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Abstract This study introduces a continuum approach to

model proppant transport in hydraulic fractures in a

Lagrangian frame of reference. The model for the proppant

transport is based on the recently obtained slurry flow

solution inside a channel, where the latter utilizes a phe-

nomenological constitutive relationship for a slurry. This

approach allows us to describe the transition from Poi-

seuille flow with an effective viscosity to Darcy flow as the

particle concentration increases towards the maximum

value. The algorithm is presented for the one-dimensional

case, for which propagation of a symmetric Kristinovich–

Zheltov–Geertsma–De Klerk fracture is considered. To

examine the effectiveness of the Lagrangian approach for

proppant transport modelling, a set of parameters, for

which proppant particles reach the fracture tip and cause

the development of a proppant plug is selected. In this

situation, the coupling between the hydraulic fracture

propagation and proppant transport is the most significant.

To estimate the accuracy of the Lagrangian proppant

transport model, the results are compared to the predictions

of an Eulerian proppant transport model, which utilizes the

same algorithm for hydraulic fracture propagation. It is

shown that, although both approaches have the same con-

vergence rate, the error of the Lagrangian approach is three

to five times smaller, which depends on the number of

proppant elements used in the Lagrangian approach. This

permits us to use a coarser mesh for hydraulic fracture

propagation, and to obtain results with similar accuracy up

to a hundred times faster.

Keywords Hydraulic fracturing � Proppant transport �
KGD fractures

List of Symbols

t Time

z Spatial coordinate

w Fracture width

l Fracture half-length

Q0 Inlet flux
�/0

Inlet normalized proppant concentration

qsz Slurry flux in the z direction

qpz Proppant flux in the z direction
�/ Normalized proppant concentration

C0 Scaled leak-off coefficient

t0ðzÞ Time at which a fracture front is located at point z

l0 Scaled fluid viscosity

p Fluid pressure

a Proppant radius

E0 Plane strain Young’s modulus

K 0 Scaled fracture toughness

V Fracture velocity of propagation

f Scaled spatial coordinate

Vk Volume of the proppant element

1 Introduction

Hydraulic fracturing is a commonly used technique to

stimulate oil and gas wells Economides and Nolte (2000).

To prevent a fracture from closing after treatment, prop-

ping agents, such as sand or ceramic proppants are pumped
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along with the fracturing fluid at some stage. To design a

fracturing treatment, it is important to know when the

proppant should be added, where the proppant goes, and

how the proppant affects the fracture propagation. The first

issue is related to proppant scheduling, which is analyzed

in Nolte (1986), Gu and Desroches (2003) and Dontsov

and Peirce (2014b). While the second and the third prob-

lems address the proppant transport phenomenon, which is

discussed below.

The phenomenon of proppant transport has been studied

from both modelling and experimental points of view -

Daneshy (1978), Mobbs and Hammond (2001) and Shokir

and Al-Quraishi (2007). Often, the problem of proppant

transport is not coupled to the hydraulic fracture propaga-

tion and mainly gravitational settling is analyzed. In other

words, proppant transport and settling in a pre-existing

fracture cavity is considered, see e.g. Mobbs and Ham-

mond (2001). Many studies address the problem of flow of

a viscous fluid mixed with spherical particles in a chan-

nel Eskin and Miller (2008) and Lecampion and Garagash

(2014), but do not also consider the coupled problem. One

possible technique for coupling hydraulic fracture propa-

gation and proppant transport is described in Adachi et al.

(2007). In that approach it is assumed that the proppant

concentration changes the fluid viscosity according to a

given law, while the proppant transport is described using a

convection equation. A more sophisticated model for a

one-dimensional problem is proposed in Chekhonin and

Levonyan (2012), where the effect of tip screen-out is

considered. In Chekhonin and Levonyan (2012), the frac-

ture is divided into two zones: (1) the convection zone, in

which the slurry flow behaves according to Poiseuille’s law

with an effective viscosity, and (2) the plug zone (i.e.

packed proppant), where the fluid permeates through the

plug according to Darcy’s law. One of the biggest draw-

backs of this model, however, is its inapplicability to planar

fractures.

The proppant transport model that is used for this study,

is developed in Dontsov and Peirce (2014c). The model is

based on a steady solution for slurry flow in a channel,

which is obtained using the phenomenological constitutive

relation proposed in Boyer et al. (2011). The constitutive

model assumes that the slurry consists of a viscous fluid

mixed with spherical particles, while the maximum prop-

pant concentration is determined as /m ¼ 0:585. Since a

continuum description is used, it is also assumed that the

particle size is significantly smaller than the fracture width.

Finally, since a steady solution is used to formulate the

proppant transport problem, the behaviour in the regions

where transient effects are substantial, such as near the

clear fluid pad/slurry interface, is not captured accurately.

One of the biggest advantages of the considered proppant

transport model lies in the fact that it captures the transition

from Poiseuille’s law with an effective viscosity to Darcy’s

filtration law automatically without considering two dif-

ferent zones explicitly, where the values of the effective

viscosity and permeability appear naturally from the

adopted phenomenological constitutive law. The afore-

mentioned proppant transport model is implemented

in Dontsov and Peirce (2015) for Kristinovich–Zheltov–

Geertsma–De Klerk (KGD) and pseudo-3D fractures,

where the governing equations for both hydraulic fracture

propagation and proppant transport are solved in an Eule-

rian frame of reference. Unfortunately, in situations when

the proppant has reached the fracture tip and has developed

a plug, the predictions for the fracture length and borehole

pressure, calculated using the Eulerian scheme, featured

visible oscillations even for a relatively fine mesh. This is

better illustrated in Dontsov and Peirce (2014a), where the

effect of proppant size on the hydraulic fracture propaga-

tion is studied. It should be noted, that these oscillations are

caused by the numerical scheme, and to suppress them, a

very fine mesh should be used. The use of a very fine mesh,

however, leads to unnecessary computational costs asso-

ciated with the propagation of a hydraulic fracture, which

reduces the overall efficiency of the approach.

To address the issue of poor accuracy of the Eulerian-

based numerical scheme at nearly maximum proppant

concentrations, this study aims to introduce an alternative

method based on a Lagrangian approach. It should be noted

here that by the ‘‘Lagrangian approach’’, we mean the

solution of the governing equations on the continuum level

in a Lagrangian frame of reference. This is different from

the Lagrangian approach used in Patankar (2001), where

the motion of each particle is simulated. At the same time,

there are some similarities with the studies Andrews and

O’Rourke (1996) and Healy and Young (2005), where a

Lagrangian approach is used to track particles in a multi-

phase flow. The use of a Lagrangian frame of reference for

this study, however, is inspired by Dontsov and Peirce

(2014b), where such an approach was successfully applied

to generate a proppant schedule. One of the biggest

advantages of using a Lagrangian frame of reference from

the numerical point of view lies in the fact that the grid

points associated with the proppant are independent of the

corresponding mesh that is used for the hydraulic fracture

propagation. This permits us to use a relatively coarse

mesh for the hydraulic fracture propagation part, and a

finer mesh for the proppant transport. To evaluate the

accuracy of the Lagrangian approach, this study aims to

consider a simple case of a KGD fracture. Firstly, Sect. 2

describes the governing equations for a hydraulic fracture

propagating with proppant transport. Secondly, Sect. 3

describes the equations for proppant transport written in a

Lagrangian frame of reference. Section 4 presents the

details of the numerical scheme. Section 5 compares model
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predictions that are based on the Eulerian and Lagrangian

approaches, while Sect. 6 summarizes the results.

2 KGD Hydraulic Fracturing Model
with Proppant Transport

This section describes a mathematical model for a one-

dimensional KGD hydraulic fracture generated by a slurry.

With reference to Fig. 1, it is assumed that the fracture

propagates along the z-axis, where the origin represents the

location of the wellbore. Considering only symmetric

fractures for simplicity, the fracture half-length is denoted

by l, in which case the left fracture tip is located at �l,

while the right fracture tip is located at l. Follow-

ing Dontsov and Peirce (2014c), the balance laws

describing the fracture propagation and the proppant

transport can be written as

ow

ot
þ oqsz

oz
þ C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t � t0ðzÞ
p ¼ Q0dðzÞ;

ow �/
ot

þ
oqpz
oz

¼ �/0Q0dðzÞ;
ð1Þ

where w denotes the fracture opening, C0 ¼2CL [CL is

Carter’s leak-off coefficient Carter (1957)], t0ðzÞ is the

time at which the fracture front was located at point z, Q0 is

the injection volume of the slurry per unit time per unit

length in the out-of-plane direction, �/ is the normalized

proppant concentration 0 6 �/ 6 1 ( �/¼/=/m, so that �/¼
1 corresponds to the maximum concentration /m¼0:585),
�/0 is the normalized input proppant concentration. Here

the slurry and proppant fluxes are given by

qsz ¼ �w3

l0
Q̂s
�

�/;
w

a

� op

oz
;

qpz ¼ B
�w

a

�

Q̂p
�

�/;
w

a

�

qsz;

ð2Þ

where l0 ¼ 12lf is the scaled viscosity, p denotes the fluid

pressure, while a is proppant radius. It is noted that the

gravitational settling is not included in (2) to simplify the

analysis. The blocking function B is introduced to describe

proppant bridging, where the latter occurs when the frac-

ture width becomes smaller than several particle diameters.

The blocking function B forces the proppant flux to

vanish gradually when the fracture width becomes suffi-

ciently small. For the purpose of efficient numerical cal-

culations, the blocking function is approximated by a

smooth function

B
�w

a

�

¼ 1

2
H
�w

2a
�N
�

H
�wB � w

2a

�

�
h

1þ cos
�

p
wB � w

2a

�i

þ H
�w� wB

2a

�

:
ð3Þ

Here H is Heaviside step function, wB¼2aðNþ1Þ, while
N¼3 represents the number of particle diameters needed to

cause proppant bridging. This number (N¼3) is consistent

with the experimental study Gruesbeck and Collins (1982),

which shows that proppant particles develop a bridge in a

perforation when the perforation diameter is between two

to six particle diameters.

Functions Q̂s, Q̂p that appear in (2) play a crucial role in

the model, as they describe the influence of the particles on

the slurry flux (and consequently on the fracture propagation),

and conversely the influence of the fracture propagation on

the proppant transport. According to Dontsov and Peirce

(2014c), the aforementioned functions can be written as

Q̂s
�

�/;
w

a

�

¼ Qsð �/Þ þ a2

w2
�/D;

Q̂p
�

�/;
w

a

�

¼ Qpð �/Þ
Q̂s
�

�/;
w

a

� ;
ð4Þ

where Qs and Qp are functions of �/ only and are calculated

numerically, D ¼ 8ð1�/mÞ
�a=ð3/mÞ is related to the per-

meability of the packed particles, where /m¼0:585 is the

volume fraction of the packed particles, and �a ¼ 4:1,

see Davis and Acrivos (1985). Figure 2 shows the func-

tions Q̂s and Q̂p versus normalized proppant concentration
�/ for different values of the parameter w/a. The function

Qsð �/Þ in the first equation in (4) is the reciprocal of the

effective slurry viscosity and determines the behaviour for

almost all values of �/, except �/�1. The second term

featuring D becomes important only for �/�1 and

describes fluid filtration through the packed proppant (i.e.

Darcy’s law). So, the slurry flux in (2) is capable of cap-

turing the transition from Poiseuille flow (featuring effec-

tive viscosity) to Darcy flow as the concentration increases

from small to nearly the maximum value. As can be seen

from Fig. 2, the function Q̂p in the proppant flux in (2) is

proportional to �/ at low concentrations, while it decreases

sharply to zero for �/�1. This decrease is due to the fact

that the proppant forms an immobile plug when the con-

centration reaches the maximum value ( �/¼1), while the

fluid can still move through the plug by filtration. It should

be noted here, that the proppant transport model introduced

Q0 Plane strain
elasticity

φ̄0Q0

Total fluxProppant flux

z

ll

w

Fig. 1 Schematics of a KGD fracture with proppant
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in Dontsov and Peirce (2014c) is closely related to the one

in Lecampion and Garagash (2014). In particular, both

approaches are based on the phenomenological constitutive

model for slurry Boyer et al. (2011). The model in Le-

campion and Garagash (2014), however, neglects the slip

velocity between the two phases from the outset, and, as a

result, lacks the Darcy-related term in (4). The latter term

plays a crucial role in situations when the crack tip screen-

out is present, which is considered in this study. More

detailed comparison between two models can be found

in Dontsov and Peirce (2014c).

To close the system of equations (1), the fluid pressure

is determined using the elasticity equation, which ensures

that the rock that surrounds the fracture is in equilibrium,

namely

p = − E′

4π
=
∫ l

−l

w ds

(s − z)2
. ð5Þ

Here the elastic interactions are calculated assuming plane

strain conditions, E0 ¼ E=ð1�m2Þ denotes the correspond-

ing plane strain Young’s modulus, and the integral is

understood in the sense of a Hadamard finite part. Finally,

the boundary and propagation conditions at the fracture tip

can be written as

qszjz¼l ¼ 0; w ! K 0

E0 ðl� zÞ1=2; z ! l; ð6Þ

where K 0 ¼8KIc=
ffiffiffiffiffiffi

2p
p

is the scaled fracture toughness.

Note that there is no need to prescribe a zero proppant flux

boundary condition, as it is satisfied automatically since the

blocking functions preclude proppant from entering the tip

region.

3 Lagrangian Description of the Proppant
Transport

The equations that govern hydraulic fracture propagation

and proppant transport that are outlined in the previous

section are written inherently in an Eulerian frame of

reference. These equations were solved numerically

in Dontsov and Peirce (2015). However, the numerical

scheme for solving the proppant transport problem is

cumbersome and not computationally efficient. In partic-

ular, the computational error becomes visible even if a fine

mesh is used in situations when a proppant plug is formed,

see Dontsov and Peirce (2014a). In addition, the mesh for

the proppant is tied to the fracture opening grid that is used

to discretize (1). In this situation, if one needs better

accuracy (i.e. a finer mesh) for the proppant placement, one

has to use the same fine mesh for the fracture width cal-

culations, which substantially increases the computational

time. To overcome these disadvantages, this study suggests

an alternative approach, where a Lagrangian frame of

reference is used to solve for the proppant motion inside

the fracture.

To rewrite the problem of proppant transport in a

Lagrangian frame of reference, it is useful to integrate the

second equation in (1) in space over the interval

ðz1ðtÞ; z2ðtÞÞ. This yields

d

dt

Z z2ðtÞ

z1ðtÞ
w �/ dz� ðw �/Þ

�

�

z2

dz2

dt
þ ðw �/Þ

�

�

z1

dz1

dt
þ qpz

�

�

z2

� qpz
�

�

z1
¼ �/0Q0

�

Hðz2Þ�Hðz1Þ
�

;

ð7Þ

where H is the Heaviside step function. To preserve the

total amount of proppant in the interval ðz1ðtÞ; z2ðtÞÞ, one
should require

dzi

dt
¼

qpz

w �/

�

�

�

zi
� Vp

z ðwðziÞ; �/ðziÞÞ; i ¼ 1; 2; ð8Þ

where Vp
z ðwðziÞ; �/ðziÞÞ is the proppant velocity at point zi.

Accordingly, Eq. (7) reduces to

d

dt

Z z2ðtÞ

z1ðtÞ
w �/ dz ¼ �/0Q0

�

Hðz2Þ�Hðz1Þ
�

: ð9Þ

Equations (8) and (9) form the basis for the numerical

calculation of proppant transport in a Lagrangian frame of

reference. Equation (8) allows us to track proppant parti-

cles in space, while the volume balance Eq. (9) can be used

to determine the particle concentration at a given point in
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1

φ̄

Q̂
p w

a
= 6

w

a
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w

a
= 100
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1

φ̄

w

a
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w

a
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w

a
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Q̂
s

Fig. 2 Functions Q̂s and Q̂p

featured in the model (4) versus

the normalized proppant

concentration �/ for different

values of the parameter w/a
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space. Note that since Q̂p / �/ for small values of �/ (see

Fig. 2), the proppant velocity defined in (8) does not have a

singularity.

4 Numerical Scheme

This section outlines the numerical algorithm for solving

the propagation of a KGD fracture induced by a slurry,

where proppant transport is calculated using a Lagrangian

approach. At each time step, the numerical scheme per-

forms two procedures: (a) an incremental solution for the

fracture propagation for a given proppant concentration,

and (b) an incremental solution for the proppant motion

using the fracture movement determined previously in (a).

Note that the first step is the same as in Dontsov and

Peirce (2015), while the second step is fundamentally

different.

First, let us briefly describe algorithm used to calculate

fracture propagation. To facilitate the numerical solution of

the moving boundary problem under consideration, the

spatial coordinate z is replaced by f ¼ z=lðtÞ, 06f61. In

this case, the first equation in (1) can be rewritten as

ow

ot
� V

l
f
ow

of
þ 1

l

oqsz
of

þ C0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t � t0ðlfÞ
p ¼ Q0

l
dðfÞ; ð10Þ

where V ¼ dl=dt is the velocity of crack propagation. To

solve (10) numerically, f is discretized using a uniform

grid, and the fracture width is approximated by a piece-

wise constant function, defined by its values at the nodes of

fi, i ¼ 1; . . .;Nz. To advance the fracture from time instant

t1 to t2, Eq. (10) is discretized as

wi�w0
i

t2�t1
� V

l
fi
wiþ1�wi�1

2Df
þ 1

l

qsz;iþ1=2�qsz;i�1=2

Df

þ 2C0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � t0ðlfiÞ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t1 � t0ðlfiÞ
p

t2 � t1
¼ Q0

lDf
di1;

ð11Þ

where wi denotes the fracture opening at fi at time instant

t2, while w0
i denotes the fracture opening at the previous

time step, which corresponds to the time instant t1. Here di1
is the Kronecker delta, which ensures that the source

belongs exclusively to the first element. The slurry flux

in (11) is discretized as

qsz;iþ1=2 ¼ �
w3
iþ1=2

l0
Q̂s
�

�/iþ1=2;
wiþ1=2

a

� piþ1 � pi

lDf
: ð12Þ

The latter equation features proppant concentration at the

midpoints �/iþ1=2, which is assumed to be known. The fluid

pressure that enters (12) is calculated from the displace-

ment discontinuity Eq. (5) assuming piece-wise constant

fracture widths. In particular

pi ¼
E0

4pl

X

Nz

j¼1

wj

1

ðfj þ 1
2
Df� fiÞ

� 1

fj � 1
2
Df� fiÞ

� 	

 

þ
X

Nz

j¼2

wj

1

ð�fj þ 1
2
Df� fiÞ

� 1

�fj � 1
2
Df� fiÞ

� 	

!

:

ð13Þ

Since the displacement discontinuity method has poor

accuracy for the tip element, the pressure at the tip is taken

as an unknown. To compensate for this, the fracture

propagation velocity, V, is determined assuming that the

last element follows the appropriate asymptotic solution,

see e.g. Peirce and Detournay (2008) in which this

approach is described. Given the fracture velocity, the

zero-flux boundary condition in (6) is used to find the

pressure at the tip element. With the use of the appropriate

asymptotic solution and Eqs. (12) and (13), the nonlinear

system of equations (11) is solved iteratively for every

time step. Once (11) has been solved, the fracture length is

updated using l ¼ l0 þ Vðt2�t1Þ. A more detailed

description of the fracture propagation algorithm can be

found in Dontsov and Peirce (2015).

To describe proppant transport using a Lagrangian

approach, proppant elements are introduced. Let us denote

the boundaries of the proppant elements by zk,

k ¼ 1; . . .;Npþ1, where Np is current number of proppant

elements and zNpþ1 ¼ 0. Note that the numbering starts with

the proppant elements closest to the tip and ends at the

source element, since this is the order in which they are

created. In this case, the kth element is located between

zkþ1 and zk, see Fig. 3. Each proppant element has the

associated proppant volume, defined as

Vk ¼
Z zk

zkþ1

w �/ dz: ð14Þ

According to Eq. (9), this proppant volume is conserved

for all elements except the one near the wellbore, which is

assumed to be partially filled and denoted by the red

rectangle in Fig. 3. For the partially filled element, one has

dVNp

dt
¼ 1

2
�/0Q0; ð15Þ

where the 1/2 factor comes from the symmetry consider-

ations. Equation (15) determines the evolution of the

proppant volume for the partially filled element. As soon as

the volume reaches some critical value, a new element is

introduced, which increases Np by one. This is the proce-

dure for introducing new proppant elements. In this case,

the total number of proppant elements is controlled by the

value of that critical proppant volume. Note that the vol-

ume is conserved for all elements that are away from the

source, and its value is determined by the volume of the
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partially filled element after it ‘‘detaches’’ from the source.

Given the proppant volume for each element, the corre-

sponding elemental proppant concentration can be

approximated from (14) using the midpoint rule:

�/k ¼
Vk

ðzkþ1�zkÞw
�

ðzkþ1þzkÞ=2
� : ð16Þ

Here �/k is the normalized proppant concentration for the

kth element, while w
�

ðzkþ1þzkÞ=2
�

is the fracture opening

at the center of the element, which is obtained by inter-

polating between the values of the discretized fracture

opening wi, i ¼ 1; . . .;Nx. To evolve the boundaries of the

elements, one may employ Eq. (8) to write

dzk

dt
¼ Vp

z ðwðzkÞ; �/ðzkÞÞ: ð17Þ

Here the proppant velocity Vp
z varies with space through

the variations of both, the fracture opening, and the prop-

pant concentration, see (2) and (8). The fracture opening

wðzkÞ at the point zk is determined using cubic Hermite

interpolation of the discretized fracture opening wi,

i ¼ 1; . . .;Nx. To have a stable solution, the proppant

concentration, on the other hand, is calculated by allocating

the concentration as follows:

�/ðzkÞ ¼
�/k�1; Vp

z > 0;
�/k; Vp

z\0:




ð18Þ

To stabilize Eulerian discretizations upwinding is typically

required. The analogue for the Lagrangian scheme is that it

is necessary to ensure that the velocity of a proppant ele-

ment boundary depends on the proppant concentration in

the element towards which this node will move. Thus, the

Eq. (18) suggests that the proppant concentration is

determined by the element ahead of the corresponding

node zk if Vp
z > 0, and by the element behind if Vp

z \0.

Zero concentration is taken for the first element if Vp
z > 0,

since there is a clear fluid ahead of it, see Fig. 3. Note that

the sign of Vp
z is solely determined by qsz, which is pre-

computed during calculation of the fracture propagation.

Also note that the values of qsz are fixed during the

calculation of proppant motion via (17). In the numerical

scheme, a fourth-order Runge–Kutta method is used to

solve (17), where each time step corresponding to the

fracture propagation was subdivided into smaller time steps

to have a stable solution. Note that the fracture propagation

step uses the implicit Backward Euler scheme in order that

large time steps can be taken. Explicit time stepping of the

stiff fracture propagation equations would result in a sta-

bility condition requiring Dt.Dz3. Once new positions of

the elements are calculated, Eq. (16) is used to calculate

the normalized proppant concentration within each ele-

ment. Finally, interpolation is used to determine the values

of the proppant concentration at the half-points of the

spatial grid, �/iþ1=2, which are used in (12) for the fracture

propagation algorithm. Note that all interpolation is per-

formed using the built-in ‘‘PCHIP’’ function in Matlab,

which preserves monotonic behaviour of data.

5 Results and Discussion

To examine the advantages and disadvantages of using the

Lagrangian approach to model proppant transport, this

section compares the results obtained using the Eulerian

and Lagrangian approaches for a set of reference problem

parameters. This set of reference parameters is chosen as:

E0 ¼20 GPa for the plane strain Young’s modulus, KIc ¼ 0

for the fracture toughness, l0 ¼1:2 Pa�s for the fluid vis-

cosity, C0 ¼3�10�5 m/s1=2 for the leak-off coefficient, and

Q0¼5�10�4 m2/s for the inlet flux. Firstly, a clear fluid is

pumped until tpr¼1000 s. Thereafter, a slurry containing

proppant particles with normalized concentration �/0¼0:2

is used. The particle radius is chosen as a¼0:6 mm.

All simulations are performed until tend¼10;000 s.

Different mesh sizes are considered, namely Nz ¼
f25; 50; 100; 200; 400g, where Nz is the number of points in

the discretization of the fracture width. In the Eulerian

approach, the number of discretization points that corre-

sponds to proppant is Nz�1 (note that the values of the

proppant concentration are defined at the midpoints). While

in the Lagrangian approach, the largest number of proppant

elements is taken as either Nz, 2Nz, or 4Nz, which is

adjusted using different values of the critical volume for

proppant elements. To accommodate a finer mesh, the time

step was refined proportionally to the spatial discretization.

Figure 4 shows the evolution of the fracture by plotting

the fracture opening at t¼1500 s, t¼2000 s, t¼4000 s,

and t¼10;000 s. Colour filling indicates normalized

proppant concentration. At time t¼1500 s the proppant

has not yet reached the fracture tip, in which case there is

no visible influence on the fracture shape. At t¼2000 s,

the proppant concentration grows to nearly the maximum

w

zz1z2z3

φ̄

...zNp

0

Fig. 3 Schematics of the discretized fracture opening (black lines

with dots) and proppant elements (blue-coloured rectangles), where

the red rectangle corresponds to partially filled element
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value due to bridging, where the latter is modelled by the

blocking function (3). This indicates the initiation of the

proppant plug (i.e. the zone where the proppant concen-

tration is nearly maximal). There is no visible influence on

the fracture shape at this point. Note that proppant parti-

cles reach the fracture tip rapidly due to the leak-off. At

t¼4000 s, however, there is a well-developed proppant

plug, and a noticeable change in the fracture shape.

Finally, at t¼10;000 s, the fracture becomes much wider,

and the proppant plug increases in size. Note, however,

that even with the presence of the proppant plug, there is

still some fracture growth between t¼4000 s and

t¼10;000 s.

To quantify the accuracy of both the Eulerian and

Lagrangian approaches, Fig. 5 compares the fracture half-

length histories for different meshes Nz¼25, Nz¼50, and

Nz¼400. Blue lines correspond to the case for which

proppant transport is calculated using the Eulerian

approach. Magenta, red, and black lines indicate the results

obtained using the Lagrangian proppant transport with Nz,

2Nz, and 4Nz proppant elements, respectively. It is clear

that the Eulerian approach becomes inaccurate (for rela-

tively coarse meshes) once the proppant particles have

developed a plug after t�2000 s. The fracture exhibits

stop-and-go behaviour, which causes the oscillations in the

fracture length history. For finer meshes, however, the

oscillations reduce their magnitude, and almost disappear

for Nz¼400. On the other hand, the Lagrangian approach

produces smoother fracture growth even for coarse meshes,

especially if more proppant elements are used. To quantify

the discrepancy, an error measure is defined as

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R tend
0

ðlðtÞ � lexðtÞÞ2 dt
R tend
0

lexðtÞ2 dt

v

u

u

t ; ð19Þ

where l(t) is the fracture length history, as shown in Fig. 5,

while lexðtÞ corresponds to the length history of the ‘‘exact’’
solution. Here the ‘‘exact’’ solution is calculated using the

Lagrangian approach with Nz¼800 spatial points in the

fracture width discretization and 4Nz proppant elements.

The bottom right picture in Fig. 5 shows the error calcu-

lated using (19) for the Eulerian and Lagrangian approa-

ches, where three variations of the latter (with Nz, 2Nz, and

4Nz proppant elements) are considered. One can observe

from the figure that all methods converge as Nz increases.

Moreover, the convergence rate is approximately equal to

one for all cases. This is consistent with the fact that

Dt/Dz, the fact that the backward Euler time stepping

scheme is first-order accurate, and that the piece-wise

constant approximation used to discretize the elasticity

equation is first-order accurate. It should also be noted that

the points that correspond to Nz¼400 for the Lagrangian

approach are slightly shifted downwards since the ‘‘exact’’

solution is not actually exact. Nevertheless, the fracture

length calculated using the Lagrangian approach is con-

sistently more accurate for all mesh sizes. Also, the accu-

racy can be noticeably increased using more proppant

elements. Since the number of time steps is taken to be

proportional to the number of spatial points, the compu-

tational time grows as N3
z [note that N2

z operations are

required to calculate the pressure via (13)]. Since both

proppant transport algorithms require OðN2
z Þ operations,

the type of algorithm and the number of proppant elements

have little influence on the computational time. Since the

Lagrangian approach reduces the error by factors from

three to five depending on the number of proppant elements

used (see Fig. 5), one may use a coarser mesh and obtain

results with similar accuracy (and no stop-and-go beha-

viour) up to a hundred times faster.

Fig. 4 Fracture opening variation versus spatial coordinate z at different time instants t ¼ f1500; 2000; 4000; 10; 000g s, calculated for a

reference set of parameters. Colour filling indicates normalized proppant concentration
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It is very important to emphasize that the error analysis

performed in this paper is targeted towards estimation of

the discrepancy after the proppant plug formation. The

accuracy of calculating the proppant transport before the

plug formation is less important because, as can be seen

from Fig. 4, there is almost no influence of the proppant on

the shape of the fracture before particles form a plug. To

verify this hypothesis, the fracture half-length at t¼1500 s,

t¼2000 s and t¼4000 s was calculated assuming no

proppant and compared to the corresponding results that

account for the proppant transport (see Fig. 4 for the

proppant distributions inside the fracture at these time

instants). The discrepancy of the fracture half-length for

t¼1500 s is 0:1%, for t¼2000 s is 0:6%, while for

t¼4000 s it is 19:7%. Clearly, the influence of the prop-

pant on fracture propagation is nearly negligible before

particles develop a plug. This is because the particles alter

the effective fluid viscosity, while the latter becomes

important primarily in the regions with large pressure

gradients. Since the pressure gradient is large only near the

fracture tip, the the overall influence of the proppant is

small until it reaches the tip region. When the plug is

formed, however, the particles cause big a pressure gradi-

ent through the plug, which significantly alters further

fracture propagation.

The results shown in Fig. 5 demonstrate that the

Lagrangian approach for modelling proppant transport is

more accurate for KGD fractures than the Eulerian

approach. To understand why the Lagrangian approach is

more accurate, let us consider the motion of a developed

proppant plug. In the Eulerian approach, the location of the

plug is determined up to a precision of one element size.

In situations when the fracture widens and the next element

becomes ‘‘available’’ for the proppant (i.e. the fracture

width becomes larger than 3 particle diameters), the

proppant plug moves forward quickly to occupy it. During

this process, the proppant plug length increases and the

proppant concentration decays within the plug. To com-

pensate the pressure drops through the plug, the fracture

starts to grow rapidly. After this fast fracture growth, the

leak-off increases substantially, which reduces the fracture

width and increases the proppant concentration back in the

plug. This causes the fracture to reduce its velocity of

propagation or even to stop in the worst case. This is the

mechanism for the stop-and-go behaviour observed in

Fig. 4. Clearly, this is related to the fact that the front

boundary of the proppant plug can only be located at a

discrete set of points. On the other hand, in the Lagrangian

approach, the proppant elements can be located everywhere

along the fracture. This makes the motion of the proppant

plug smooth, in which case there are no oscillations in the

fracture growth history, which leads to better accuracy. It

should be noted here, that a first-order numerical scheme is

used to model the proppant transport in the Eulerian

approach, see Dontsov and Peirce (2015). Higher order

schemes have the potential to mitigate the error, but can be

difficult to implement due to the strong coupling between

the hydraulic fracture propagation and the proppant

Fig. 5 Fracture half-length

histories calculated using

different mesh sizes with

Nz¼25, Nz¼50, and Nz¼400

and different algorithms for

proppant transport. Blue lines

indicate results where proppant

transport is calculated using the

Eulerian approach. Magenta,

red, and black lines show the

results obtained using the

Lagrangian approach with Nz,

2Nz, and 4Nz proppant elements,

respectively. The bottom right

picture shows the error

calculated using (19) versus

mesh size, Nz, for the different

approaches
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transport in situations when the proppant plug is formed. In

addition, since the proppant plug location for a high-order

Eulerian scheme is still only accurate up to one element

width, it is not clear that the overall gain in the accuracy

will be substantial.

It is important to mention that this study considers the

simplest case of a symmetric KGD fracture with no stress

barriers exclusively to show the effectiveness of the

Lagrangian approach. In general, it is possible to include

various stress barriers, layers with different fracture

toughness, and/or gravitational settling into the model,

which are all beyond the scope of this study. In addition, it

should be noted that the Lagrangian approach can also be

extended to model the proppant transport in fully planar

hydraulic fractures. Given the fact that this methodology

leads to smooth proppant plug motion, while the Eulerian

approach permits proppant plug location only up to one

element width, it is expected that the Lagrangian approach

will lead to more accurate results for planar fractures too.

The proposed Lagrangian methodology is applied to a

particular proppant transport mathematical model, gov-

erned by (2)–(4). The numerical scheme, however, is not

restricted to this particular model. It is possible to use

different functions for Q̂s and Q̂p in (4), which can be

obtained either from a better model for the slurry flow, or

from the experiments.

6 Conclusions

This paper considers the problem of proppant transport in a

symmetric KGD fracture. The adopted proppant transport

model is based on the slurry flow solution obtained using a

phenomenological constitutive relation, where the latter

describes the behaviour of a viscous fluid mixed with

spherical particles. The main advantage of the selected

proppant transport model is that it is able to capture the

transition from Poiseuille flow with an effective viscosity

to Darcy flow as the particle concentration increases.

Equipped with the proppant transport model, this study

introduces an alternative approach to solve for the coupled

problem of fracture propagation and proppant motion

numerically. In particular, the corresponding governing

equation for the proppant transport is solved in a Lagran-

gian frame of reference. The results are then compared to

the solution calculated using the same hydraulic fracture

simulator but with the proppant transport calculated using

an Eulerian approach. A set of problem parameters for

which proppant particles reach the fracture tip and develop

a plug is considered. For this case, the coupling between

the proppant transport and hydraulic fracture propagation is

the most significant. It is shown that the hydraulic fracture,

modelled using the Eulerian approach exhibits stop-and-go

behaviour once proppant bridging has occurred. This is

related to the fact that the front position of the proppant

plug can only be located at a discrete set of points, in which

case each ‘‘jump’’ of the proppant plug causes rapid frac-

ture growth followed by a time period with almost no

growth. In contrast, the use of a Lagrangian approach

allows us to have a proppant plug at any location along the

fracture, which leads to smooth motion of the plug, and,

consequently, smooth fracture growth. Error analysis

indicates that the accuracy of the Lagrangian approach is

up to an order of magnitude better than that of the Eulerian

approach if the same mesh is used. This implies that a

coarser mesh can be used to obtain results with similar

accuracy, which ultimately leads to faster computations.
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