qualitatively new effects associated with turbulence. 
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