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The goal of this paper is to develop a more accurate pseudo-3D model for hydraulic frac-
turing. The primary weaknesses of the classical pseudo-3D model are: (1) its inability to
capture viscous height growth and (2) its failure to include lateral fracture toughness.
These flaws are addressed respectively by: (1) introducing an apparent fracture toughness
in the vertical direction and (2) using an approximate non-local elasticity operator. To eval-
uate the accuracy and the level of improvement of the model we have developed, the
results are compared to the predictions calculated using a recently developed fully planar
hydraulic fracturing simulator.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Hydraulic fracturing (HF) is a process in which a pressurized fluid is injected into rock to cause fracture initiation and
propagation. Industrial applications of HF include accelerating the waste remediation process [1], waste disposal [2], precon-
ditioning in rock mining [3], and oil and gas reservoir stimulation [4], where the latter stands out as one of the most common
applications.

To successfully apply HF, the treatment should be designed using an appropriate HF model or numerical simulator. The
earliest models started with the simplest one-dimensional Khristianovich–Zheltov–Geertsma–De Klerk (KGD) model [5], in
which the fracture propagates under plane strain conditions and the coupling between viscous fluid flow and elasticity is
included. Later, the Perkins–Kern–Nordgren (PKN) model [6,7] was developed to simulate fracture propagation in a horizon-
tally layered medium. The PKN model assumes that the fracture propagates in the horizontal direction (i.e. along the reser-
voir layer) and has a constant height that is equal to the thickness of the reservoir layer. Each vertical cross-section is
assumed to be elliptic with a uniform fluid pressure, where the latter is calculated assuming that a state of plane strain pre-
vails in each vertical plane. The primary advantage of the PKN model lies in its computational efficiency, since averaging over
the vertical direction reduces the calculations to solving a one-dimensional problem.

To allow for height growth, the pseudo-3D (P3D) model has been developed [8–10] as an extension of the PKN model.
There have been multiple variations of the P3D model. In particular, the geometry of the fracture was either approximated
by ellipses or the fracture’s lateral dimension was divided into elements, where each element had a specific height. The first
case corresponds to the so-called lumped P3D model [11,12], while the second variation is called a cell-based P3D model
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Nomenclature

x; y; z spatial coordinates
n normalized spatial coordinate
t time
H height of the reservoir layer
hðx; tÞ fracture height
lðtÞ fracture half-length
Dr magnitude of the stress barriers
w fracture width
�w effective width
E0 plain strain Young’s modulus
p fluid pressure
KIc fracture toughness
DKIc apparent fracture toughness
C0 leak-off coefficient
�qx vertically-averaged fluid flux
l0 ¼ 12l fluid viscosity, (l is the intrinsic fluid viscosity)
Q0 inlet flux for P3D fracture
d characteristic length
V fracture velocity of propagation
Q0 inlet flux for KGD fracture
C, C2, C3 constants
wrad fracture width for the radial solution
hrad fracture height for the radial solution
�wrad effective width for the radial solution
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[9,10]. In addition, two types of height growth mechanisms were used: (i) equilibrium height growth [9] and (ii) dynamic
height growth [10]. In the first case it is assumed that the pressure is uniform and a toughness propagation criterion is used
to calculate the fracture height. In the second case the height is calculated from the solution of a KGD problem (or its approx-
imation) for each vertical cross-section.

With the advent of more computational power, scientific effort has shifted towards developing more accurate planar 3D
models (PL3D) [13–15]. In such models, the fracture footprint is assumed to be planar and is discretized using a
two-dimensional mesh. Two-dimensional fluid flow and elastic interactions between all elements are then considered. These
modifications significantly increase the accuracy of HF simulators, but, at the same time, the CPU time increases dramati-
cally. The reason for this lies in the fact that both the PKN and P3D models require the solution of essentially a
one-dimensional lubrication problem with a local relation describing elastic interactions. In contrast, the PL3D models
involve coupling between the two-dimensional lubrication operator and the two-dimensional elasticity operator represent-
ing full non-local interactions. A more detailed review of various HF simulators can be found in [16].

Motivated by recent developments in the petroleum industry and the further development of computational power,
researchers have started to investigate the interaction between multiple hydraulic fractures. As an example, the so-called
phenomenon of stress shadowing [17] is investigated in [18]. Stress shadowing occurs when one attempts to grow multiple
hydraulic fractures simultaneously. The mutual elastic interactions produce compressive stresses that affect the evolution of
neighboring fractures and result in dissimilar growth of fractures initiated from the different perforations in a stage. Finally,
the complexity of the hydraulic fracturing problem can be increased even further by considering non-planar fractures [19].

From the above discussion we observe that the complexity of hydraulic fracture modeling has increased with the advent
of more computational power and the desire for models that represent real HF more accurately. Although more complicated
models allow us to obtain accurate results, there are situations in which the required computational time imposes severe
limitations on the numerical experiments that can feasibly be performed. In this situation, a computationally efficient
and accurate P3D model, which allows us to obtain results rapidly, becomes an appropriate choice. As an example, the
P3D model is used in [20,21] for production optimization purposes. Also, hydraulic fracture interaction is investigated using
a P3D modeling approach in [22]. In the latter case, the use of a P3D model permits the analysis of complex phenomena with-
out using excessive computational resources.

Unfortunately, despite having the advantage in computational efficiency, P3D models are not accurate when the assump-
tions of the model are not met. In particular, since viscous losses in the vertical direction are disregarded in a P3D model with
equilibrium height growth, fracture height estimates are inaccurate when the value of fracture toughness is small. Likewise,
owing to the local elasticity assumption, the P3D model can be inaccurate for large values of fracture toughness, for which
lateral fracture propagation occurs in the toughness regime. Recognizing the problem, corrections to the P3D model,
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intended to increase the accuracy, have been made. Two-dimensional fluid flow has been incorporated into a P3D model [23]
making it possible to capture fracture height growth more accurately. The work by [12] also considers two-dimensional fluid
flow, but approximates the fracture geometry by ellipses, which makes it possible to capture the effect of fracture toughness,
but noticeably restricts the geometry of the hydraulic fracture. With regard to the PKN model, [24] mentions unpublished
work, in which a toughness propagation criterion for PKN fractures is introduced. Also, a one-dimensional non-local elastic-
ity equation for PKN fractures is derived and analyzed in [25]. The primary purpose of that work was to introduce a non-local
relation between the fluid pressure and fracture opening, which can be further used to develop PKN-based HF models that
can capture fracture toughness in the lateral direction.

Recognizing the necessity to develop a more accurate P3D model, this paper aims to introduce an enhanced P3D (EP3D)
model, which accounts for viscous height growth, non-local elasticity, and fracture toughness in the lateral direction. The
developments are based on the cell-based P3D model with equilibrium height growth, analyzed in [26], and assume no
leak-off (i.e. that the rock is impermeable). Correction for viscous height growth is implemented through the introduction
of an apparent toughness, which approximately captures the viscous dissipation in the vertical direction. This provides a
way of correcting the vertical growth (an alternative to [23]), which is applicable to a P3D model with equilibrium height
growth. Following the developments in [25], non-local elasticity is incorporated in a P3D model and is then implemented
into a HF simulator. This allows us to capture the effect of lateral fracture toughness with a P3D model. Moreover, since
the EP3D model still relies on the solution of a one-dimensional problem, it permits us to obtain results extremely rapidly.

The paper is organized as follows. Section 2 briefly describes the classic P3D model with symmetric stress barriers and
equilibrium height growth, as well as its limitations. Section 3 incorporates the effect of viscous resistance in the vertical
direction by calibrating the model using a one-dimensional KGD model. Then, Section 4 describes a procedure to implement
non-local elasticity into a P3D model. Section 5 introduces a curved fracture tip, which also enables us to accurately capture
radially symmetric behavior at early stages in the HF evolution. The details of the numerical implementation are presented
in Appendix A.

2. Limitations of the classical pseudo-3D model with equilibrium height growth

To motivate the necessity for improvements to the original pseudo-3D (P3D) model, this section aims first, to briefly
describe the P3D model with its assumptions, and then to compare the model predictions to the output of a recently devel-
oped fully-planar hydraulic fracturing simulator that is able to capture the multiscale behavior encountered when the pro-
cesses of viscous dissipation and toughness energy release compete. This allows us to highlight the weak points of the P3D
model that can lead to noticeable errors for some problem parameters.

2.1. Pseudo-3D (P3D) model

The P3D model under consideration assumes that the reservoir layer with height H is surrounded by two symmetric
stress barriers that impose an additional confining stress Dr, as shown in Fig. 1. For this problem geometry, a fracture grows
predominantly in the horizontal direction (i.e. along the x axis), but height growth in the vertical direction is also allowed.
The original P3D model formulated in [26] is based on the following assumptions: (i) the lateral fracture tip is vertical and its
height is equal to H, (ii) the vertical component of the flux is negligible compared to the horizontal component, which
implies that the pressure is constant along the z axis, (iii) plane strain elasticity conditions apply for any vertical ðy; zÞ plane,
(iv) leak-off is limited only to the reservoir layer (i.e. no leak-off in the stress barriers) and behaves according to the Carter
model [27]. The assumptions of plane-strain elasticity and uniform pressure in each ðy; zÞ plane allow us to find a solution for
the fracture width in each cross-section as
wðx; zÞ ¼ 2
E0
ðpðxÞ � DrÞvþ 4Dr
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Fig. 1. Schematics of the P3D fracture.
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where wðx; zÞ is a fracture width, Dr is the amplitude of the stress barrier, h denotes fracture height (see Fig. 1), pðxÞ is the

fluid pressure, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � 4z2

p
;w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � H2

p
, while E0 ¼ E=ð1� m2Þ is the plane strain Young’s modulus. The use of a constant

pressure in the vertical direction implies that the fracture propagates in the toughness regime. In this case, the fracture prop-
agation criterion KI ¼ KIc can be used to find
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where KI is the stress intensity factor and KIc is the fracture toughness. Eqs. (1) and (2) can be combined to yield
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2
ph

r
KIcvþ

4Dr
pE0

�z ln
Hvþ 2zw
Hv� 2zw

���� ����þ H
2

ln
vþ w
v� w

���� ����� �
; ð3Þ
where the first term represents the fracture opening due to the fracture toughness, and the second terms capture the effect of
the stress barriers. The aforementioned formulas (3) and (2) apply in the regions where h > H. In situations when h ¼ H, an

elliptic fracture width profile is used instead of (3), i.e. w ¼ 2ðE0Þ�1vpðxÞ. The primary computational advantage of the P3D
model lies in the fact that it can be formulated in terms of an effective width, defined as
�w ¼ 1
H

Z h=2

�h=2
wdz: ð4Þ
Relation (3) can be integrated to obtain
�w ¼ H
E0

ffiffiffiffiffiffiffi
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r
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� �3=2

þ Dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

H2 � 1

s0@ 1A; h > H; ð5Þ
which can be inverted to yield the function hð�wÞ. If one uses this result, then the fracture width becomes a function of the
effective width, i.e. w ¼ wð�wÞ. In other words, knowledge of �wðxÞ is sufficient to obtain the fracture width wðx; zÞ. This
makes the problem one-dimensional and computationally efficient. The governing equation, that represents the
vertically-integrated lubrication equation, can be written as
@ �w
@t
þ @

�qx

@x
þ C 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t � t0ðxÞ
p ¼ Q 0

H
dðxÞ; ð6Þ
where the averaged flux is given by
�qx ¼ �
1

Hl0
@p
@x

Z h=2

�h=2
w3 dz; ð7Þ
Here C0 ¼ 2CL is Carter’s leak-off coefficient, Q0 is the total fluid volume pumped into the fracture per unit time, t0ðxÞ is the
inverse of the fracture length function x ¼ lðtÞ, and l0 ¼ 12l, where l is the fracturing fluid viscosity. Given (2)–(5) and (7),
Eq. (6) can be solved numerically (see e.g. [26]) for �wðxÞ, which can then be used to find the fracture opening wðx; zÞ, the
height growth hðxÞ, and the fluid pressure pðxÞ.

2.2. Drawbacks of the P3D model

While the computational time associated with the P3D model is not an issue, the accuracy and applicability range have
limitations. As was mentioned in the introduction, this paper deals with fracture propagation in an impermeable medium
(no leak-off), so, of the four P3D model assumptions, only the first three are relevant, namely: that the lateral fracture tip
is vertical; that the pressure is constant in vertical cross sections; and that plane strain elastic conditions apply in any ver-
tical plane ðy; zÞ.

In the absence of leak-off, there are two dissipative mechanisms that control the fracture geometry: the viscous dissipa-
tion and the energy release due to formation of new fracture surface. If the viscous dissipation is dominant, then the fracture
propagates in the viscous regime, otherwise it propagates in the toughness regime. The assumptions of the P3D model imply
that the fracture propagates in the toughness regime in the vertical direction, while, since the fracture toughness in the lat-
eral direction is not accounted for, the fracture is assumed to propagate in the viscous regime in the horizontal direction. This
means that out of the two possible dissipative mechanisms, only one is considered in the vertical direction and, similarly,
only one is considered in the horizontal direction. In situations when the fracture toughness is small, or even zero, vertical
height growth will be overestimated by the classic P3D model, since viscous resistance in the vertical direction, which should
limit the fracture height, is ignored by the model. At the same time, for pay zones with a large fracture toughness or at
advanced times, the propagation in the horizontal direction may become toughness-dominated. In this case, the P3D model
will overestimate the fracture length as the local elasticity assumption precludes accounting for the resistance due to frac-
ture toughness when determining the progress of the fracture front in the horizontal direction. Determining the bounds on
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the fracture toughness, for which the P3D model is valid, is a challenge, since hydraulic fractures are known [28] to change
their regime of propagation with time. Thus the bounds on the fracture toughness, within which the P3D model is valid, are
time-dependent. As a result, in spite of using the same problem parameters, the P3D model may be reasonably accurate over
some time intervals and completely wrong over others.

To illustrate the existence of a validity region for the P3D model and to highlight its limitations, Fig. 2 compares the
results of the P3D model with those obtained using the fully-planar Implicit Level Set Algorithm (ILSA) scheme [15,29].
The parameters for the computation are chosen as H ¼ 0:05 m, l ¼ 30:2 Pa s, m ¼ 0:4; E ¼ 3:3 GPa, Q 0 ¼ 1:7 mm3/s,
Dr ¼ 4:3 MPa. The rock is assumed impermeable in both models (i.e. no leak-off). Three values of fracture toughness are con-
sidered, KIc ¼ 0;KIc ¼ 0:16 MPa m1=2, and KIc ¼ 0:94 MPa m1=2. The results of the simulations are compared at time instant
t ¼ 604 s. Note that these parameters (except for those with fracture toughness) correspond to the laboratory experiments
in [30]. Fig. 2 compares the fracture footprints (top picture), the variation of the fracture width and pressure versus x at z ¼ 0
(middle and bottom left pictures), and the variation of the fracture width and pressure versus z at x ¼ 0 (middle and bottom
right pictures). The stress barrier is indicated by a thick black line. The ILSA results are shown by solid lines, while the P3D
data is shown by dashed lines. Blue lines correspond to the viscous regime, i.e. KIc ¼ 0, red lines correspond to the toughness
regime KIc ¼ 0:94 MPa, while magenta lines represent the intermediate case with KIc ¼ 0:16 MPa m1=2. As can be seen from
the figure, the P3D model is the most accurate for the intermediate case with KIc ¼ 0:16 MPa m1=2. For KIc ¼ 0, the fracture
length is accurately captured by the viscous regime lateral growth mode that is built into the P3D model, but the height
growth is overestimated. The P3D solution for KIc ¼ 0:94 MPa m1=2 provides very poor estimates of all characteristics of
the fracture, namely, the fracture length, the height, the opening, and the pressure.

With regard to the overestimated height growth, it is interesting to observe that the ILSA results are nearly identical for
KIc ¼ 0 and KIc ¼ 0:16 MPa m1=2. Since the P3D model is more accurate for KIc ¼ 0:16 MPa m1=2, it might be useful to approx-
imate the viscous ILSA solution by a P3D solution with some apparent toughness. In other words, the dashed magenta lines
(i.e. the P3D result for KIc ¼ 0:16 MPa m1=2) are close to both the viscous solution and the corresponding ILSA solution with
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Fig. 2. Comparison between the predictions of ILSA (solid lines) and the classic P3D model (dashed lines) for KIc ¼ 0 (blue lines), KIc ¼ 0:16 MPa m1=2
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colour in this figure legend, the reader is referred to the web version of this article.)
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KIc ¼ 0:16 MPa m1=2. For this reason, there is a possibility to introduce an effective or apparent toughness in the P3D model,
which can capture viscous resistance in the vertical direction. The next section describes a procedure to calculate this appar-
ent toughness.

It is also possible to upgrade the P3D model to capture the solution for high values of toughness, e.g. KIc ¼ 0:94 MPa, for
which the original model works poorly. One option to limit the lateral growth is to introduce a fracture toughness at the
corresponding fracture tip in the P3D model. However, this is not sufficient. The tip element can possibly satisfy the fracture
toughness growth criterion, but since local elasticity is used (i.e. plane strain conditions are assumed in each vertical
cross-section), there will be no elastic interaction with the rest of the fracture. Thus, the effect of toughness will change
the fracture shape only locally without affecting the global behavior. To deal with this problem, it is necessary to introduce
a non-local or full elastic interaction, as is done for planar 3D models. This inevitably leads to additional computational costs,
but we demonstrate that this can be done efficiently. The problem of including full elastic interactions into the P3D model is
addressed in Section 4.
3. Correction for viscous resistance in the vertical direction

3.1. The concept

As discussed in the previous section, one weakness of the P3D model is the lack of viscous resistance in the vertical direc-
tion, which causes the fracture height growth to be overestimated, as shown in Fig. 2. At the same time, the comparison
between the ILSA solutions for KIc ¼ 0 and KIc ¼ 0:16 MPa m1=2 shows that a small value of fracture toughness does not sig-
nificantly affect the fracture footprint, while the P3D solution changes significantly and is more accurate for
KIc ¼ 0:16 MPa m1=2. This establishes that a purely viscous ILSA solution (i.e. with KIc ¼ 0) is approximated better by a
P3D with a small toughness. The remaining question is how to find the appropriate value for this apparent toughness to
achieve the best approximation. One possibility is to equate the fracture width calculated according to the viscous and
toughness asymptotic solutions at some distance d, in which case
wK �
ffiffiffiffiffiffi
32
p

r
DKIc

E0
d1=2 ¼ bm

l0V
E0

� �1=3

d2=3 � wM; ð8Þ
where wK and wM denote respectively the toughness and viscous asymptotic solutions, DKIc is an apparent toughness,

bm ¼ 21=3 � 35=6, while
V ¼ 1
2
@h
@t
is the vertical velocity of the horizontal fracture fronts at the top or bottom of the blade-like fracture. Eq. (8) yields the fol-
lowing formula for the apparent toughness
DKIc ¼
ffiffiffiffiffiffi
p
32

r
bmE02=3l01=3V1=3d1=6

: ð9Þ
One can also take an energetic approach and require a balance between the energy release rate for the toughness regime and
the viscous dissipation for the viscous regime. If the fracture propagates with a velocity V, then the energy released per unit
time for a mode I crack is
@UK

@t
¼ V

DK2
Ic

E0
: ð10Þ
At the same time, since the fluid velocity profile inside the fracture is vðyÞ ¼ 3
2 Vð1� 4y2=w2Þ, the total viscous losses are
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¼
Z d
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�w=2
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dydz ¼ 3b�1
m l02=3E01=3V5=3d1=3

; ð11Þ
where the asymptotic solution for the fracture opening wM ¼ bm l0V=E0
� 	1=3z2=3 was used to evaluate the integral. Note that

the upper integration limit of the integral with respect to z is d, which is the characteristic length of the problem. By equating
(10) and (11), one obtains
DKIc ¼
ffiffiffiffiffiffiffiffiffiffi
3b�1

m

q
l01=3E02=3V1=3d1=6

: ð12Þ
Note that formulas (9) and (12) give almost identical results, especially given the fact that the ratio between the correspond-
ing numeric multipliers is b3=2

m

ffiffiffiffiffiffiffiffiffiffiffiffi
p=96

p
� 1:01.
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3.2. Estimating the characteristic length d

To establish a framework for estimating the characteristic length d, first, without loss of generality, the constant multi-
plier is omitted in (9) and (12), which effectively redefines d as
DKIc ¼ l01=3E02=3V1=3d1=6 ) d ¼ DK6
Ic

l02E04V2 : ð13Þ
To find the value of the characteristic length d, note that the approach of introducing an apparent toughness is also appli-
cable to the Khristianovich–Zheltov–Geertsma–De Klerk (KGD) fracture geometry. For this reason, this subsection aims to
utilize a KGD fracture geometry to find d. Also note that, consistent with the plane strain assumption, each vertical
cross-section of a P3D fracture can be thought as a KGD fracture, see Fig. 1. Notation that is consistent with this statement
is used throughout this subsection.

A symmetric KGD fracture, that is subject to stress barriers and no leak-off, is governed by the lubrication equation
@w
@t
� @

@z
w3

l0
@p
@z

� �
¼ QðzÞ; ð14Þ
and the elasticity equation, written as
p� DrðzÞ ¼ � E0

4p
wds

ðs� zÞ2
; ð15Þ
whereQðzÞ is the source term, while DrðzÞ denotes the stress resulting from the stress barriers (it is zero for jzj < H=2 and Dr
otherwise). The boundary and propagation conditions at the fracture tip are
w3

l0
@p
@z

����
z¼�h=2

¼ 0; w! 8KIcffiffiffiffiffiffiffi
2p
p

E0
�z� 1

2
h

� �1=2

: ð16Þ
For KGD problems the source QðzÞ is typically taken as Q0dðzÞ, i.e. as a point source. However, this is not the case for the P3D
fracture, where the fluid for each cross-section is supplied more uniformly. Away from the well-bore the source for each
KGD-like cross-section is driven by the change in the horizontal fluxes qx in the x direction, i.e. @qx=@x. Thus, since the pres-
sure is assumed to be constant in each ðy; zÞ plane, it follows from Poiseuilles law that the source for each KGD-like cross
section is proportional to w3ðzÞ. For this reason, the following distributed source is used
QðzÞ ¼ Q0
w3R h=2

�h=2 w3 dz
: ð17Þ
It will be shown later that the difference between the results for this distributed source and a point source is small, so the
source distribution does not significantly affect the characteristic length d.

It is instructive to do a scaling analysis for this problem. The scales for pressure, width, length and time can be introduced
respectively as
p� ¼ Dr; w� ¼
Q0l0E0

Dr2

� �1=2

; h� ¼
Q0l0E03

Dr4

 !1=2

; t� ¼
l0E02

Dr3 : ð18Þ
In this case there are only two dimensionless parameters that determine the solution, namely, the normalized fracture
toughness and the normalized height of the reservoir layer, which can be calculated as
eK Ic ¼
KIc

Q0l0E03

 �1=4 ;

eH ¼ HDr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q0l0E03

q : ð19Þ
The procedure for finding d, based on the numerical calculations for the KGD fracture, can be formulated as follows. First,
the numerical solution for the viscous regime (i.e. KIc ¼ 0) is calculated. Then, for a given fracture volume (H �w) and fracture
length (h), Eq. (5) is used to find the apparent toughness. In other words, the fracture width profile for the viscous regime is
approximated by a fracture width profile that corresponds to the toughness regime by matching the fracture volume and
length. Once the apparent toughness is calculated, Eq. (13) is used to find d. This approach considers an extreme case where
the fracture propagates in the viscous regime. If a good approximation is obtained for this extreme case, then we would
expect such apparent toughness corrections to be even more accurate for less extreme cases where some fracture toughness
is present. Since the viscous solution is used, only one dimensionless parameter in (19) affects the characteristic length d.

We first consider a situation in which the fracture has not yet reached the stress barrier. In this situation, the parameter eH
does not enter the solution, which implies that in this case d depends only on the current fracture geometry, e.g. the length of
the fracture h. Numerical calculations show that d is simply proportional to h, i.e.
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d ¼ Ch; ð20Þ
where C is a constant. Note that the above equation could also be deduced from the fact that h / t2=3 for a KGD fracture prop-
agating in the viscous regime (no stress barriers) together with (5) and (13). The value of C obtained from numerical exper-
iments is C ¼ 0:175 for a distributed source (17), and C ¼ 0:21 for a point source. While this difference seems to be
significant, keep in mind that the power 1=6 is applied to d in (13). In this case, the discrepancy becomes less than 3%.

The situation when the fracture has broken through the stress barrier is more complicated, since the parameter eH affects

the solution and consequently d. It is useful to introduce a normalized apparent toughness, which we denote by DeK Ic , where

the normalization is performed according to (19), and a normalized characteristic length ~d ¼ d=h. Eq. (5) gives the relation

between the normalized apparent toughness, eH and time, which can be written as DeK IcðeH; tÞ. At the same time, Eq. (13) gives
~dðeH; tÞ. Combining these expressions and inverting the solution for the fracture length hðtÞ, one may conclude that
d ¼ h ~d
H2Dr2

hDK2
Ic

;
h
H

 !
; ð21Þ
where the first parameter signifies the ratio between eH2 and ~hDeK 2
Ic , while the second parameter is the ratio between the nor-

malized height ~h and eH , where the latter defines ~h ¼ eHh=H. The primary advantage of (21) lies in the fact that combining (20)
with (13) yields an expression for DKIc , which does not directly depend on Q0. This makes the transition from KGD to P3D

fractures easier. Given (21), there are two alternatives. Firstly, calculate ~d numerically for a broad range of parameters, and

then use interpolation to construct the corresponding function. Secondly, find a sufficiently accurate approximation for ~d.
We proceed here with the second option, as it is simpler to implement and requires less computational resources, which
makes the overall program faster. Let’s consider the limiting case when Dr ¼ 0, i.e. in which there are no stress barriers.
For this situation the answer is given by (20), so that
~d 0;
h
H

� �
¼ C: ð22Þ
In situations in which H2Dr2 hDK2
Ic


 �
	 1

.
, the apparent toughness does not noticeably influence the fracture width (3), see

(5) for the comparison of volumes. This can be interpreted as the ‘‘stress barrier’’ propagation regime, for which the resis-
tance introduced by the stress barriers is larger than that of either the viscous and toughness resistances. The fracture geom-
etry for this regime depends solely on the magnitude of the stress barrier and the volume of the fracture. An accurate

evaluation of ~d in this regime is not necessary, since the apparent toughness has little influence on the solution. For this rea-
son, the constant approximation introduced according to (22) may already be sufficiently accurate for the complete range of

expected values of the parameter H2Dr2 hDK2
Ic


 �.
(since it works for both limiting cases). To introduce a more accurate

approximation, we try to find a characteristic distance from the fracture tip to the region where the influence of toughness
is suppressed by the stress barriers. To do this, it is necessary to equate the fracture width terms in (3), one due to the tough-
ness and the other due to Dr. Since d should be proportional to this characteristic distance, one may use the asymptotic
expansion in (3), also assuming that h=H 	 1, to find
~d / h1=2DKIc

HDr

 1: ð23Þ
One of the simplest approximations that can be constructed from the above result and (22) is
~d
H2Dr2

hDK2
Ic

;
h
H

 !
� C

1þ C2
HDr

h1=2DKIc

; ð24Þ
where C2 is a constant.
The combination of (13), (21) and (24) leads to
DKIc ¼ C1=6l01=3E02=3V1=3h1=6 1þ C2
HDr

h1=2DKIc

 !�1=6

; ð25Þ
which can be solved to find the apparent toughness DKIc . To check the error that is caused by the approximation (24), the
numerical solution of the KGD problem (without toughness) is compared to the analytical solution (3) with the same fracture
volume and the apparent toughness calculated according to (25). The numerical solution for the KGD fracture is calculated
for the parameters E0 ¼ 25 GPa, l0 ¼ 1:2 Pa, Q0 ¼ 5� 10�4 m2/s and H ¼ 50 m. Firstly, simulations with a maximum pump-
ing time t ¼ 3� 104 s and various magnitudes of stress barrier Dr ¼ 0:25—10:5 MPa are performed. The error, Eh, is defined
as the maximum discrepancy for the fracture length for all time steps. To find the optimal value for C2, Fig. 3 shows the vari-

ation of Eh versus eH (as this is the only parameter that affects the viscous solution of the KGD fracture with stress barriers)



Fig. 3. The top pictures and the bottom left picture show the comparison between fracture openings calculated numerically assuming no toughness (solid
lines) and approximations computed using apparent toughness (dashed lines) for t ¼ f250;500;1000;2000;4000g s and eH ¼ 1:16; eH ¼ 0:13, and eH ¼ 6:33.
The bottom right picture shows the fracture length error versus eH for different values of C2 (markers), the solid lines represent the spline interpolant.
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for different values of C2. One can observe that even with C2 ¼ 0, the error is below 4%, while C2 ¼ 1=2 reduces the maximum
error to less than 1.5%. Note that C2 ¼ 1=2 does not exactly correspond the minimum of the error, but is sufficiently close that
it can practically be considered a minimum. To illustrate the level of approximation of the fracture opening, Fig. 3 also shows
the comparison between the widths stemming form the numerical solution (solid lines) and the approximation (3) (dashed
lines) at t ¼ f250;500;1000;2000;4000g s and C2 ¼ 1=2. To cover different regimes, three values of the stress barrier are

considered, namely, Dr ¼ 0:5 MPa, Dr ¼ 1:5 MPa and Dr ¼ 3:5 MPa. These values correspond to eH ¼ 0:13 (a weak stress

barrier), eH ¼ 1:16 (a moderate stress barrier), and eH ¼ 6:33 (a strong stress barrier). When the stress barrier is weak, the
fracture width resembles that without a stress barrier, but features a small bump at the centre. The difference between
the viscous numerical solution and the approximation is visible, but not significant. When the stress barrier is strong, neither
the viscosity nor the apparent toughness affect the fracture opening, in which case there is a small discrepancy between two

solutions that occurs only in the near-tip regions. The case with eH ¼ 1:16 represents an intermediate case, for which the frac-
ture length error reaches a maximum.

3.3. Application to P3D

To apply the viscous height growth correction to the P3D model, first, the inclination of the fracture footprint located
within the stress barrier is neglected. This allows us to treat each vertical cross-section of a P3D fracture as a KGD fracture
and to apply the correction for the viscous resistance developed above. In terms of the numerical implementation of the P3D
model with a viscous correction, the same Eqs. (2)–(7) need to be solved, in addition to the value of the apparent fracture
toughness for each vertical cross-section, which needs to be calculated independently. If there is some non-zero fracture
toughness, then the sum of this material fracture toughness and the apparent toughness is used in the model, i.e.
KIc þ DKIc . To find the apparent fracture toughness at each time step, (25) can be rewritten as
DKIc ¼ C1=6l01=3E02=3 1
2

hjþ1 KIc þ DKIcð Þ � hj

tjþ1 � tj

� �1=3

h1=6
jþ1 1þ C2

HDr
h1=2

jþ1DKIc

 !�1=6

; ð26Þ
where the dependence of h on fracture toughness, represented by hjþ1 KIc þ DKIcð Þ, comes from (5). Here hj is the fracture
height at some point x at time ti, while hjþ1 is an unknown fracture height at time instant tjþ1. The solution of the nonlinear
Eq. (26) allows us to find DKIc and consequently hjþ1 at each point in space, which are then used to solve the lubrication Eq.
(6). The details of the numerical scheme are summarized in Appendix A. To check the accuracy of the viscous correction,
Fig. 4 compares the footprints calculated using the P3D model with the viscous correction with the footprints of the refer-



Fig. 4. Comparison of fracture footprints for KIc ¼ 0 generated by the P3D model with viscous resistance (dashed lines) and the ILSA scheme (solid lines) at
different time instants t ¼ f37;101;200;401;604;1048g s.
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ence solution given by ILSA. The parameters used for these calculations are the same as those for Fig. 2, except that the frac-
ture toughness is KIc ¼ 0. To show the evolution of the fracture, the footprints are plotted at different time instants, namely,
t ¼ f37;101;200;401;604;1048g s. Comparison between the ILSA and P3D footprints in Fig. 4 reveals that the corrected P3D
model is able to capture the height growth of the fracture even in the absence of fracture toughness. This modification thus
fixes one of the major drawbacks of the P3D model, namely its inability to capture the height growth for small (or zero) val-
ues of KIc . At the same time, for large values of the fracture toughness DKIc=KIc 
 1, the effect of the viscous correction is
effectively removed.

4. Incorporating non-local elastic interactions into the P3D model

4.1. Non-local elasticity

As was mentioned in Section 2.2, there are two main drawbacks of the original P3D model [26], namely, its inability to
capture the height growth for a small or vanishing fracture toughness, and the significant inaccuracies for large values of KIc ,
see Fig. 2. The first weakness is addressed in Section 3 through the introduction of an apparent or effective fracture tough-
ness that controls height growth, while this section aims to correct the second weak point of the P3D model by including
non-local elastic interactions within the fracture. When full elastic interactions are used, formally, the pressure is no longer
constant in each vertical cross-section and the fracture width cannot be calculated using the plane strain elasticity assump-
tion (3). At the same time, Fig. 2 shows that the fracture width variation in the vertical z direction, calculated using ILSA,
resembles that obtained using the P3D model – even in the viscous regime, i.e. KIc ¼ 0. This is further supported by Fig. 3,
in which the viscous KGD solutions are compared to the apparent toughness solutions. Since the difference between the vis-
cous and apparent toughness solutions is small (as soon as the fracture height is correct), one may use the approximate ana-
lytical solution (3) to estimate the elastic interactions. In particular, the pressure relation (2) can be replaced with
pðxÞ ¼ � E0

8p

Z lðtÞ

�lðtÞ

Z 1
2hðx0 ;tÞ

�1
2hðx0 ;tÞ

wðx0; z0Þdz0 dx0

ððx0 � xÞ2 þ z02Þ
3=2 ; ð27Þ
where the function w is given in (3), while h and l are the height and the half-length of the fracture respectively, see Fig. 1.
Note that since the P3D model assumes that the pressure is uniform in the vertical direction z, only one pressure value for
each vertical cross-section is required. For this reason, (27) evaluates the pressure along the x axis, i.e. assumes z ¼ 0. For the
purpose of numerical implementation, Eq. (27) is discretized and the integrals are evaluated numerically. This effectively
gives the relation between pðxÞ and �wðxÞ, which is analogous to the elasticity equation for the KGD fracture (15). The details
of the discretization of (27) are enclosed in Appendix A. The use of (27) permits us to incorporate the asymptotic solution for
the tip element, as was done in [15]. For the problem under consideration, either the viscous or the toughness asymptotic
solution is used, see Appendix A for details. To illustrate the effects produced by the use of (27), Fig. 5 compares the fracture
footprints generated by the P3D model with full elasticity (and the correction for the viscous resistance) to those produced
by the ILSA model. The parameters used for the calculations are the same as those for Fig. 2, except that only the following
two values of the fracture toughness are considered, namely, KIc ¼ 0 and KIc ¼ 0:94 MPa m1=2. One can see that the full elas-
ticity induces only slight changes for the viscous solution (see Fig. 4). However, the comparison between Figs. 2 and 5 shows
that the use of the non-local elasticity (27) (together with the asymptotic solution for the tip element) allows us to approx-
imate the ILSA solution extremely well for the case of large toughness. Thus, the use of the viscous correction and full elas-
ticity allows us to overcome the two major limitations of the original P3D model, namely, its applicability for small and large
values of fracture toughness.

In spite of the fact that Fig. 5 shows good agreement between the P3D model and the reference ILSA solution, another
consequence of using the full elasticity is a concomitant increase in computation time. In particular, the numerical evalua-

tion of the double integral in (27) requires O N2
x Nz


 �
operations (recall that the pressure is evaluated at z ¼ 0), where Nx and

Nz denote the number of elements in the x and z direction respectively. As a comparison, the original P3D model uses only

OðNxÞ operations to evaluate pressure, a KGD model with a similar mesh requires O N2
x


 �
operations, while a fully planar



Fig. 5. Comparison of the fracture footprints for KIc ¼ 0 (top) and KIc ¼ 0:94 MPa m1=2 (bottom) generated by the P3D model with viscous resistance and full
elasticity (dashed lines) and the ILSA scheme (solid lines) at different time instants t ¼ f37;101;200;401;604;1048g s.
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model needs O N2
x N2

z


 �
operations. This demonstrates that the introduction of non-local elasticity affects the efficiency in the

computation of the pressure appreciably, and poses a significant hurdle in developing an efficient corrected P3D model. At
the same time, the pressure evaluation is still much faster than that of a fully planar hydraulic fracturing model, which,
together with the increased accuracy, still makes the corrected P3D model a good competitor.
4.2. Approximate non-local elasticity

Fig. 5 indicates that the use of the non-local elasticity significantly improves the accuracy of the P3D model, especially for
large values of fracture toughness. At the same time, numerical evaluation of the double integral in (27) requires extra com-
putational resources and slows down the overall computation time. This subsection aims to introduce an approximation to
the integral (27), which would decrease the time needed to calculate the pressure numerically.

First, following [25], it is noted that if one substitutes an elliptical width profile wðx; zÞ ¼ w0ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z2=h2

q
in (27), the

inner integral with respect to z0 can be evaluated analytically to obtain
pðxÞ ¼ � E0

8p

Z lðtÞ

�lðtÞ
w0ðx0Þ

Z 1
2hðx0 ;tÞ

�1
2hðx0 ;tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z02=h2

q
dz0

ððx0 � xÞ2 þ z02Þ
3=2 dx0

¼ E0

2p

Z lðtÞ

�lðtÞ

w0ðx0Þ
hðx0; tÞjx0 � xj K � hðx0; tÞ2

4ðx0 � xÞ2

 !
� E � hðx0; tÞ2

4ðx0 � xÞ2

 !" #
dx0

¼ E0

2p

Z lðtÞ

�lðtÞ

w0ðx0Þ
hðx0; tÞ � ðx0 � xÞ @hðx0 ;tÞ

@x0

dG 2ðx0 � xÞ=hðx0; tÞð Þ
dx0

dx0; ð28Þ
where Kð�Þ and Eð�Þ represent the complete elliptic integrals of the first and the second kind. It should be noted here that the

arguments of the complete elliptic integrals are defined through the relations KðmÞ ¼
R p=2

0 ð1�m sin2 hÞ
�1=2

dh and

EðmÞ ¼
R p=2

0 ð1�m sin2 hÞ
1=2

dh, and the kernel Gð�Þ is given by
GðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

s
E

1
1þ s2

� �
: ð29Þ
The asymptotic behavior of the kernel Gð�Þ is
GðsÞ � p
2

signðsÞ; jsj 	 1; GðsÞ � 1
s
; s
 1:
Thus, at small distances it behaves similar to a KGD kernel, while for large distances it permits us to recover the local elas-
ticity relation associated with the plane strain regime. Indeed, to obtain a plane strain limit, one may set
hðx0Þ ¼ const:;w0ðx0Þ ¼ const: and take a limit lðtÞ ! 1 to obtain p ¼ E0w0=ð2hÞ, which is the local pressure-width relation
that is consistent with the plain strain limit.
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The first term in (3) has an elliptic form and can be integrated using (28). Unfortunately, the rest of the solution, which
consists of the logarithmic functions, cannot be integrated analytically. However, it can be approximated by an ellipse with
some suitable parameters. To this end, let’s approximate (3) by
Fig. 6.
the P3D
variatio
KIc ¼ 0:
this figu
wðx; zÞ � w1ðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z2=h2

q
þw2ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z2=h2

Dr

q
; ð30Þ

w1ðxÞ ¼
2
E0

ffiffiffiffiffiffi
2h
p

r
KIc; w2 ¼

2DrH
pE0

ln
hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � H2

p
h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � H2

p !
;

where the first term, due to toughness, remains unchanged, while rest of the solution is approximated by an ellipse, whose
maximum opening is the same as that for the logarithmic terms in (3), while its height hDr is taken as an unknown. It is
implicitly assumed that jzj < h=2 for the first term in (30), and jzj < hDr=2 for the second term in (30). To find the correspond-
ing pressure, one needs to substitute (30) into (28), which yields
pðxÞ ¼ E0

2p

Z lðtÞ

�lðtÞ

w1ðx0Þ
hðx0; tÞ � ðx0 � xÞ @hðx0 ;tÞ

@x0

dG 2ðx0 � xÞ=hðx0; tÞð Þ
dx0

dx0

þ E0

2p

Z lðtÞ

�lðtÞ

w2ðx0Þ
hDrðx0; tÞ � ðx0 � xÞ @hDrðx0 ;tÞ

@x0

dG 2ðx0 � xÞ=hDrðx0; tÞð Þ
dx0

dx0: ð31Þ
To find the unknown hDr, one may consider a plane strain limit of (31) (h ¼ const:;hDr ¼ const:;w1 ¼ const:;w2 ¼ const:, and
l!1), which gives
pps ¼
E0w1

2h
þ E0w2

2hDr
¼

ffiffiffiffiffiffi
2
ph

r
KIc þ

DrH
phDr

ln
hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � H2

p
h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � H2

p !
; ð32Þ
where pps denotes the plane strain limit of pðxÞ calculated using (31). Since, for the case of plane strain, the pressure is known
and is given by (2), one may find hDr by equating this plane strain pressure and (32) to obtain
hDr ¼
H
p

ln
hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � H2

p
h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 � H2

p !
1� 2

p
arcsin

H
h

� �� ��1

: ð33Þ
For completeness, it is noted that only one ellipse is used in situations when h ¼ H, in which case w1ðxÞ ¼ 4 �wðxÞ=p and
w2ðxÞ ¼ 0. The implementation of the approximation for the non-local elastic interactions requires us to replace the proce-
dure for calculating the pressure using (27) with the approximation given by (31). More details about numerical schemes for
the P3D model with non-local elasticity and with this non-local elasticity approximation are given in Appendix A.
Comparison between the reference ILSA solution (blue and red solid lines), the P3D solution with non-local elasticity (blue and red dashed lines) and
solution with approximate non-local elasticity (black lines) in terms of fracture width variation versus z at x ¼ 0 (left column) and pressure

n versus x (right column). The parameters for the computation are the same as for Fig. 2. Two values of fracture toughness KIc ¼ 0 (top row) and
94 MPa m1=2 (bottom row) are considered, and all results are presented for time instant t ¼ 604 s. (For interpretation of the references to colour in
re legend, the reader is referred to the web version of this article.)
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To illustrate the accuracy of the approximation, Fig. 6 compares the fracture opening versus z at the borehole (i.e. x ¼ 0)
and the pressure variation versus x calculated using the full elasticity integral (27) (dashed blue and red lines), the approx-
imation given by (30) and (31) (solid black lines), and the reference ILSA solution (solid blue and red lines). The parameters of
the problem are chosen to be the same as for the Fig. 2. Two values of fracture toughness KIc ¼ 0 (blue lines for ILSA and full
elasticity P3D) and KIc ¼ 0:94 MPa m1=2 (red lines for ILSA and full elasticity P3D) are considered, and all results are pre-
sented for time instant t ¼ 604 s. As can be seen from the figure, the pressure, calculated using the approximation (31), is
very close to that calculated using (27). Moreover, the difference between the two is much smaller than the difference
between one of them and the reference ILSA solution. This shows that the use of an approximation in the evaluation of elas-
ticity integral does not introduce a noticeable error in the pressures. In terms of the fracture width, there is some visual dif-
ference between the two-ellipse approximation given by (30) and the P3D solution that utilizes full elasticity and whose
width is calculated using (3). However, Eq. (3) can also be used for the purpose of calculating the fracture width of an approx-
imate elasticity solution instead of (30). In this case, the two P3D solutions become nearly indistinguishable, similar to the
pressure variations.

With regard to the numerical implementation, the pressure calculation using Eq. (31) requires the numerical evaluation
of the two one-dimensional integrals. This is much more efficient than the numerical evaluation of the two-dimensional
integral (27).

5. Curved fracture tip

Fig. 5 shows that the use of non-local elastic interactions in a P3D model, described in Section 4.1, leads to a more accu-
rate approximation. Moreover, Section 4.2 describes how to avoid the numerical evaluation of the elasticity integral (27),
which makes the calculations faster. The P3D model with these improvements may already be sufficient for an accurate
and fast hydraulic fracturing simulator. However, it possible to improve the model even further. The modified P3D model
has been improved to such an extent that the biggest discrepancies between the P3D and the reference ILSA solutions, shown
in Fig. 5, are due to the flat tip assumed by the P3D model. To overcome this problem, this section aims to introduce a curved
fracture tip to allow the P3D geometry to resemble the ILSA geometry more closely. Since full elasticity is used in the P3D
model, and a toughness propagation criterion can be used in both the vertical and horizontal directions, it should be possible
to match the solution to a radial fracture propagating in the toughness dominated regime. This naturally introduces a curved
fracture tip for early times when the fracture is radial, and then a similar approach can be used later when the fracture breaks
through the stress barrier.

To introduce a curved fracture tip in a P3D model, we try to match the solution for a radial fracture propagating in the
toughness regime. Using the same coordinate system as shown in Fig. 1, the fracture opening for the radial solution is
wrad ¼
4KIcffiffiffiffiffi
pl
p

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2 � z2

q
; ð34Þ
where l is the half-length of the fracture and its radius at the same time. The corresponding fracture height is
hrad ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2

q
: ð35Þ
Eq. (34) can be used to calculate the effective width as
�wrad ¼
1
H

Z hrad=2

�hrad=2
wrad dz ¼ pKIc

2HE0
ffiffiffiffiffi
pl
p h2

rad; ð36Þ
which can be inverted to find
hrad ¼ �w1=2
rad ð2lÞ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p

HE0ffiffiffiffi
p
p

KIc

s
: ð37Þ
Eq. (37) is the analog of (5), but for the radial fracture, since it relates the height of the fracture to its effective width. To find
the fracture width as a function of the effective width, one may use (34)–(36) to find
wrad ¼
4H

phrad
�wrad

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2z

hrad

� �2
s

; ð38Þ
which is the analog of (3).
To be able to capture radial fracture propagation with the P3D model, Eq. (37) needs to be included into the P3D model.

First, if the fracture toughness is not zero, Eq. (5) can only be inverted for �w >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pH=2

p
KIc

.
E0. For smaller �w, an elliptic frac-

ture opening with the height H is used in the original P3D model. This can be clearly seen in Fig. 5, where there is a region of
constant fracture height near the tip for the case of non-zero toughness. To capture a radial fracture and a curved fracture tip,
Eqs. (37) and (38) should be used in this near-tip region. In situations when 2l > H, however, Eq. (37) is no longer valid since
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the fracture has reached the stress barrier. To ensure that the fracture height is continuous when 2l > H (given the continuity
of the effective width �w), Eqs. (5) and (36) should give the same result for h ¼ H. This implies that the fracture height and
width in the tip region should be calculated as
h ¼ �w1=2ðminf2l;HgÞ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p

HE0ffiffiffiffi
p
p

KIc

s
;

w ¼ 4H
ph

�w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffi
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2

r
KIc

E0
; ð39Þ
while outside of the tip region, i.e. for �w >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pH=2

p
KIc

.
E0, Eqs. (5) and (3) are used. Using Eq. (39) in the tip region, and (3)

and (5) elsewhere, ensure that the P3D fracture propagating in the toughness regime is radial at early times and features
curved fracture tips later when the fracture has broken through the stress barrier.

Unlike the toughness regime of propagation, the viscous regime has no near-tip region within which the fracture height is
constant and equal to H. This makes the introduction of a curved tip more complicated. First, a zone with constant fracture
height near the tip needs to be introduced, and only then one can incorporate a curved fracture tip. To produce a zone with a
constant fracture height near the tip, some effective fracture toughness, DKIc has to be introduced. Given the effective tough-
ness, Eq. (39) can be used to produce a curved tip. In situations when both the fracture toughness and the apparent tough-
ness are relevant, (39) is replaced by
h ¼ �w1=2ðminf2l;HgÞ1=4
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; ð40Þ
which is able to capture both viscous, toughness, and intermediate regimes (approximately). Even though (40) comes from
the solution for a radial fracture propagating in the toughness regime, given the level of approximation of the P3D model, it
can still be used for the fractures propagating in the viscous regime. The remaining question is how to find the value of the
apparent toughness that would give a reasonable approximation in the viscous regime. One possibility is to introduce an
apparent toughness based on the lateral propagation. In particular, a formula that is similar to (25) with Dr ¼ 0, can be used,
i.e.
DKIc ¼ C1=6
3 l01=3E02=3 dl

dt

� �1=3

d1=6
; ð41Þ
where C3 is a constant. Eq. (41) gives the value of the apparent toughness for the lateral (i.e. along x axis) propagation. This
apparent toughness is then used together with (40) to produce a curved fracture tip. The original formula (25) is obtained for
a KGD fracture, however, it utilizes near-tip asymptotic solutions that also apply for other geometries with smooth bound-
aries (see [15] for a justification of this). For this reason, (41) can be used to calculate the effective toughness in the lateral
direction. The remaining task is to determine the characteristic length d and the constant C3. At early times, when the frac-
ture should be radial, it is clear that d ¼ l, i.e. equal to fracture radius. It is found through a series of numerical experiments
that C3 ¼ 1:2 makes the aspect ratio of the P3D-modeled fracture equal to 1, even though the fracture is not exactly radial.
Once the fracture has reached the stress barrier, ILSA simulations show that the size and shape of the region where h < H
does not change as the fracture propagates. This implies that the characteristic length is constant and is related to the hor-
izontal size of the region with h < H, which is a small fraction of H. Numerical experiments show that d ¼ aH (a � 1:1� 10�2)
allows us to match the ILSA solutions accurately. It is clear that the characteristic length d changes dramatically as the frac-
ture breaks through the stress barrier, but it should be noted that the corresponding apparent toughness changes by less
than a factor of two. To preclude a jump in the apparent toughness, a continuous transition is implemented. In particular,
the characteristic distance is calculated as
d ¼ H 1
2

H � l
� �

lþH l� 1
2

bH
� �

aH þH l� 1
2

H
� �

H 1
2

bH � l
� � ð12 bH � lÞlþ l� 1

2 H
� 	

aH
1
2 bH � 1

2 H
; ð42Þ
where H is a Heaviside step function and b ¼ 1:5. Eqs. (40)–(42) together with the values of C3; a and b allow the P3D model
to capture a radial solution at early times (it is actually not exactly radial for the viscous and intermediate regimes) and
introduce a curved fracture tip for fractures that have broken through the stress barrier.

The method described here has a rigorous justification for the toughness regime, while it is more empirical for the viscous
and intermediate regimes, for which a number of fitting parameters are used. In addition, the introduction of a curved frac-
ture tip is a correction, which improves the representation of the fracture geometry, and increases the overall accuracy of the
P3D model. From this point, the P3D model with the approximate non-local elasticity operator and the curved tip is referred
to as an enhanced P3D model or EP3D.
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To check the accuracy of the EP3D model, Fig. 7 compares the results of the corresponding EP3D model (dashed lines) to
the reference ILSA solutions (solid lines). The parameters for the computation are the same as for Fig. 6. Blue lines correspond
to the viscous solution, i.e. with KIc ¼ 0, while the red lines represent the results with KIc ¼ 0:94 MPa m1=2. The top two pic-
tures compare fracture footprints at times t ¼ f37;101;200;401;604;1048g s, in which the footprints that correspond to
t ¼ 604 s are represented by thicker lines. The bottom four pictures are similar to the corresponding bottom four pictures
of Fig. 6, as they show the comparison in terms of fracture width, w, and pressure, p, versus x at z ¼ 0, and fracture width,
w, and pressure, p, versus z at x ¼ 0 at t ¼ 604 s. Fig. 7 shows that the EP3D model with a curved fracture tip is more accurate
than the equivalent P3D model with a flat tip, see Fig. 5. The fracture footprint is represented accurately from early times,
when the fracture is radial, to the end of the simulation, when the fracture shape is elongated due to the presence of stress
barriers. This is true for both viscous (blue lines) and toughness (red lines) regimes of propagation. The comparison of the
fracture widths and pressures at t ¼ 604 s further confirms the accuracy of the new EP3D model. One can also observe that
the constant pressure approximation in each vertical cross-section (i.e. along the z direction) is a reasonable assumption
even for the viscous regime, since noticeable pressure deviations are localized near the source and near the fracture tip.

To quantify the discrepancy between the predictions of the EP3D and ILSA models, the top pictures in Fig. 8 compare the
fracture height and length for different values of fracture toughness. Note that the other parameters are the same as for cal-
culations shown in Fig. 6, and that the height and length are calculated at t ¼ 604 s. In addition, the discrete ILSA results are
interpolated and are shown by a smooth line. The top pictures in Fig. 8 indicate that the classical P3D model is unable to
capture the fracture geometry accurately, unless the fracture toughness is sufficiently small that the fracture height and
the fracture length are estimated accurately (KIc � 0:25 MPa m1=2 for chosen parameters). At the same time, EP3D is able
to capture the fracture geometry accurately for all values of the fracture toughness. The bottom left picture in Fig. 8 shows
Fig. 7. Comparison between the predictions of the EP3D model (dashed lines) with the reference ILSA solutions (solid lines) for the same problem
parameters as for Fig. 6. The top two pictures compare fracture footprints at different time instants t ¼ f37;101;200;401;604;1048g s for KIc ¼ 0
(blue lines) and KIc ¼ 0:94 MPa m1=2 (red lines). The thick solid lines correspond to t ¼ 604 s. The bottom four pictures compare fracture widths and
pressures versus x at z ¼ 0 and fracture widths and pressures versus z at x ¼ 0 at t ¼ 604 s. Similarly, blue lines correspond to KIc ¼ 0, while solutions with
KIc ¼ 0:94 MPa m1=2 are indicated by red lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)



Fig. 8. Top pictures: comparison between the fracture height (left) and the fracture length (right) predictions calculated using ILSA, EP3D, and P3D
(original) models versus fracture toughness. Bottom left picture: computation time for ILSA, EP3D, and P3D models versus number of elements (number of
elements in the horizontal direction for ILSA). Bottom right picture: EP3D error defined in (43) versus number of elements for three different values of
fracture toughness, KIc ¼ 0 (viscous case, squares), KIc ¼ 0:47 MPa m1=2 (intermediate case, downward-pointing triangles), and KIc ¼ 0:94 MPa m1=2

(toughness case, asterisks).
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the computation time for all ILSA, EP3D, and classical P3D models. Three different meshes are considered, Nx ¼ 30;Nx ¼ 57,
and Nx ¼ 111. Here Nx represents the number of elements for the P3D and EP3D models. Since ILSA utilizes a
two-dimensional grid, the value of Nx represents the number of elements in the horizontal direction (i.e. along the x axis).
It is difficult to control the number of time steps in ILSA, since it utilizes adaptive time stepping. To ensure that the compu-
tation times are compared properly, the number of time steps for the EP3D and P3D models is taken to be the same as for
ILSA, namely Nt ¼ 39;Nt ¼ 171, and Nt ¼ 1104 respectively for Nx ¼ 30;Nx ¼ 57, and Nx ¼ 111. Comparison of the computa-
tional times shows that the EP3D model is approximately 7 times slower than the original P3D model. At the same time, the
ILSA model is approximately 100 times slower than the EP3D model for the meshes considered. Note that all calculations are
performed on the same computer with an Intel Xeon 2.53 GHz processor. All codes are developed using Matlab 2013a. To
estimate the overall performance of the EP3D model, these computational times have to be seen together with the accuracy
of the predictions, illustrated in the top pictures in Fig. 8. The bottom right picture in Fig. 8 shows the error of the EP3D
model relative to the ILSA results versus the number of elements used for the EP3D model. The error is defined as
Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh� heÞ2 þ ðl� leÞ2

h2
e þ l2

e

vuut ; ð43Þ
where h and l are the corresponding values of the fracture height and length calculated using the EP3D model, while he and le

represent the ‘‘exact’’ values calculated using the finest ILSA mesh. Three values of the fracture toughness are considered:
KIc ¼ 0 (viscous case), KIc ¼ 0:47 MPa m1=2 (intermediate case), and KIc ¼ 0:94 MPa m1=2 (toughness case). The error for
the viscous and toughness cases oscillates around 1%, which indicates that it is sufficient to use only a few elements in
the EP3D model to obtain an accurate answer, and further mesh refinement does not increase the accuracy. This is not
the case for the intermediate case of KIc ¼ 0:47 MPa m1=2, for which the error is larger and the mesh refinement leads to more
accurate results. It should be noted here, that the numerical scheme for the EP3D model switches between the toughness and
viscous asymptotic solutions (for the tip element), so it is able to accurately represent either the viscous or the toughness
regime, but not the intermediate case. This is the primary reason for the large error observed for the intermediate case. This
error can be mitigated by using an appropriate asymptotic solution that captures the transition from the viscous to tough-
ness regimes of propagation, see [29]. This is, however, beyond the scope of this study.

It is important to keep in mind the assumptions behind the modified EP3D model. Clearly, since full elastic interactions
are used, the fracture does not always have to be mature (i.e. elongated) for the EP3D model to apply, which is confirmed in
Fig. 7. At the same time, a plane-strain solution for the fracture width is used for every vertical cross-section. So, considerable
discrepancies are expected in situations when the actual fracture width is not approximated accurately by a plane-strain
solution. This can happen when there is both pronounced height growth through the stress barriers and the aspect ratio
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of the footprint is small. When both the break-through and the aspect ratio are small, the width profile is close to an ellipse,
and the EP3D model is accurate, see footprints at early times in Fig. 7. When the fracture height growth is substantial, but the
aspect ratio is high (i.e. the fracture is elongated), the conditions in each cross-section are close to plane-strain, in which case
the EP3D model again performs well.

To examine the accuracy of the new EP3D model at the limits of its applicability, two extreme cases are considered next.
The set of reference parameters for the extreme cases is H ¼ 10 m for the height of the reservoir layer, l ¼ 0:1 Pa s for the
fluid viscosity, m ¼ 0:2 for the Poisson’s ratio, Q0 ¼ 0:01 m3/s for the inlet flux and Dr ¼ 0:25 MPa for the magnitude of the
stress barriers. Two values of Young’s modulus are considered, namely E ¼ 1 GPa and E ¼ 2 GPa. In addition, two values of
fracture toughness are considered, KIc ¼ 0 and KIc ¼ 1:5 MPa m1=2. Fig. 9 shows the comparison between the fracture foot-
print predictions of the P3D model (dashed lines) and the ILSA solutions (solid lines) at different time instants for the case
E ¼ 1 GPa. The top picture corresponds to the case with no toughness (blue lines), while bottom picture compares the results
for KIc ¼ 1:5 MPa m1=2 (red lines). As can be seen from the figure, the EP3D model is accurate at early times for both the vis-
cous and toughness regimes, while it becomes less accurate for the more mature fractures.

Moreover, the discrepancy is larger for the toughness solution, for which the aspect ratio is smaller. Since the toughness
solution becomes significantly less accurate, it is clear that it is not the viscous correction that affects the discrepancy for the
viscous solution, but the elasticity. The cause of the inaccurate elastic interactions is the use of a plane strain solution for
each vertical cross-section. The errors for the fracture lengths for t ¼ 801 s are 2% and 5% respectively for the viscous and
toughness solutions. The errors for the fracture heights at the origin for t ¼ 801 s are 5.4% and 8.5% respectively for the vis-
cous and toughness solutions. To highlight the degree of improvement of the EP3D model, this error needs to be compared
with the accuracy of the original P3D model for t ¼ 801 s, which predicts a fracture half-length of 48 m and half-height of
43 m for the viscous case, and a fracture half-length exceeding 80 m and almost no height growth for the case
KIc ¼ 1:5 MPa m1=2. The even more extreme case with E ¼ 2 GPa is considered next. Fig. 10 shows a similar comparison
between the predictions of the new EP3D model (dashed lines) and the reference ILSA solutions (solid lines) for the viscous
case (blue lines) and KIc ¼ 1:5 MPa m1=2 (red lines). The disagreement between the predictions of the EP3D model and ILSA
solutions is more pronounced compared to that in Fig. 9. This is related to the smaller aspect ratio of the footprints. In this
case the plane-strain solution for the fracture width in each vertical cross-section deviates significantly from the correspond-
ing ILSA width profile. The errors of the fracture lengths for the last considered time instant are 4% for the viscous solution
and 7% for the toughness solution. The errors of the fracture heights at the origin for t ¼ 800 s are 8% and 13% for the viscous
and toughness solutions respectively. The magnitude of the error should be judged based on the fact that Fig. 10 represents
an extreme case, which challenges the applicability of the EP3D model. To establish a reference point, it is instructive to com-
pare these results to the predictions of the original P3D model. For the viscous case, i.e. the top picture in Fig. 10, the original
P3D model predicts a fracture half-length of 31.5 m and half-height of 293 m for t ¼ 800 s. These numbers show that the
predictions of the original P3D model are very inaccurate compared to the ILSA solution, and cannot be used for any practical
applications. The situation with the toughness regime, i.e. KIc ¼ 1:5 MPa m1=2, is even worse, since the original P3D model
becomes unstable as soon as the height of the fracture reaches a critical value. As follows from [26], the value hu beyond
which the classic P3D model exhibits runaway height growth, is given by
hu ¼
8þ
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which is approximately equal to hu � 14 m for the considered problem parameters. As can be seen from Fig. 10, the fracture
height (the ILSA solution) exceeds the critical value at early times (note that the critical half-height is 7 m). Thus, due to run-
away height growth, the classic P3D model fails to give a solution, while the corrected EP3D model continues to give a solu-
tion albeit somewhat less accurate.

6. Summary

This paper aims to improve the original P3D model for hydraulic fracturing by making the predictions more accurate, but
not compromising the computational efficiency. In the case of no leak-off, the primary weaknesses of the classic P3D model
are its inability to capture the viscous resistance in the vertical direction and its inability to account for non-local elastic
interactions. The latter, in particular, precludes capturing the toughness propagation regime in the lateral direction. To
include the viscous resistance in the vertical direction, a toughness solution with an apparent toughness is used. To obtain
an expression for the appropriate apparent toughness, a similar approach is applied to a one-dimensional KGD hydraulic
fracturing model, where a fracture propagating in the viscous regime is approximated by a solution that corresponds to
the toughness regime and features an apparent toughness. A comparison with the results obtained using the fully planar
HF simulator ILSA show that the introduction of an apparent toughness allows us to capture fracture height growth accu-
rately using the P3D model even when there is no toughness. To account for the toughness propagation criterion in the lat-
eral direction, non-local elasticity is introduced. First, the fracture width in every cross-section is approximated by a plane
strain solution, and then the appropriate elasticity integral is evaluated numerically. This approach also allowed us to include
the asymptotic solution in the tip element, which makes it possible to capture fracture propagation in either the viscous or
the toughness regimes. Comparison with the ILSA results demonstrate that the use of non-local elasticity significantly



Fig. 9. Comparison between the fracture footprints generated by the EP3D model using a curved tip (dashed lines) and ILSA scheme (solid lines) for the set
of reference parameters, Young’s modulus E ¼ 1 GPa, KIc ¼ 0 (top picture) and KIc ¼ 1:5 MPa m1=2 (bottom picture). Footprints are shown at time instants
t ¼ f51;100;204;403;599;801g s for the top picture and t ¼ f50;100;200;399;601;801g s for the bottom picture.

Fig. 10. Comparison between fracture footprints generated by the EP3D model (dashed lines) and ILSA scheme (solid lines) for the set of reference
parameters, Young’s modulus E ¼ 2 GPa, KIc ¼ 0 (top picture) and KIc ¼ 1:5 MPa m1=2 (bottom picture). Footprints are shown for time instants
t ¼ f51;112;203;401;600;800g s for the top picture and t ¼ f52;99;201;401;600;801g s for the bottom picture.
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increases the accuracy of the P3D model, especially when the lateral fracture propagation is in the toughness regime. To
make the computation of non-local elastic interactions faster, the fracture opening in the vertical direction is approximated
by two ellipses, for each of which the elasticity integral is calculated analytically over the vertical axis. This effectively
reduces the computation of the 2D integral to two 1D integrals, which makes the resulting P3D model significantly more
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efficient. The last improvement of the P3D model lies in replacing the flat fracture tip by a curved tip. To do this, the P3D
model is tuned to match the analytic solution for a radial fracture propagating in the toughness regime. In this case, mature
fractures (i.e. those that have reached the stress barriers) feature a tip region, in which the properties of a radial fracture
dictate the shape of the fracture tip. A radial fracture propagating in the viscous regime is also accounted for approximately
by introducing an apparent toughness in the lateral direction. The accuracy of the resulting enhanced P3D (EP3D) model is
verified by comparing the results to the predictions of the fully planar HF simulator ILSA. It is shown that the EP3D model is
able to capture the evolution of hydraulic fractures from the initial stages, when the fracture is radial, to mature stages when
the fracture has broken through the stress barrier. Moreover, this evolution can be captured when fractures propagate in
either the viscous or toughness regimes. To examine the limits of the applicability, extreme cases are considered. Even
for such extreme parameters, the accuracy of the EP3D model is on the order of 10%, while the error of the original P3D
model is measured in hundreds of percent.
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Appendix A. Numerical scheme

This appendix aims to describe the numerical solution of the P3D model with all its variations, i.e. starting from the orig-
inal model with plane strain elasticity, and finishing with the model that captures full elastic interactions together with the
curved fracture tip. For all cases, it is assumed that there is no leak-off and that a point source is used to represent the well-
bore. To effectively deal with the moving boundary problem, a scaled x coordinate is introduced, n ¼ x=lðtÞ (0 6 n 6 1), where
lðtÞ is a half-length of the fracture. In this case, Eq. (6) can be rewritten as
@ �w
@t
� n

l
dl
dt
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þ 1

l
@�qx
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dðnÞ: ð44Þ
where the averaged flux is given by
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Eqs. (44) and (45) are common for all methods, while the differences come from the procedures for calculating w; h and p
based on the values of �w. For the purpose of the numerical computations, both the spatial variable n and the temporal vari-
able t are discretized. Uniform discretization in n is used, i.e. ni ¼ i=Nn; i ¼ 0 . . . Nn;Dn ¼ 1=Nn, where Nn is number of spatial
discretization points. At the same time, nonuniform temporal discretization is used to address the fact that fractures tend to
grow rapidly at earlier stages requiring a smaller time step, and then slow down significantly later in the simulation allowing
for coarser time increments.

To achieve the nonuniform discretization of the temporal variable that is consistent with the features of the problem, the
time step is taken so that tjþ1 � tj / tcj , where j ¼ 0 . . . Nt and c is some power that is between 0 and 1. Here Nt is number of
time steps and c is chosen based on the regime of propagation. The choice of power law-type behavior is based on the fact
that the fracture length and width are known to obey power-law time dependence in some significant regimes of propaga-

tion. By using �w j
i ¼ �wðni; tjÞ to denote the approximation for the effective fracture width and �q j
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the approximation for the fluxes, Eq. (44) can be discretized at point ni as
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where Vðtjþ1Þ ¼ dl=dt is the velocity of propagation of the fracture, while di0 is the Kronecker delta that ensures that the
source belongs exclusively to the element with index 0 located at the origin. Eq. (46) features a backward time difference,
in which case its solution utilizes an appropriate iterative scheme at each time step to solve the nonlinear system of algebraic
Eq. (46). In spite of this complexity, the L-stable backward Euler scheme allows us to avoid stability issues and to use an

arbitrary time step, see [15] in which a similar approach is used. Two boundary conditions are used, namely, �wjþ1
Nn
¼ 0,

and �qxjn¼1 ¼ 0. In addition, a symmetry condition �qjþ1
x;�1

2
¼ ��qjþ1

x;12
is utilized. For completeness, it is noted that the fracture

length is updated using lðtjþ1Þ ¼ lðtjÞ þ Vðtjþ1Þðtjþ1 � tjÞ. The difference in implementation of various P3D models lies in com-

putation of Vðtjþ1Þ and the fluxes �qjþ1
x;i�1

2
as a function of �w.
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A.1. Original P3D model

To complete the scheme for the numerical implementation of the original P3D model, the fluxes need to be prescribed. To
do so, firstly the fracture height needs to be evaluated. There are two cases. First, when �w >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pH=2

p
KIc=E0, Eq. (5) is inverted

to find h. In situations when �w 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pH=2

p
KIc=E0, a constant height h ¼ H is used. The fracture opening, appearing in (45) is

taken from (3) for the first case, while if h ¼ H, the following elliptic opening is chosen w ¼ 2ðE0Þ�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 4z2

p
p. This proce-

dure is summarized in Table 1. Using this aforementioned procedure, the integral in (45) is evaluated numerically using the
trapezoidal rule for each spatial discretization point. To evaluate the pressure gradient, it is noted that in the case h > H, Eqs.
(2) and (5) can be used to compute
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This formula automatically reduces to @p=@n ¼ 2E0=ðpHÞ@ �w=@n for the case h ¼ H. The fluxes are computed using (47) as
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where the sum appears from the numerical integration. Here the z coordinate is discretized as zk ¼ � h
2þ Dzk; k ¼ 0 . . . Nz,

where Dz ¼ h=Nz, so that different element sizes are used for each cross-section (since h varies with n). The quantities that

need to be evaluated at the mid points i:e: at niþ1
2


 �
are treated using linear interpolation. To find the fracture velocity, Eq.

(44) is integrated over the tip element, which, together with the zero flux boundary condition, allows us to find
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Using (48) and (49), the resulting system of nonlinear algebraic Eq. (46) is solved iteratively for each time step for
�wjþ1

i ; i ¼ 0 . . . Nn. Once the effective width, �w, is calculated, formulas (5) and (3) allow us to find fracture footprint and
opening.

A.2. Original P3D model with the correction for viscous height growth

The implementation of the correction for the viscous resistance does not require many modifications. First, Eq. (26) can be
rewritten as
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Here DKjþ1
Ic;i denotes the correction to the fracture toughness at point ni, while hjþ1

i are calculated from (5), where the fracture

toughness is replaced by KIc þ DKjþ1
Ic;i . Since a moving mesh is used, ~h j

i is not just h j
i , because the calculated velocity is not

exactly vertical in this case. Since the physical position x has to be fixed during the calculation of the vertical velocity,

one needs to take ~hj
i ¼ I h j

i

h i
ðlðtjþ1ÞniÞ, where the latter means the interpolation of hj

i (i ¼ 0 . . . Nn) at the point lðtjþ1Þni. The

values of the constants in (50), which are used for the computations, are C ¼ 0:175 and C2 ¼ 0:5. The solution of the nonlinear

Eq. (50) together with hjþ1
i coming from (5), obtained using Newton’s method, produces both hjþ1

i and DKjþ1
Ic;i . Finally, the frac-
Table 1
Calculation of fracture height h and fracture width w for different parameters in
the original P3D model.

Computation of h Computation of w Condition

Inner region Invert (5) Use (3) �w >
ffiffiffiffiffi
pH
2

q
KIc
E0

Tip region h ¼ H w ¼ 2
E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � 4z2

p
p �w 6

ffiffiffiffiffi
pH
2

q
KIc
E0
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ture width, w, is calculated by replacing KIc with KIc þ DKjþ1
Ic;i in (3). With these modifications in the calculation of h and w, the

solution is obtained by solving Eq. (46) together with (48) and (49).

A.3. P3D with non-local elasticity

The implementation of non-local elasticity requires more significant modifications. First, since the pressure is evaluated
at z ¼ 0, there should be an element located at this point, which requires Nz to be even (so that the total number of elements
Nz þ 1 is odd). With this meshing, Eq. (27) can be discretized as
p j
i ¼ eC j

ikm þ eC j
ið�kÞm


 �
W j

kmn
�w j

n ¼ C j
in

�w j
n; ð51Þ
where index ‘‘�k’’ means evaluation at negative nk, which allows us to build symmetry into the influence coefficients C j
in (to

avoid capturing element with k ¼ 0 twice, eC j
ið�kÞm is added only for k P 1),
eC j
ikm ¼ �

E0lðtjÞ
8p

Z nkþ1
2Dn

nk�1
2Dn

Z zmþ1
2Dz

zm�1
2Dz

dz0 dn0

lðtjÞ2ðn0 � niÞ
2 þ z02


 �3=2 ¼ �
E0

8p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðtjÞ2 ni � n0ð Þ2 þ z02

q
lðtjÞ ni � n0ð Þz0

24 35n0¼nkþ1
2Dn;z0¼zmþ1

2Dz

n0¼nk�1
2Dn;z0¼zm�1

2Dz

; ð52Þ
and
W j
kmn ¼

wjðlðtjÞnk; zmÞ
�w j

k

dkn: ð53Þ
Here w jðlnk; zmÞ in (53) denotes the evaluation of the fracture opening according to (3) (or ellipse) at x ¼ lðtjÞnk and z ¼ zm and

dkn is the Kronecker delta. Relations (52) and (53) permit the computation of the elasticity matrix C j
in featured in (51). Note,

however, that this elasticity matrix is a nonlinear function of �w j
n, where this nonlinear dependence comes implicitly through

the variation of h and explicitly from (53). The fluxes are calculated using the discretization of (45) as
�qjþ1
x;iþ1

2
¼ � 1

Hlðtjþ1Þl0
pjþ1

iþ1 � pjþ1
i

Dn

XNz

k¼0

w3 lðtjþ1Þniþ1
2
; zk


 �
Dz; ð54Þ
where the values of the pressure are now calculated using (51).
Unfortunately, calculating the pressure using the hypersingular integral (27) leads to poor accuracy for the tip element. To

deal with this, the asymptotic solution can be built into the tip element, as was done in [15]. To do so, it is assumed that the
tip element follows the asymptotic solution (obtained for the KGD fracture), and the fracture propagation velocity is calcu-
lated accordingly. In particular, if the fracture propagates in the viscous regime, the velocity of propagation is calculated as
Vðtjþ1Þ ¼
E0

l0
w3ðlðtjþ1Þð1� DnÞ; 0Þ

b3
mðlðtjþ1ÞDnÞ2

; ð55Þ
where bm ¼ 21=3 � 35=6 and wðlðtjþ1Þð1� DnÞ;0Þ is the fracture opening at z ¼ 0 for the penultimate node. If fracture propagates in
the toughness regime, the velocity is adjusted in a way that the toughness propagation criterion holds for the last element, i.e.
wðlðtjþ1Þð1� DnÞ;0Þ ¼
ffiffiffiffiffiffi
32
p

r
KIc

E0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðtjþ1ÞDn

q
: ð56Þ
In situations when the fracture propagates in the intermediate regime, one of the asymptotic solutions is used. The criterion
for switching between the two solutions is the following: at the beginning, the velocity of propagation is calculated for both
viscous and toughness regimes, and then the minimum velocity is chosen. Physically, there are two resistance mechanisms –
viscous and toughness. Taking the minimum velocity implies that only the dominant resistance is considered. In situations
when both mechanisms contribute, the velocity, and consequently the fracture length, are overestimated. Since fractures
typically evolve from the viscous regime to the toughness regime (assuming no leak-off), the error introduced during the
transition zone is mitigated later when the toughness regime dominates. Moreover, comparison with ILSA simulations shows
that even during the intermediate regime, the length was overestimated only by approximately 5%.

To compensate for the introduction of the extra condition comprising the formula for the velocity of fracture propagation,
and to ensure a zero flux boundary condition at the tip, the pressure at the tip element needs to be treated as an unknown, as

was also done in [15]. Knowing the velocity of propagation, Eq. (49) can be used to find the tip pressure, pjþ1
Nn

, as
pjþ1
Nn
¼ pjþ1

Nn�1 �
Hlðtjþ1Þl0DnVðtjþ1Þ �wjþ1

Nn�1
2

1� 1
2 Dn

� 	
PNz

k¼0w3 lðtjþ1ÞnNn�1
2
; zk


 �
Dz

: ð57Þ
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Finally, the algorithm with full elasticity consists of solving (46), where the fluxes are computed using (54), the pressure
(for all nodes, except the tip element) is calculated using (51)–(53), the fracture propagation velocity is taken such that either
(55) or (56) is satisfied depending on the regime of propagation, while the pressure at the tip element is taken from (57). It
should also be noted that the algorithm for calculating the apparent toughness, based on (50), is included in its original form,
as it is independent of the type of elasticity equation that is used for calculations.

A.4. P3D with approximate non-local elasticity

The only difference between the P3D algorithm with an approximate non-local elasticity operator from the one described

above, which includes full elasticity, lies in calculation of elasticity matrix C j
in in (51). By approximating both h and �w as

piece-wise constant functions, Eq. (31) can be reduced to
Table 2
Calcula

Inne

Tip r
p j
i ¼ C j

1;ik þ C j
1;ið�kÞ


 �
W j

1;kn þ C j
2;ik þ C j

2;ið�kÞ


 �
W j

2;kn

h i
�w j

n ¼ bC j
in

�wj
n; ð58Þ
where bC j
in is an approximation to C j

in, index ‘‘�k’’ denotes the evaluation of C j
1;ik at �nk in order to capture symmetry (as

before, to avoid capturing element with k ¼ 0 twice, terms with ‘‘�k’’ are added only for k P 1), and
C j
1;ik ¼

E0

2p
G

2lðtjÞðn0 � niÞ
h lðtjÞn0; tj
� 	 !�����

n0¼nkþ1
2Dn

n0¼nk�1
2Dn

; W j
1;kn ¼

w1ðlðtjÞnk; tjÞ
hðlðtjÞnk; tjÞ �wk

dkn;

C j
2;ik ¼

E0

2p
G

2lðtjÞðn0 � niÞ
hDr lðtjÞn0; tj
� 	 !�����

n0¼nkþ1
2Dn

n0¼nk�1
2Dn

; W j
2;kn ¼

w2ðlðtjÞnk; tjÞ
hDrðlðtjÞnk; tjÞ �wk

dkn: ð59Þ
The kernel G is defined in (29), w1 and w2 as functions of h are given in (30), while hDr is defined in (33). In situations when

h ¼ H;w1ðlðtjÞnk; tjÞ ¼ 4 �w j
k

.
p and w2 ¼ 0. Evaluation of w1ðlðtjÞnk; tjÞ;w2ðlðtjÞnk; tjÞ, and hDrðlðtjÞnk; tjÞ all require the

evaluation of hðlðtjÞnk; tjÞ, which in turn depends on �wðlðtjÞnk; tjÞ ¼ �w j
k. In this case, similar to the full elasticity matrix, the

approximate elasticity matrix, bC j
in, is a nonlinear function of �w j

k. Note that since a piece-wise constant approximation for
h is used (because �w is also piece-wise constant), spatial derivatives of h and hDr in (31) do not influence the result.

The P3D model with the approximate full elasticity requires the solution of the same equations as the model for the full
elasticity, except that the subroutine for evaluating the fluid pressure (51)–(53) is replaced by one corresponding to (58) and
(59).

A.5. Curved fracture tip

To introduce a curved fracture tip, the algorithm needs to be updated in several places. The computation of the fracture
height, h, and the width in the tip region is now performed using (40). Table 2 summarizes the procedure and replaces the
corresponding procedure for the original P3D model that is summarized in Table 1. In addition to the different formulas for h
and w, the apparent toughness DKIc is evaluated differently. In particular, Eq. (41) is used to find the fracture toughness in the
tip region. The evaluation of the fluid pressure using (58) and (59) has two modifications. First, since h < H in the tip region

and only one ellipse is used to approximate the fracture width, w1ðlðtjÞnk; tjÞ ¼ 4H ðphðlðtjÞnk; tjÞÞ �w j
k

.
and w2 ¼ 0. Unfortu-

nately, since @h=@x in (31) is singular at the tip element (if a curved fracture tip is used), the piece-wise constant approxi-
mation for h precludes an accurate evaluation of the elasticity integral. To deal with this problem, we seek a correction that
makes the elasticity integral accurate. One way to estimate the accuracy of the elasticity equation is to consider a radial frac-
ture propagating in the toughness regime. Since, in this case, every vertical cross-section is an ellipse, the radial fracture can
be accurately represented by the P3D model with a curved fracture tip. If one uses (35) and (36), and evaluates the fluid pres-
sure using (58) and (59), then the resultant pressure should be constant (since the fracture propagates in the toughness
regime). All deviations from the constant in this case are due to the inaccuracy caused by the evaluation of the elasticity
equation. The results of implementing this procedure show that the calculated pressure deviates from a constant near the
tip and so a correction is required, see the dashed line in Fig. 11. Note that there is a fracture volume at the tip that is
tion of the fracture height h, the fracture width w, and the apparent toughness DKIc for different parameters for the P3D model with curved tip.

Computation of h Computation of w Computation of DKIc Condition

r region Invert (5) Use (3) Use (50) �w >
ffiffiffiffiffi
pH
2

q
KIcþDKIc

E0

egion Use (40a) Use (40b) Use (41) �w 6
ffiffiffiffiffi
pH
2

q
KIcþDKIc

E0
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not accounted for in the pressure calculations. In other words, since the fracture opening is zero at the tip, the opening of the
corresponding element is zero and so this element does not contribute to the pressure. To introduce a correction, one may
account for the extra volume by introducing a non-zero tip element for pressure calculations, see Fig. 11. By assuming that
the fracture opening follows the toughness asymptotic solution for the tip element, it can be shown that the volume of the
extra element is 1=8 of that of penultimate element. Then, to determine both h and w1 for the extra element, its height is
taken as hNn

¼ hNn�1=r, where r ¼ 1:825 is a constant. The value of r is found by minimizing the error between the numer-
ically calculated pressure and the constant (which corresponds to the exact solution). Fig. 11 shows that the fluid pressure
inside the radial fracture, that is calculated using the extra tip element, is accurate everywhere to within 1% error.

To summarize, the numerical scheme for the P3D model with a curved tip with the approximate non-local elasticity and
correction for viscous height growth consists of solving (46), where the fluxes are computed using (54), the pressure (for all
nodes, except the tip element) is calculated using (58) and (59), the fracture propagation velocity is taken such that either
(55) or (56) is satisfied depending on the regime of propagation, while the pressure at the tip element is taken from (57).
Procedures for calculating the fracture height, width, as well as the apparent toughness are summarized in Table 2.

A.6. Initial condition

Even though the initial condition does not affect the solution in the long term, it is important to specify an appropriate
initial condition, since, otherwise, the numerical algorithm may not converge at the first time step. For both viscous and
toughness regimes of propagation it is assumed that at a given small time instant t1 the hydraulic fracture is radial and
the fracture opening corresponds to the solution for ‘‘dry’’ crack, i.e. given by
Fig. 11
numeri
the cor
wrad ¼
4ðKIc þ DKIcÞffiffiffiffiffi

pl
p

E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � x2 � z2

q
; ð60Þ
where the apparent toughness DKIc is calculated based on (41). By calculating the volume of the fracture from (60) and
equating it to the pumped volume (no leak-off), we obtain
Q0t ¼ 8
3

ffiffiffiffi
p
p

KIc þ C1=6
3 l01=3E02=3l1=6 dl

dt
1=3


 �
l5=2

E0
: ð61Þ
The latter differential Eq. (61) is solved numerically to find lðt1Þ; dlðt1Þ=dt, and DKIcðt1Þ. Note that the differential equation
reduces to an algebraic equation in the toughness regime, in which case
lðt1Þ ¼
3E0Q 0t1

8
ffiffiffiffi
p
p

KIc

� �2=5

;
dl
dt
ðt1Þ ¼

2
5

3E0Q 0

8
ffiffiffiffi
p
p

KIc

� �2=5

t�3=5
1 ; DKIcðt1Þ ¼ 0:
Having lðt1Þ; dlðt1Þ=dt, and DKIcðt1Þ, the effective width is calculated from (60) as
�wðt1Þ ¼
2
ffiffiffiffi
p
p
ðKIc þ DKIcðt1ÞÞlðt1Þ3=2

HE0
ð1� n2Þ; ð62Þ
while, since the fracture is radial, its height is given by
hðt1Þ ¼ 2lðt1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
: ð63Þ
. Variation of the normalized pressure versus the normalized distance for a radial fracture propagating in the toughness regime, calculated
cally using (58) with and without the correction (left picture). The right picture schematically shows the location of the extra element that is used for
rection.
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This procedure for calculating the initial condition is exact if the fracture propagates in the toughness regime, while it gives
an approximate initial condition if the fracture propagates in the viscous regime. One may also consider using the solution
for a radial fracture propagating in the viscous regime [31]. However, since the P3D model can represent such a fracture only
approximately, it is sufficient to use an approximation for the initial condition as well.
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