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We describe two novel XFEM schemes for modeling fluid driven fractures both of which exploit an impli-
cit level set algorithm (ILSA) for locating the singular free boundary that occurs when the fluid and frac-
ture fronts coalesce. Both schemes use the mixed P&W XFEM formulation developed in Gordeliy and
Peirce (2013) [1] to incorporate the singular asymptotic solution in the fracture tips. The proposed level
set strategy also exploits the asymptotic solution to provide a robust procedure to locate the free bound-
ary, which is not restricted to symmetric growth of the fracture geometry or to a particular mode of prop-
agation. The versatility of the ILSA-XFEM scheme is demonstrated by sampling different asymptotic
behaviors along the so-called MK edge of parameter space (Detournay, 2004) [2] by making use of a uni-
versal asymptote (Garagash, 1998 [3]; Garagash and Detournay, 2000 [4]). The two ILSA-XFEM schemes
differ in the enrichment strategies that they use to represent the fracture tips: a scheme with full tip
enrichment and a simpler, more efficient, scheme in which the tip asymptotic behavior is only imposed
in a weak sense. Numerical experiments indicate that the XFEM-t scheme, with full tip enrichment,
achieves an Oðh2Þ asymptotic convergence rate, while the XFEM-s scheme, with only signum enrichment
to represent the crack geometry, achieves an OðhÞ asymptotic convergence rate.

Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction The mathematical model for propagating HF involves coupling
Hydraulic fractures (HF) are cracks that are induced to propa-
gate in solid media due to the injection of viscous fluids. HF occur
both naturally, e.g., magma intrusions from pressurized chambers
[5] or the drainage of water under glaciers [6], and are used in a
growing number of geological engineering applications, e.g. to
pre-fracture ore-bodies to enhance continuous block-caving in
mining [7,8]; to enhance fracture networks in geothermal reser-
voirs as well as in oil and gas reservoirs to enhance the recovery
of hydrocarbons [9,10]; for waste disposal and the remediation of
contaminated soils by the injection of oxidizing reagents [11,12].
Recently in the oil and gas industry there has been considerable
deployment of HF in so-called unconventional gas reservoirs that
have extensive natural fractures in a rock mass dominated by
shales with a fine laminated structure. There is thus considerable
interest in being able to model propagating HF within the
framework of the finite element method, which is well established
as a flexible tool for modeling complex heterogeneous material
behavior. The relatively recently developed XFEM [13–15] has
great potential for the efficient numerical modeling of propagating
HF within the FEM paradigm.
the quasi-static equilibrium equations for the impermeable elastic
medium with the Reynolds lubrication equation, which expresses
the conservation of the viscous fluid within the crack, whose veloc-
ity, averaged over the width of the crack, is related to the pressure
gradient via Poiseuille’s law. Although the 2D elastic equilibrium
equations are local PDEs, when the problem is expressed in terms
of variables defined along the crack curve in the form of the crack
opening displacement and the fluid pressure applied to the faces of
the crack, the model equations are reduced by one dimension but
are nonlocal in the sense that the pressure field at one point of the
crack depends not only on the crack width at that point, but also on
the crack widths at all other points of the crack. The model is fur-
ther complicated by the fact that the Reynolds equation is a degen-
erate PDE and the fact that the crack geometry is not known a
priori. Furthermore, if the fluid fills the crack, so that the fluid front
does not lag behind the fracture front, but rather the two fronts
coalesce, then the fluid pressure field at the tip of such a propagat-
ing fracture is typically singular.

Until the recent paper by the authors [1] there had been very
little published on XFEM models of HF with full elasto-hydrody-
namic coupling. In that paper, the free boundary was located in
space–time by specifying fixed fracture growth increments in
space and determining the corresponding time-step. This approach
is limited to symmetric situations in which the prescribed growth
increments at both fracture tips are assumed to occur at the same
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time. Naturally, this situation does not generalize to problems in
which the growth rate at the fracture tips is different. In addition,
the time-step was found to be weakly dependent on the fracture
toughness, which makes the location of the appropriate time-step
prone to numerical instability. The objective of the current paper is
to explore an alternative methodology for locating the free bound-
ary, which is not restricted to symmetric situations and which is
more robust when the pressure field is singular at the fracture tips.
In this case estimating the front velocity from Poiseuille’s law in-
volves the numerical evaluation of an indeterminate form, in
which the square of the vanishing width field is multiplied by
the gradient of the singular pressure field, which tends to infinity
as the distance to the crack tip is decreased. This singular behavior
precludes the use of standard front location methods commonly
used for free boundary problems, such as: front tracking, the vol-
ume of fluid method, and the level set method, all of which require
an accurate velocity field.

To obtain a more general free boundary location scheme, we as-
sume that the time-step is prescribed and that the fracture free
boundary points are located by an implicit level set algorithm (ILSA)
[16]. This implicit level set methodology was developed for a
scheme in which a displacement discontinuity method (DDM)
was used to provide a solution of the elastic component of the HF
problem. It uses the tip behavior of the crack opening displacement,
obtained from detailed asymptotic analysis, to determine the loca-
tion of the unknown fracture boundary as well as to prescribe the
crack opening in the tip elements. Because of the characteristics
of the XFEM solution to the elastic crack problem, the implicit level
set methodology cannot be applied directly to the HF propagation
problem. In [17] it was established that the XFEM, with the appro-
priate enrichment, provides an Oðh2Þ solution to the Neumann to
Dirichlet Map in which pressures applied to the fracture surfaces
are prescribed and the XFEM is used to determine the correspond-
ing crack opening displacement – or crack widths. Conversely, the
XFEM, even with the appropriate enrichment, only provides an
OðhÞ solution to the Dirichlet to Neumann Map, in which a pre-
scribed width field is used to determine the corresponding pressure
field. In order to use the implicit level set methodology along with
an XFEM representation of the elastic crack component of the HF
problem, it is necessary to use the P&W mixed boundary value for-
mulation (see [1,17]) of the crack problem in order to incorporate
the asymptotic width fields within the tip elements that are typi-
cally not differentiable at the fracture front. Away from the crack
tips, within the so-called channel region, the pressure field is ob-
tained from the lubrication equation and is in turn used to deter-
mine the crack opening in the XFEM component of the P&W
scheme. This mixed decomposition of the boundary value problem
makes it possible to take advantage of the superior accuracy of the
Neumann to Dirichlet Map to determine accurate widths within the
channel region, which comprises the bulk of the crack.

The implicit level set algorithm assumes a trial fracture front
position and that the corresponding fracture widths and fluid pres-
sures have been determined by solving the mixed, coupled lubrica-
tion and elasticity equations. The trial fracture opening, in the
closest channel element to the fracture tip, is then used to estimate
the distance to the fracture boundary points by inverting the local
asymptotic expansion for the fracture width as a function of the
distance from the tip. If this estimate of the location of the fracture
boundary differs from that of the trial fracture front, then the trial
front position is updated. This process is repeated until the near-tip
width field is consistent with the location of the free boundary – at
which time the process is deemed to have converged.

Updating the location of the fracture tips requires a complete
update of the contributions to the stiffness matrix of those ele-
ments for which the intersection with the fracture has changed
or elements that are intersected by the crack for the first time,
and for all neighboring elements at the crack tip that have crack
tip enrichment. The computational burden for those elements
requiring crack tip enrichment is particularly cumbersome due to
the additional integrals involving singular terms that need to be
evaluated. In the case of the ILSA-DDM it was found that it is pos-
sible to use a crude representation of the tip asymptotic behavior –
namely that the average crack opening in the tip element matches
the fluid volume given by the asymptotic tip width. This weak-
form imposition of the tip asymptotic behavior was found to give
remarkably good results. In this paper, in addition to an ILSA-XFEM
approach, which uses the full enrichment appropriate for the mode
of propagation under consideration, we have developed a similar
approach to the ILSA-DDM within the XFEM framework in which
we dispense with any crack tip enrichment other than the sign
enrichment required to define the crack geometry. The perfor-
mance of these two different ILSA-XFEM approaches is compared
in the numerical experiments presented.

In Section 2, we describe the governing elasto-hydrodynamic
equations and their non-dimensionalization. In Section 3, we de-
scribe the mixed P&W XFEM formulation used in the construction
of the coupled HF algorithm suitable for modeling singular free
boundary problems in which there is no fluid lag; we describe
two distinct discretizations of the elasto-hydrodynamic equations
one including full enrichment at the crack tips and the other in
which the crack tips are described using only sign enrichment
and prescribed crack opening displacements that can be imposed
in a weak sense to only part of the last tip elements; we also de-
scribe the level set algorithm used to locate the free boundary. In
Section 4, we present the results of numerical experiments in
which we compare these XFEM solutions to published reference
solutions along the so-called MK edge for dimensionless tough-
nesses K ¼ 0, 1, 2, and 3 [18,19]. This class of reference solutions
was chosen to illustrate the versatility of the level set approach
at locating the free boundary for a specified time-step and which
is not restricted to symmetric fracture growth increments. In these
numerical examples the performance of the scheme with full tip
enrichment is compared to that of the scheme in which only sign
enrichment is used throughout the crack. We also perform a con-
vergence study in which the XFEM solutions are compared to the
so-called M vertex solution for K ¼ 0 [18]. Finally, we present re-
sults of a simulation in which a hydraulic fracture propagates
through a bi-material interface.

2. Problem formulation

2.1. Plane strain model

We follow the formulation presented in [1]. Consider a hydraulic
fracture propagating in an impermeable elastic medium in a state of
plane strain whose stiffness is characterized by the Young’s modu-
lus E and Poisson’s ratio m (see Fig. 1), and whose breaking strength
is characterized by the fracture toughness KIc . The fracture is as-
sumed to be driven by the injection of a Newtonian fluid, having
a dynamic viscosity l, from a point source located at the origin of
the coordinate system ðX;YÞ, at a constant volumetric rate Q o per
unit length in the out-of-plane direction. In two dimensions, the
fracture geometry is represented by a curve RðtÞ evolving with time
t. Along RðtÞ we introduce a curvilinear coordinate s, whose origin
s ¼ 0 is located at the fluid source. For convenient comparison with
published reference solutions and for the sake of brevity, we pres-
ent a formulation of the problem in which the fracture grows sym-
metrically with respect to the fluid source so that its two wings are
characterized by the length ‘ðtÞ and the crack width wðs; tÞ, where
�‘ðtÞ < s < ‘ðtÞ. However, the algorithms we describe do not ex-
ploit the symmetry of the problem and are used, with trivial mod-
ification, to model the non-symmetric crack growth in which a



Fig. 1. This figure represents a hydraulic fracture of length 2‘ that is assumed to
grow along the curve R within the solid medium occupying the region V with
boundary C due to the injection of a viscous fluid at a rate Qo . The fracture depicted
is assumed to be subject to a normal confining stress Ŝn only and no shear stress.
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hydraulic fracture propagates towards a bi-material interface,
which is presented in Section 4.7. During the propagation of
hydraulic fractures it is possible that the fluid may lag behind the
fracture tips, which results in two moving fluid fronts within the
fracture that are located at s ¼ �‘f ðtÞ. Other than the additional
work tracking the fluid fronts ‘f ðtÞ, the presence of a non-zero fluid
lag is in fact simpler to model than the situation in which the fluid
and fracture fronts coalesce, i.e., ‘f ðtÞ ¼ ‘ðtÞ. In this paper we restrict
ourselves to this latter case because it involves a singular free
boundary problem, which is the more challenging situation for
the front location algorithm. The medium is also assumed to be sub-
jected to a uniform stress state (such as the ambient geological con-
fining stress) that can equivalently be represented by normal and
shear tractions applied along the crack, denoted by ŜnðsÞ and ŜsðsÞ.
The solution to this moving boundary problem involves determin-
ing: the complete fracture curve RðtÞ, the fracture width wðs; tÞ,
and the net pressure pðs; tÞ ¼ pf ðs; tÞ � ŜnðsÞ throughout the fracture
(�‘ðtÞ < s < ‘ðtÞ), in which pf ðs; tÞ is the fluid pressure, for a speci-
fied time t within the interval ð0; TÞ.

Finally, throughout the paper it is convenient to employ scaled
material parameters K 0, E0 and l0, defined by

K 0 ¼ 4
2
p

� �1=2

KIc; E0 ¼ E
1� m2 ; l0 ¼ 12l ð1Þ
2.2. Governing equations

2.2.1. Elasticity equations and corresponding boundary conditions
The displacement field U and the stress field S in the domain are

defined with respect to the Cartesian coordinate system ðX;YÞ (see
Fig. 1) centered at the fluid source point and are represented by the
components Ui and Sij, respectively. The equilibrium equation, in
the absence of body forces, and Hooke’s law for the linear elastic
medium can be written in the following tensor form

r � S ¼ 0 ð2Þ

S ¼ C : EðUÞ ð3Þ

in which C is the tensor of elastic constants, and EðUÞ is the strain
tensor associated with the displacement U,

EðUÞ ¼ 1
2
ðrUþ ðrUÞTÞ ð4Þ
The domain is denoted by V, while its outer boundary is de-
noted by C, and the fracture surface is denoted by R (see Fig. 1).
At the outer boundary C, the displacement is assumed to be given
by a known function GðX;YÞ,

UjC ¼ G ð5Þ

The two crack faces are identified as Rþ and R�, and the values
of the displacement and the stress along each face are denoted by
Uþ and U� and by Sþ and S�, respectively. The unit normal and tan-
gent vectors along the crack are denoted by n and s, respectively,
and are oriented as shown in Fig. 1. This definition of n and s is
consistent with the outward normal direction for the crack face R�.

The normal displacement jump at a point s along the crack is
equal to the crack width,

½½U��R � n ¼ ðU
þ � U�Þ � n ¼ wðs; tÞ ð6Þ

Since the normal and shear tractions are continuous across the
crack, the normal traction Sn is equal to the net pressure (but oppo-
site in sign), and the shear traction Ss is equal to the applied shear
stress. These constraints result in the conditions:

Sþn ¼ S�n ¼ �pðs; tÞ; Sþs ¼ S�s ¼ ŜsðsÞ ð7Þ

Here the superscript þ or � again denotes the crack face along
which the stress component is computed. The normal and the shear
tractions are obtained from the stress tensor as S�n ¼ nTðS� � nÞ and
S�s ¼ sTðS� � nÞ.

2.2.2. Lubrication equation and corresponding boundary conditions
The fluid flux within the fracture, qðs; tÞ, is assumed to be re-

lated to the fluid pressure gradient and the fracture width via
Poiseuille’s law,

q ¼ �w3

l0
@pf

@s
ð8Þ

and must satisfy the conservation law,

@w
@t
þ @q
@s
¼ Q odðsÞ ð9Þ

Here dðsÞ is the Dirac Delta function, which represents the fluid in-
put into the fracture from a point source located at the origin s ¼ 0.
By combining (8) and (9), the Reynolds lubrication equation is
obtained,

@w
@t
¼ 1

l0
@

@s
w3 @pf

@s

� �
þ Q odðsÞ ð10Þ

The boundary conditions for the fluid flow include the condi-
tions that the fracture width and fluid flux vanish at the crack tips,
namely:

wð�‘ðtÞ; tÞ ¼ 0; qð�‘ðtÞ; tÞ ¼ 0 ð11Þ

By integrating the local mass balance equation (9) over the crack
length and over the time interval since injection started, and using
the boundary condition (11), the following expression for the global
fluid balance is obtained,Z ‘ðtÞ

�‘ðtÞ
wðs; tÞds ¼ Qot ð12Þ
2.2.3. Propagation condition and tip asymptotics
Eqs. (2)–(11) would provide a closed system sufficient to deter-

mine the fracture width and the fluid pressure if the fracture half-
length ‘ðtÞwas known. An additional constraint, required for locat-
ing the moving boundary ‘ðtÞ, is given by the propagation condi-
tion, which is typically formulated in terms of the asymptotic
behavior of the fracture width at the crack tips. The appropriate
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Fig. 2. The stationary solution bXmkðbfmkÞ for a semi-infinite fracture propagating
with a constant velocity V is denoted by the solid red line. The toughness
asymptote, represented by the dashed black line, is valid for bfmk Kbfk ¼ 10�5. The
viscous asymptote, represented by the dash-dotted magenta line, is valid forbfmk Jbfm ¼ 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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asymptotic relationship between the fracture width w and the dis-
tance from the fracture tip ŝ depends upon the regime in which a
hydraulic fracture is propagating. The propagation regime is, in
turn, determined by the relative importance of two competing dis-
sipative processes, namely: the energy required to break the rock,
which is characterized by the rock toughness; and the energy dis-
sipated by driving the viscous fluid through the fracture, which is
characterized by the fluid viscosity. These two limiting regimes
of hydraulic fracture propagation are associated with the following
explicit relationships between w and ŝ:

(i) the toughness dominated regime (the K-vertex solution, see
[4]), is characterized by the classic square root behavior of Linear
Elastic Fracture Mechanics [20]

w � K 0

E0
ŝ1=2;

ŝbLmk

< bfk ¼ 10�5 ð13Þ

where bLmk is an intermediate length scale defined below;
(ii) the viscosity dominated regime (the M-vertex solution, see

[21]), is characterized by the asymptotic behavior

w � bm
l0V
E0

� �1=3

ŝ2=3;
ŝbLmk

> bfm ¼ 1 and bm ¼ 21=335=6 ð14Þ

The appropriate asymptotic solution, which spans these two
limiting asymptotes, can also be obtained from the solution for a
semi-infinite crack steadily propagating with a constant tip veloc-
ity V [3,4]. Introducing the scalings ŝ ¼ bLbf, wðŝÞ � cW bXðbfÞ and
pðŝÞ � bP bPðbfÞ for this problem, the dimensionless groups

bGm ¼
l0V=E0cW 3=bL2

¼
bLmcW 3=bL2

; bGk ¼
K 0=E0cW=bL1=2

¼
bL1=2

kcW=bL1=2
ð15Þ

can be identified in which bLk is the toughness length scale and bLm is
the viscous length scale defined by

bLk ¼
K 0

E0

� �2

; bLm ¼
l0V
E0

The intermediate scaling, for which the toughness and viscous ef-
fects carry equal weight, is obtained by equating bGm ¼ 1 ¼ bGk,
which yields the intermediate length, width, and pressure scalesbLmk, cW mk and bPmk that can be expressed in the form

bLmk ¼ bL3
k=
bL2

m;
cW mk ¼ bL2

k=
bLm; bPmk ¼ E0bLm=bLk ð16Þ

Using this intermediate scaling, wðŝÞ � cW mk
bXmkðbfmkÞ and ŝ ¼ bLmk

bfmk

imply the following universal asymptotic behavior

w �
bL2

kbLm

bXmk

bL2
mbL3
k

ŝ

 !
; ŝ! 0 ð17Þ

In Fig. 2 we plot the universal asymptote bXmkðbfmkÞ, the toughness
asymptote bXmkðbfmkÞ � bf1=2

mk for bfmk ! 0 corresponding to (i) above,
and the viscous asymptote bXmkðbfmkÞ � bm

bf2=3
mk for bfmk !1 and

bm ¼ 21=335=6 corresponding to (ii).

2.3. Scaling

The governing equations can be rewritten in a dimensionless
form by following a scaling procedure similar to that described
in [2]. In order to achieve this, the following dimensionless vari-
ables are introduced,

t ¼ t�s; X ¼ ‘�x; Y ¼ ‘�y; s ¼ ‘�f; ‘ðtÞ ¼ ‘�cðsÞ ð18Þ

wðs; tÞ ¼ w�Xðf; sÞ; pðs; tÞ ¼ p�Pðf; sÞ ð19Þ

qðs; tÞ ¼ QoWðf; sÞ ð20Þ
UðX;YÞ ¼ w�uðx; yÞ; SðX;YÞ ¼ p�rðx; yÞ ð21Þ

Ŝn ¼ p�r̂n; Ŝs ¼ p�r̂s ð22Þ

where t�, ‘�, w� and p� are the characteristic scales for the time, the
length, the crack width, and the net pressure that are active in the
problem. The dimensionless variables are: the time s, the Cartesian
coordinates ðx; yÞ, the tangential coordinate along the crack f, the
crack half-length c, the net pressure P, the fluid pressure Pf , the
crack width X, the fluid flux W, the displacement u and the stress r.

When the governing equations are reformulated in terms of
these dimensionless variables, the following four dimensionless
groups can be identified in the governing equations:

Ge ¼
p�‘�
E0w�

; Gv ¼
Q ot�
w�‘�

; Gm ¼
l0‘�Q o

w3
�p�

; Gk ¼
K 0‘1=2

�
E0w�

ð23Þ

In order to reformulate the governing equations in terms of dimen-
sionless variables that are of order one, three of these groups are set
to 1. These three constraints combined with a characteristic length
or time scale of interest, such as the maximum fracture length ex-
pected in the simulation or the specified maximum injection time
T, are used to identify the four characteristic scales t�, ‘�, w� and
p�. Proceeding in this way two distinct scalings emerge:

� Toughness scaling: Ge ¼ Gv ¼ Gk ¼ 1. Combining these three
conditions with the definitions of the dimensionless groups
(23), we obtain the following power-law relationships between
the characteristic length, width, pressure and the characteristic
time scale t�:
‘k ¼
E0Q o

K 0

� �2=3

t2=3
� ; wk ¼

K 02Q o

E02

 !1=3

t1=3
� ; pk

¼ K 04

E0Qo

 !1=3

t�1=3
� ð24Þ
The dimensionless viscosity in this scaling Gm ¼ l0E03Qo

K 04
:¼M is con-

sidered a parameter.
� Viscosity scaling: Ge ¼ Gv ¼ Gm ¼ 1. Combining these three con-

ditions with the definitions of the dimensionless groups (23),
we obtain the following power-law relationships between the
characteristic length, width, and pressure and the characteristic
time scale t�:
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‘m ¼
E0Q 3

o

l0

 !1=6

t2=3
� ; wm ¼

l0Q3
o

E0

 !1=6

t1=3
� ; pm

¼ ðl0E02Þ1=3
t�1=3
� ð25Þ
The dimensionless toughness in this scaling Gk ¼ K 04

l0E03Qo

� �1=4
:¼ K

¼M-1=4 is considered a parameter.

The governing equations and boundary conditions can then be
rewritten in the following dimensionless form:

� Equilibrium equation
r � r ¼ 0 ð26Þ
� Hooke’s law
r ¼ C : eðuÞ ð27Þ
in which C is the scaled elasticity tensor, C ¼ C=E0, and eðuÞ is the
strain tensor associated with the scaled displacement u and scaled
coordinates ðx; yÞ,
eðuÞ ¼ 1
2
ðrx;yuþ ðrx;yuÞTÞ ð28Þ
� Boundary conditions for the displacement and stress fields
ujC ¼ g ð29Þ

½½u��R � n ¼ ðuþ � u�Þ � n ¼ Xðf; sÞ ð30Þ

rþn ¼ r�n ¼ �Pðf; sÞ; rþs ¼ r�s ¼ r̂sðfÞ ð31Þ
where g ¼ G=w� is the scaled prescribed displacement at the outer
boundary C, and r�g ¼ S�g =p� for g ¼ n; s are the scaled normal and
shear stresses;
� Poiseuille’s law
W ¼ �X3 @P
f

@f
ð32Þ
� Conservation law
_Xþ @W
@f
¼ dðfÞ ð33Þ
where we use the notation _X ¼ @X
@s;

� Boundary conditions at the crack tips
Xð�c; sÞ ¼ 0; Wð�c; sÞ ¼ 0 ð34Þ
� The Reynolds lubrication equation
_X ¼ @

@f
X3 @P

f

@f

 !
þ dðfÞ ð35Þ
� The global volume balance condition
Z c

�c
Xdf ¼ s ð36Þ
� The Propagation condition using the universal asymptote: In
order to map the tip behavior of a finite fracture to that of the
universal M-K asymptote defined in (17), we identify V with
the instantaneous velocity of the finite fracture, which, in the
viscous scaling, reduces to the form V ¼ _‘ ¼ ‘m

t�
_cðsÞ. Now

w ¼ wmXðf̂Þ ¼ cW mk
bXmkðbfmkÞ and ŝ ¼ ‘mf̂ ¼ bLmk

bfmk along with
the above relation between V and _c yields the appropriate map-

ping from bXmk to X
X � K
4

_cðsÞ
bXmk

_cðsÞ2

K6 f̂

 !
; f̂	 1 ð37Þ
From Fig. 2 we see that the limiting toughness asymptote applies
when bfmk 6

bfk ’ 10�5 so that:
X � K f̂1=2;
_cðsÞ2

K6 f̂ 6 bfk ’ 10�5 ð38Þ
and the limiting viscous asymptote applies when bfmk P bfm ’ 100:
X � bm _cðsÞ1=3f̂2=3;
_cðsÞ2

K6 f̂ P bfm ’ 100 ð39Þ
Here, f̂ is the scaled distance from the crack tip: f̂ ¼ c� f when the
neighborhood of the crack tip is at f ¼ 
c, respectively.

3. The ILSA-XFEM scheme for propagating hydraulic fractures

3.1. Mixed P&W XFEM scheme for a crack in an elastic medium

In this paper we use the mixed P&W scheme (see [17]) in which
the crack opening displacement in a neighborhood Rt of the crack
tip is prescribed while the pressure is prescribed in the interior of
the crack Rc ¼ R n Rt:

XðfÞ ¼ XtðfÞ; f 2 Rt ; PðfÞ ¼ PcðfÞ; f 2 Rc ð40Þ

The appropriate XFEM formulation is then used to determine
the crack opening displacement along Rc . Estimates of the pres-
sure field within the neighborhood Rt of the tip can also be deter-
mined, however these are likely to be inaccurate due to the
singular nature of the pressure field at the tip. Instead of using
the pressure field that has been determined from the elasticity
equation, the pressure in the tip elements is determined from
the lubrication equation by matching the flux to the change in
the asymptotic tip volume that has occurred over the given time
step Ds. The so-called P !W scheme, which was also described
in [17], is only suitable for problems with a fluid lag in which
the fluid pressure is finite at the fluid front and will not be dis-
cussed in this paper.

3.1.1. Weak formulation
We use the localized mixed hybrid formulation introduced by

Zilian and Fries [22] to specify the displacement jump Xt along that
part of the domain which is adjacent to the crack boundary Rt , and
follow the formulation described in [23] for the rest of the domain.
The domain V is discretized into a mesh F of non-overlapping

quadrilateral elements e each of which occupies the region Vh
e , such

that: V ¼ [
e2F

Vh
e . The subset of elements that overlap with that part

of the crack Rt along which Xt is prescribed is denoted B:

B ¼ fe 2 F : Vh
e \ Rt – £g. The domain V is thus artificially parti-

tioned into two domains: Vo and [
e2B

Vh
e , where Vo ¼ V n [

e2B
Vh

e con-

tains all elements that do not overlap with Rt .
The displacement in V is approximated by elements of the trial

space Uh
u ¼ fuhjuh 2 U; uh ¼ g on Cg while variations are taken

from the test space Vh
u ¼ fvhjvh 2 U; vh ¼ 0 on Cg. Here U is a fi-

nite-dimensional subspace of the Sobolev space
H1ðV n RÞ � H1ðV n RÞ that consists of the shape functions repre-
senting the discretization uh. The domain V n R that does not con-
tain the crack R is assumed to be piecewise Lipshitz. The test and
trial functions are assumed to be discontinuous in a direction nor-
mal to the crack R.

For a test or trial function uh, the corresponding strain eðuhÞ is
computed from (28), while the corresponding stress can be ob-
tained from Hooke’s law (27) to yield rðuhÞ ¼ C : eðuhÞ. However,
in each element e 2 B, the stress r is introduced as an auxiliary
tensor variable for which Hooke’s law (27) is weakly imposed. Fol-
lowing [22] we approximate r, by introducing the test (and trial)
tensor function space
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Sh
r ¼ frhjrh

ij ¼ rh
ji; rh

ij 2 H�1 h for i ¼ 1;2 and j ¼ 1;2g

in which H�1h is a finite-dimensional subspace of the space of func-
tions that are square-integrable in each element in B and which are
discontinuous at the element edges and in a direction normal to the
crack R. In the next subsection we define the shape functions for
this subspace on the element level for each e 2 B.

The discretized formulation of the elasticity problem (26)–(31),
(40) seeks to find ðuh;rhÞ 2 Uh

u � S
h
r such that, for all

ðvh; shÞ 2 Vh
u � S

h
r ,

0 ¼
Z

VonR
eðvhÞ : rðuhÞdV þ

Z
Rc

½½vh�� � ð�PcðfÞnþ r̂sðfÞsÞdf ð41Þ

þ
X
e2B

Z
Vh

e nR
eðvhÞ : rh dV þ

X
e2B

Z
Vh

e nR
sh : ðeðuhÞ � C�1 : rhÞdV ð42Þ

þ
X
e2B

Z
Rt;e

ð½½vh�� � nÞðn � frhg � nÞ

þ ðn � fshg � nÞð½½uh�� � n�XtðfÞÞ þ ð½½vh�� � sÞr̂sðfÞdf ð43Þ

where Rt;e ¼ Rt \ Vh
e ; here f�g denotes the averaged quantity ob-

tained from the two crack faces R�, i.e., frg ¼ 1
2 ðrþ þ r�Þ, and

½½v�� ¼ ðvþ � v�Þ denotes the jump of v across the crack.

3.1.2. Enrichment: sign and fixed radius tip enrichment
The fundamental idea behind the XFEM is to efficiently repre-

sent interfaces and cracks by augmenting the standard set of La-
grange shape functions by specialized enrichment functions in
elements around these features. Following [23] cracks are repre-
sented by two forms of enrichment, namely sign and tip enrich-
ment, as originally suggested by Moës et al. [13]. Sign
enrichment is necessary to define the geometry of the crack while
the tip enrichment is required to restore the order of convergence
expected of the underlying finite element discretization of the elas-
ticity problem, which degrades due to the presence of the singular
behavior at the crack tips. The sign enrichment is relatively inex-
pensive to implement compared to the tip enrichment, which re-
quires computationally intensive spatial integration of the
singular enrichment functions in the tip-enriched elements. In this
paper we will consider the performance of the XFEM scheme for
modeling propagating HF, with and without tip enrichment. The
details of these enrichment strategies are as follows:

(I) Sign enrichment: the crack geometry is defined by enriching
those elements that intersect the crack by the sign function
defined as follows:
sgðxÞ ¼ signð/ðxÞÞ; x 2 V ð44Þ
in which /ðxÞ ¼ �min
~x2~R
jx� ~xj is the signed distance function
that has different signs on the two sides of the crack or its
extension ~R. The curve ~R includes the crack and may extend
beyond each crack tip, in the direction tangent to the crack, to
the farthest edge of the encompassing finite element.
(II) Tip enrichment: singular behavior at the crack tip is cap-
tured by introducing specialized enrichment basis functions
that are obtained from special solutions of the elastic equi-
librium equations. In this paper we consider a general class
of tip asymptotic behavior in the limit as the distance f̂ to
the fracture tip tends to zero:
Xtðf̂Þ �
f̂!0 Af̂k; where

1
2
6 k < 1; ð45Þ
for some constant A. It can be shown [24] by local analysis of the

tip asymptotics that the corresponding pressure behavior is of

the form Pt �
f̂!0 1

4 Ak cotðpkÞf̂k�1 when 1
2 < k < 1. Consistent

with this asymptotic behavior, the appropriate enrichment
basis functions for the displacement and corresponding stress
fields are of the form (see [17]):

wu;k ¼ rkfsinðkhÞ; cosðkhÞ; sinðk� 2Þh; cosðk� 2Þhg ð46Þ

wr;k ¼ rk�1fsinðk�1Þh;cosðk�1Þh;sinðk�3Þh;cosðk�3Þhg ð47Þ
where ðr; hÞ are polar coordinates centered at the fracture tip,

so that the values h ¼ �p correspond to the two crack faces.
The tip enrichment comprises the four singular functions
fwu

j g defined in (46) that are used to represent the singular
behavior at the fracture tips. This enrichment is introduced at
all nodes that are within a prescribed radiusq from either crack
tip xtip, i.e., It ¼ fi 2 I : jxi � xtipj 6 qg, where xi 2 V denote
coordinates of the finite element node i, and I is the set of all
nodes. Sign enrichment is introduced for nodes in the set Is

comprising all the nodes of the elements cut by the crack,
excluding the nodes already in It , so that It \ Is ¼£. (For the
XFEM without tip enrichment, It ¼£, and the set Is then com-
prises all the nodes of the elements cut by the crack.)
The finite-dimensional Galerkin space U is defined by
U ¼ H1h � H1h and is spanned by the following shape functions:

H1h ¼
X
i2I

aiNiðxÞ þ RsðxÞ
X
i2I�s

biNiðxÞðsgðxÞ � sgðxiÞÞ

8<:
þRtðxÞ

X
i2I�t

NiðxÞ
X4

j¼1

cj
iðw

u
j ðxÞ � wu

j ðxiÞÞ

9=; ð48Þ

where x 2 V n R; Ni are the standard piecewise bi-linear Lagrange
basis functions; and ai; bi; c

j
i 2 R. Here I�s is the set of all nodes of ele-

ments that are cut by the crack and that have at least one node in Is,
and I�t is the set of all nodes in elements that have at least one node
in It . Naturally, Is # I�s , It # I�t , and I�s \ I�t – £ provided I�t – £. In
addition, if tip enrichment is being used, the two blending functions
RtðxÞ ¼

P
i2It

NiðxÞ and RsðxÞ ¼ 1� RtðxÞ are introduced to blend the
two enrichments (see [23,25]) so that the representation (48) main-
tains the partition of unity property [26], which is sufficient to ob-
tain an optimal convergence rate for the XFEM [27]. For the XFEM
without tip enrichment, these degenerate to I�s ¼ Is, I�t ¼£,
RtðxÞ ¼ 0 and RsðxÞ ¼ 1.

It should be noted that, for the XFEM without tip enrichment,
the displacement shape functions (48) are discontinuous along
the extended crack ~R, and the weak form (41)–(43) has to be refor-
mulated for the extended crack ~R. To keep a unified formulation of
the coupled XFEM schemes with different enrichment strategies
and to use the weak form (41)–(43) for either enrichment, in the
following we use the notation R to denote the extended crack
R ¼ ~R for the XFEM without tip enrichment and the actual crack
for the XFEM with tip enrichment. In other words, for both enrich-
ment strategies R represents the curve over which the shape func-
tions defined in (48) are discontinuous. In particular, for the XFEM
without tip enrichment, the line integrals in the tip elements in
(43) are computed over the extended elemental tip regions
Rt;e ¼ Rt \ Vh

e , in which Rt is the extension of the crack tip region
beyond the actual crack tip to the edge of the encompassing finite
element, in the direction tangent to the crack. Further details of
using the prescribed crack opening displacement XtðfÞ in the ex-
tended crack tip region are discussed in Section 3.2.

The stress in each element Vh
e , e 2 B, is represented by the shape

functions from the finite-dimensional space H�1h defined on an ele-
ment level as follows:

� For the XFEM with tip enrichment, we choose the radius of the
enrichment q so that all nodes of the elements in the set B are
located within the distance q from the closest crack tip, i.e.
[

e2B
Ie � It , where Ie denotes the set of all nodes in element e.
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Hence the displacement shape functions (48) do not involve

sign enrichment in the domain [
e2B

Vh
e , and the stress compo-

nents can be represented by the four singular functions fwr
j g

given in (47) and by standard Lagrange basis functions,

where x 2 [
e2B

Vh
e n R, and ae

i ; c
j;e
i 2 R:
H�1h ¼ [
e2B

veðxÞ : veðxÞ ¼
X
i2Ie

ae
i NiðxÞ þ

X
i2Ie

NiðxÞ
X4

j¼1

cj;e
i ðw

r
j ðxÞ � wr

j ðxiÞÞ if x 2 Vh
e ; veðxÞ ¼ 0 if x R Vh

e

( )
� For the XFEM without tip enrichment, the stress components
are represented by the sign enrichment and by standard
Lagrange basis functions,
H�1h ¼ [
e2B

veðxÞ : veðxÞ ¼
X
i2Ie

ae
i NiðxÞ þ

X
i2Ie

be
i NiðxÞðsgðxÞ � sgðxiÞÞ if x 2 Vh

e ; veðxÞ ¼ 0 if x R Vh
e

( )
where again x 2 [
e2B

Vh
e n R; ae

i ; b
e
i 2 R; and Ie denotes the set of

all nodes in element e.

3.1.3. Infinite elements
In modeling hydraulic fracture propagation in large-scale prob-

lems, the boundary conditions at a finite outer boundary are often
unknown. This can be resolved by modeling a fracture propagation
in an infinite domain, assuming a vanishing displacement at infin-
ity. To represent an infinite domain, we employ mapped infinite
elements that make it possible to capture a decaying far-field dis-
placement [28,29]. The details of the infinite elements used in this
paper are summarized in [1].

3.2. Discrete coupled equations

The P&W XFEM scheme described above makes it possible to
incorporate the asymptotic behavior of the width in the neighbor-
hood of the crack tip as a boundary condition. The advantage of
this scheme is that it can treat problems in which the fluid pressure
is singular at the crack tips, such as the viscous or toughness modes
of propagation for cracks that are completely filled with fluid, i.e.,
when cf ¼ c [30,19]. The coupled P&W scheme can easily be ap-
plied to the non singular boundary value problems with fluid lag,
i.e., when cf < c, however these will not be considered here. In or-
der to facilitate comparison with published reference solutions we
only consider the propagation of cracks along straight lines, so that
the deflection angle of the crack trajectory at each step of propaga-
tion is zero. This assumption does not limit the class of problems
that can be solved using the coupled P&W scheme. Indeed, this
restriction can be relaxed by incorporating an appropriate search
strategy (e.g., for the maximum tensile stress direction in the vicin-
ity of the crack tip) to identify the propagation direction of the
crack at each growth increment. Since the crack is assumed to
propagate along a straight line, the applied normal stress
r̂nðfÞ  r̂n is uniform along the crack and the fluid flow equations
(32) and (35) can be reformulated in terms of the gradient of the
net pressure @P

@f ¼ @Pf

@f . For the problems we consider, we also as-
sume that the shear stress applied along the crack faces vanishes:
i.e., r̂s ¼ 0.

The crack is divided into two crack tip regions
Rt ¼ ðf0; f1Þ [ ðfN; fNþ1Þ and a channel region Rc ¼ ðf1; fNÞ (see
Fig. 3). In general each tip region can have more than one element,
however, to simplify the presentation we assume that the tip re-
gions each comprise only one element. The width in the crack tip
elements is assumed to be governed by the applicable tip asymp-
tote selected from (38), (39) or (37). Thus the P&W XFEM scheme
uses the crack width boundary condition in the tip elements, and
the pressure boundary condition in the channel region ðf1; fNÞ,
according to (40). We consider two versions of the P&W XFEM,
namely the P&W XFEM-s scheme, which uses only sign enrichment
and no tip enrichment, and the P&W XFEM-t scheme, which uses
both sign enrichment and the tip enrichment appropriate to the
applicable asymptote.

The P&W XFEM-s scheme: we assume that the sign enrichment
is used in all channel elements and in each of the finite elements
containing the fracture tips. In the elements containing the frac-
ture tips, the sign enrichment extends in the fracture growth
direction, beyond the actual tip of the fracture, to the farthest
edge of the finite element (see Fig. 3(a)). The appropriate tip
asymptote (38), (39) or (37) is imposed in a weak sense by using
this asymptotic behavior for XtðfÞ in the tip integral in (43).
While the sign enrichment for this case actually extends beyond
the tip to the far edge of the encompassing finite element, in this
extended region it is assumed that XtðfÞ ¼ 0 for jfj > c, so that
there is no contribution from the tip asymptote to the weak form
beyond the crack tip.

The P&W XFEM-t scheme: we assume that the sign enrichment
covers only the channel elements and that crack tip enrichment
is used for the tip elements according to (48) (see Fig. 3(b)). It is
also assumed that blending of the two enrichments takes place
in the channel. Hence we choose the tip enrichment radius q so
that elements for which tip enrichment is applied completely cover
the tip regions ðf0; f1Þ and ðfN; fNþ1Þ.
3.2.1. The XFEM solution
The XFEM solution can be represented as a superposition of

solutions that approximate the width boundary condition in Rt

and the pressure boundary condition in Rc , given by (40). The aim
is to use the nodal net pressures in the channel and the asymptotic



Fig. 3. Discretization of the crack without fluid lag within a regular FEM mesh of square elements. The elements in the channel region Rc are single shaded while there is one
element in each of the two tip regions Rt , which are indicated by double shading.
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widths in the tips to reconstruct the appropriate boundary condi-
tions (40) for the XFEM.

In both schemes, we develop approximations of the pressure in
terms of the standard piecewise linear Lagrange hat functions asso-
ciated with the element midpoint nodes fiþ1=2 ¼ ðfi þ fiþ1Þ=2 (see
Fig. 3),

hiþ1=2ðfÞ ¼

f�fi�1=2
fiþ1=2�fi�1=2

; if fi�1=2 6 f < fiþ1=2

fiþ3=2�f

fiþ3=2�fiþ1=2
; if fiþ1=2 6 f < fiþ3=2

0; else

8>>><>>>: ð49Þ

the left edge hat function:

h1=2ðfÞ ¼
f3=2�f

f3=2�f1=2
; if f1=2 6 f < f3=2

0; else

(
ð50Þ

and the right edge hat function:

hNþ1=2ðfÞ ¼
f�fN�1=2

fNþ1=2�fN�1=2
; if fN�1=2 6 f < fNþ1=2

0; else

(
ð51Þ

At step M of the crack propagation, associated with the given
time s ¼ sM , the net pressure P is expanded in terms of the hat ba-
sis functions hiþ1=2ðfÞ associated with the nodal values Piþ1=2 as
follows:

Pðf; sMÞ �
XN

i¼0

Piþ1=2hiþ1=2ðfÞ; f 2 Rc ð52Þ

which provides a C0-continuous approximation of P within the
channel f 2 Rc . In the tip regions, depending on the value of the
dimensionless toughness K, the crack width is approximated by
the tip asymptote Wðf̂; _cÞ representing one of (38), (39), or (37),
and which can be expressed in the following general form involving
the fracture front velocity _cðsÞ:

X � Wðf̂; _cÞ; f̂! 0 ð53Þ

The front velocity can be approximated by the backward difference
approximation _c � ðc� coÞ=Ds, where Ds is the prescribed time-
step, co is the front position at the previous time-step, and c is
the current front position that has to be determined in the coupled
solution. For the tip enriched scheme the appropriate power-law
exponent k, which depends on the value of the dimensionless
toughness K, is employed for the singular tip enrichment within
the XFEM.

To implement this scheme it is convenient to construct an influ-
ence matrix, which is determined by solving a sequence of mixed
elastic boundary value problems. Firstly, the elasticity problem
(26)–(29) is solved using the XFEM to generate N þ 1 width basis
functions denoted by xiþ1=2ðfÞ that represent the jump in the nor-
mal displacement across R, and which are the solutions to the
mixed boundary value problem in which the prescribed pressures
in the channel are given by the basis functions hiþ1=2ðfÞ for
i ¼ 0 : N:

rþn ¼r�n ¼�hiþ1=2ðfÞ for f2Rc; rþs ¼r�s ¼0 for f2R ð54Þ

and for which the widths in the tip elements are forced to be zero,
i.e., XtðfÞ ¼ 0 for f 2 ðf0; f1Þ or f 2 ðfN; fNþ1Þ so that according to (43)
we have the weak condition

½½u��R � n ¼ 0 for f 2 Rt: ð55Þ

Secondly, to represent the influence of the tip widths on the crack
opening displacement in the channel region, the following mixed
elastic boundary value problem is solved. Using the XFEM, the
width function xtðfÞ is constructed that is a solution to the elastic-
ity problem (26)–(29) with the following boundary conditions

rþn ¼ r�n ¼ 0 for f 2 Rc; rþs ¼ r�s ¼ 0 for f 2 R ð56Þ

and

½½u��R � n ¼
Wðfþ c; _cÞ for f 2 ðf0; f1Þ
Wðc� f; _cÞ for f 2 ðfN; fNþ1Þ

�
ð57Þ

Due to the linearity of the elasticity problem, the width Xðf; sMÞ
along the crack corresponding to the pressure (52) and the pre-
scribed tip widths is given by the following linear combination:

Xðf; sMÞ � xtðfÞ þ
XN

j¼0

Pjþ1=2xjþ1=2ðfÞ ð58Þ

Now evaluating the width basis functions xjþ1=2ðfÞ at channel nodes
fi; i ¼ 1 : N, we obtain the influence matrix Dij ¼ xjþ1=2ðfiÞ. Thus, gi-
ven the nodal pressures Pjþ1=2; j ¼ 0 : N, the XFEM approximation
for the nodal widths in the channel can be written in the form

Xi ¼ xtðfiÞ þ
XN

j¼0

DijPjþ1=2; i ¼ 1 : N ð59Þ
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Note that for the tip enriched scheme, f0 and fNþ1 are located at the
actual fracture tips and enrichment with a power-law exponent k is
applied to those finite elements that lie within a radius q of the tips.
For the scheme with only sign enrichment, f0 and fNþ1 do not corre-
spond to the fracture tips, but rather to the intersection points of
the tip line segments and the boundaries of the finite elements con-
taining the tips.

3.2.2. Discretization of the fluid flow equations
By integrating the Reynolds equation (35) over the k th channel

element Dfk, and using central differencing for the fluxes, we ob-
tain the following equations for k ¼ 1 : N � 1:Z fkþ1

fk

_Xdf ¼ X3 @P
@f

� �kþ1

k

þ Dk0

� X3
kþ1

Pkþ3=2 �Pkþ1=2

fkþ3=2 � fkþ1=2
�X3

k

Pkþ1=2 �Pk�1=2

fkþ1=2 � fk�1=2
þ Dk0

where

Dk0 ¼
1; if 0 2 ðfk; fkþ1Þ
1
2 ; if 0 ¼ fk or 0 ¼ fkþ1

0; if 0 R ½fk; fkþ1�

8><>:
To approximate the integral

R fkþ1
fk

_Xdf, we use the backward differ-
ence approximation _X � X�Xo

Ds , where Xo represents the value at the
previous time step, and the Trapezoidal rule for evaluation of the

integral
R fkþ1

fk
Xdf. (Consistent with a backward difference approxi-

mation, all variables without a superscript are assumed to be eval-
uated at the current time-step.) Thus we obtain the following finite
volume discretization of the fluid flow equations in the channel:

1
Ds

Dfk

2
ðXk þXkþ1Þ �

Z fkþ1

fk

Xo df

 !

¼ X3
kþ1

Pkþ3=2 �Pkþ1=2

fkþ3=2 � fkþ1=2
�X3

k

Pkþ1=2 �Pk�1=2

fkþ1=2 � fk�1=2
þ Dk0 ð60Þ

where Dfk ¼ fkþ1 � fk and k ¼ 1 : N � 1. The integral
R fkþ1

fk
Xo df is

evaluated using the Trapezoidal rule as well, except for those chan-
nel elements which at the previous time step were in the tip zone
Rt , and for which this integral is evaluated using the asymptotic
solution (53) for XoðfÞ.

For the tip elements the finite volume approximation becomes:Z f1

�c

_Xdf � X3
1
P3=2 �P1=2

f3=2 � f1=2
andZ c

fN

_Xdf � �X3
N
PNþ1=2 �PN�1=2

fNþ1=2 � fN�1=2
ð61Þ

Finally, the integrals
R f1
�c

_Xdf and
R c

fN

_Xdf are approximated using
backward differencing by evaluating the tip volumes using the
asymptotic solution (53) at the current time-step and the previous
time-step, taking the difference, and dividing by Ds.

3.2.3. Iterative solution of the coupled equations
For a prescribed time-step Ds we assume a trial crack length c

at the end of the current time-step and determine the correspond-
ing N-vector of nodal widths X ¼ ðX1; . . . ;XN) and the ðN þ 1Þ-vec-
tor of pressures P ¼ ðP1=2; . . . ;PNþ1=2Þ. These 2N þ 1 unknowns are
then determined by solving the 2N þ 1 nonlinear equations com-
prising the discrete elasticity Eq. (59), which provides N equations,
coupled with the discrete Reynolds equation for the channel ele-
ments (60), which provides N � 1 equations, and the discrete Rey-
nolds equation for the two tip elements (61), which provides a
further 2 equations. An initial guess for the nodal quantities is then
chosen to be the value at the previous time-step, and the 2N þ 1
nonlinear equations are solved using Newton iteration until a pre-
scribed tolerance is reached.

3.3. Level set strategy for locating the free boundary

In this section we describe a technique that employs an itera-
tive level set approach to locate the unknown fracture front c at
each step of propagation. The algorithm we describe adapts to
the XFEM context the implicit level set algorithm (ILSA) that was
developed in [16] for modeling propagating hydraulic fractures
using the DDM. We will assume that at the mth front iteration,
the trial fracture front position cðmÞ is used as described in Sec-
tion 3.2 to determine the corresponding vector of nodal widths
XðmÞ and vector of nodal pressures PðmÞ. The trial fracture widths
at the nodes closest to the channel-tip boundary, namely XðmÞ2

and XðmÞN�1, are used to determine the distance to the closest fracture
front by inverting the asymptotic solution for the crack width as a
function of distance to the tip. This is used to determine a next iter-
ate cðmþ1Þ for the location of the fracture front. This process is re-
peated until convergence is achieved, at which stage the tip
widths Xðmþ1Þ

2 and Xðmþ1Þ
N�1 and the location of the fracture front

cðmþ1Þ are compatible with the tip asymptote.

3.3.1. Inversion of the tip width asymptote
Consider the crack tip located at f ¼ co at time so ¼ s� Ds that

has moved to an unknown location at f ¼ c at time s due to the
injection of fluid. We assume that the tip width asymptote is
known in the functional form (53), that may involve the front
velocity _cðsÞ. This form is applicable to the asymptotes (37)–
(39); here f̂ ¼ c� f.

We denote by T ðfÞ ¼ �f̂ the signed distance from a point f to
the fracture front c. For points inside the crack, T ðfÞ < 0. The front
velocity can be approximated by

_c ¼ �T ðfÞ � T
oðfÞ

Ds
ð62Þ

in which T o is the signed distance from point f to the front location
co at the previous time, which is known.

The asymptote (53) then becomes

X � W �T ;�T � T
o

Ds

� �
ð63Þ

The above form of the asymptote can then be inverted to yield

T ðfÞ ¼ �W�1ðXðfÞÞ ð64Þ

Thus given the value of the crack width X at point f, the inverse
mapW�1 provides an estimate of the distance to the fracture front.

Thus, after the crack width X and the signed distance T o have
been obtained at point f, the signed distance T ðfÞ is found as the
root of the nonlinear equation:

X�W �T ;�T � T
o

Ds

� �
¼ 0 ð65Þ

and the front is located at

c ¼ f� T ðfÞ ð66Þ

For the universal asymptote (37), where the map W is not
known in a closed form, the nonlinear equation (65) has to be
solved numerically. For the two limiting regimes (38) and (39),
however, it can be solved explicitly following [16]. For example,
in the toughness dominated regime (38), T is found as

T ðfÞ ¼ � X
K

� �2
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The corresponding solution for T for the viscosity case (39) is pro-
vided in detail in [16].

3.3.2. Iterative location of the free boundary
The steps of the iterative algorithm used to generate the results

presented in this paper are as follows. At time sM , a trial location of
the front c ¼ cðmÞ is chosen. The corresponding vector of nodal
widths XðmÞ and vector of nodal pressures PðmÞ are obtained using
one of the P&W XFEM schemes described in Section 3.2. Then,
using the nodal values XðmÞN�1 and T oðfN�1Þ, the signed distance T
is found as the root of (65), and the crack front is updated to

cðmþ1Þ ¼ fN�1 � T ð67Þ

The same technique can be used to determine the location of the
fracture front at the other tip. This procedure is repeated until con-
vergence is reached within a predefined tolerance dc,

jcðmÞ � cðm�1Þj < dc Dcðm�1Þ ð68Þ

where DcðmÞ ¼ cðmÞ � co is the estimate of the change in the crack
length at iteration m. For the results to be accurate, we must ensure
that the node fN�1 is within the range of validity of the tip width
asymptote (53). This is satisfied when the asymptotic validity range
spreads over at least two elements from the crack tip. For the P&W
XFEM-t scheme the singular crack tip enrichment, and the stiffness
matrix of the XFEM, are updated each time the fracture front c is al-
tered. However, for the P&W XFEM-s scheme the sign enrichment
only needs to be updated when the fracture front breaks into a
new finite element, which results in substantial savings in compu-
tational resources.

4. Numerical results

In the first four examples we present, we consider hydraulic
fractures propagating in an infinite homogeneous elastic medium
each corresponding to different values of the dimensionless tough-
ness along the MK-edge of parameter space K ¼ 0, 1, 2, and 3 (see
[2]). In all these simulations, we modeled a horizontal crack in a
rectangular domain ½�Lx=2; Lx=2� � ½�Ly=2; Ly=2� with singly- and
doubly-infinite elements of order 9 (see the top part of Fig. 4). In
addition, to establish relative independence of the results with
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Fig. 4. Fragments of the FEM mesh and the crack configuration at the first step of
propagation in simulations corresponding to K ¼ 0, with a horizontal crack (top) or
an inclined crack (bottom).
respect to the underlying FE mesh, for the zero toughness case
K ¼ 0 we also compare the horizontal crack results to those in
which the crack is inclined at 30� to the x-axis (see the bottom part
of Fig. 4). In these simulations, the initial solution corresponded to
a crack of half-length c1 � 1. The crack was propagated until a
maximum half-length cmax � 3. This cut-off length was chosen to
guarantee that the relative error in the interpolated crack width
Xðf; sÞ due to approximation of the infinite domain by infinite ele-
ments did not exceed 10�2. This roughly corresponded to
cmax � Ly=2 � Lx=4. The radius of the tip enrichment was kept con-
stant during the simulations and was set to q ¼ 0:25. The relative
tolerance for the fracture front was set to dc ¼ 10�4 for the case
when K ¼ 0, and to dc ¼ 10�3 for the remaining values of K. For
each simulation the following parameters were defined: the do-
main side lengths Lx and Ly, the mesh size h, the time step Ds,
and the power law k used for the enrichment. We choose the time-
scale to be t� ¼ 1. In all simulations in this paper, the Poisson’s ratio
is set to m ¼ 0:2, except for the static problem in Section 4.7 in
which the crack crosses a bi-material interface.

We compare the results of the simulations to available refer-
ence solutions [18,19]. For these comparisons, we define the rela-
tive approximation errors in the length, the width, the inlet crack
width Xð0; sÞ, and the inlet pressure Pð0; sÞ, at each time step as
follows:

EcðsÞ ¼
jcðsÞ � cref ðsÞj

cref ðsÞ ; EXðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðXi �Xref

i Þ
2PN

i¼1ðX
ref
i Þ

2

vuut

EXð0ÞðsÞ ¼
jXð0; sÞ �Xref ð0; sÞj

Xref ð0; sÞ
;

EPð0ÞðsÞ ¼
jPð0; sÞ �Pref ð0; sÞj

Pref ð0; sÞ
ð69Þ

where the superscript ref denotes the quantities corresponding to
the reference solution at time s. Note that the above definition of
the width error EXðsÞ, based on the nodal crack widths, can be
viewed as a discrete version of the L2-norm of the error, scaled by
the L2-norm of the reference solution:

EXðsÞ �
jjX�Xref jjL2ð�c;cÞ

jjXref jjL2ð�c;cÞ
ð70Þ

In the second sequence of examples presented in Section 4.6,
we study the convergence of both XFEM schemes with respect to
the finite element mesh size h. Finally, in Section 4.7 we present re-
sults for a hydraulic fracture propagating in the viscous regime
through a bi-material interface.

4.1. Performance of XFEM-t and XFEM-s for a static BVP (K ¼ 0 and 3)

To understand the behavior of the XFEM-t and XFEM-s schemes,
we first compare their accuracy for a mixed boundary value prob-
lem (BVP) in which the crack in the infinite elastic medium is sub-
jected to a given pressure Pc in the channel and a given crack
width Xt within the tip region:

rþn ¼ r�n ¼ �PcðfÞ for f 2 Rc; rþs ¼ r�s ¼ 0 for f 2 R

½½u��R � n ¼ XtðfÞ for f 2 Rt

It is precisely this BVP which the XFEM component of the algorithm
solves repeatedly during the HF propagation process so, for this test,
the configuration of the crack in the computational domain and the
boundary conditions are chosen to correspond to a typical situation
for a propagating HF. In particular, given the pressure Pc and width
Xt associated with either the M-vertex solution (K ¼ 0) or the
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MK-edge solution (K ¼ 3) determine the corresponding channel
width Xc . The power law used for the tip enrichment is k ¼ 2=3
for K ¼ 0 and k ¼ 1=2 for K ¼ 3. The crack is inclined at 30� to the
x-axis as shown in the lower part of Fig. 4. The problem was solved
for Lx ¼ 12, Ly ¼ 6:05, h ¼ 0:05, using infinite elements of order 9.
The crack’s half-length is c ¼ 1:075, and the radius of the tip enrich-
ment is set to q ¼ 0:25.

The crack widths Xi ¼ XðfiÞ are computed at the nodes fi using
the XFEM-t and XFEM-s. These results are compared to the refer-
ence solution Xref ðfÞ (M-vertex solution for K ¼ 0, MK-edge solu-
tion for K ¼ 3) in Fig. 5. The relative error for these results is
computed according to:

EXðfÞ ¼
jXðfÞ �Xref ðfÞj

Xref ðfÞ

Several observations can be made from this comparison. As
would be expected, the results of XFEM-t are closer to the reference
solutions within the radius of enrichment q ¼ 0:25 from each crack
tip. However, the errors in the solutions from XFEM-t and XFEM-s
are roughly of the same order farther from the crack tips, where
each scheme uses only the sign enrichment to represent the dis-
placement jump. The major influence of the tip enrichment is
localized to the tip-enriched zone.

4.2. HF propagation in a viscous regime (K ¼ 0)

We first consider an HF propagating on the M-vertex for which
the toughness is K ¼ 0. The XFEM solutions are compared to the
M-vertex analytic solution [18,19], which is also used to generate
initial solutions for the simulations. The propagation condition for
this problem corresponds to the viscous width asymptote (39), for
which the power-law exponent for the singular tip enrichment
must be set to k ¼ 2=3. The P&W XFEM-t scheme with k ¼ 2=3
enrichment and the P&W XFEM-s scheme were used to solve the
coupled equations. Both these schemes used the level set approach
to locate the fracture front by means of the tip asymptote (39).

The simulation was performed for Lx ¼ 12, Ly ¼ 6:05, h ¼ 0:05,
and assuming a constant time-step Ds ¼ 0:15. For the horizon-
tally oriented crack, with one element in each tip region, five to
eight level set iterations within each time-step were typically re-
quired to reach convergence to the fracture front. For the crack
inclined at 30� to the x-axis, the number of iterations per time-
step varied between five and twenty-five. In this case the number
of elements n in each tip region was allowed to vary between 1
and 3 to ensure that the length of each of the two tip regions
was not smaller than h=5. The results are compared to the M-ver-
tex solution in Figs. 6–8.

Fig. 6 shows the evolution with time of the crack half-length c,
the fluid volume

R c
�c Xdf, the inlet crack width Xð0; sÞ, and the inlet

pressure Pð0; sÞ. A few snapshots of the nodal crack widths and the
nodal pressures are shown in Fig. 7. On this scale all the solutions
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were virtually indistinguishable from the M-vertex solution. To
investigate the errors more closely, we plot the relative approxi-
mation errors in length and width, EcðsÞ and EXðsÞ, as well as in
the inlet width and inlet pressure, EXð0ÞðsÞ and EPð0ÞðsÞ in Fig. 8. It
can be seen that for the horizontal crack, the errors for the
XFEM-t solution and for the XFEM-s solution ultimately asymptote
to roughly the same order, less than one percent of the solution,
and do not grow with time. Both these schemes exhibit oscillations
in their errors that are caused by the variations in the tip locations
within the elements of the underlying FE mesh. The XFEM-s natu-
rally exhibits larger error oscillations due to the fact that the tip is
treated in a weak sense and because the sign enrichment is up-
dated less frequently. It is possible that the XFEM-t and XFEM-s
schemes have relative errors that are of a similar order when they
approach the level of accuracy of the reference solution as it will be
discussed in Section 4.6.
Fig. 9. Range of validity of the tip width asymptote (53) (viscosity asymptote for
K ¼ 0, universal asymptote for K ¼ 1, 2, and toughness asymptote for K ¼ 3). The
results correspond to the reference solutions (M-vertex for K ¼ 0, MK-edge for
K ¼ 1, 2, 3) for a crack of a unit half-length c ¼ 1.
For the case in which the crack is inclined relative to the under-
lying FE mesh, the errors for the XFEM-t are smaller than those of
XFEM-s by about an order of magnitude. In addition, the errors of
the inclined XFEM-t solution with n ¼ 1 to 3 tip elements are con-
sistently lower than those for the aligned XFEM-t solution which
only has a single element in each tip region. However, for the
XFEM-s solution, the errors for the inclined crack with n ¼ 1 to 3
tip elements are not better than those from aligned XFEM-s. This
suggests that, in order to make use of the advantages of the tip
enrichment, a larger tip zone Rt should be used, over which the
asymptotic width constraint (57) is applied in the mixed BVP.

Fig. 9 shows a comparison of the crack width X corresponding
to the reference solutions with the appropriate tip asymptotes for
K ¼ 0, 1, 2, and 3. In the XFEM simulations for K ¼ 0 the viscosity
asymptote (39) was applied for f̂=c typically less than 8%. In this
range, the accuracy of the asymptote (39) for the M-vertex solution
is of the order 10�2, as shown in Fig. 9. The order of errors Ec, EX,
EXð0Þ and EPð0Þ is therefore consistent with the accuracy level of
the tip asymptote used to prescribe the tip width in the mixed
BVP and to locate the fracture front in the numerical model.

Due to the constraint on cmax, the error due to the infinite do-
main approximation does not exceed 10�2. The fact that the errors
shown in Fig. 8 do not grow as the crack tip approaches the finite-
infinite element boundary provides further evidence that these er-
rors are not related to the approximation due to the infinite
elements.

4.3. Viscosity-toughness transition regime (K ¼ 1)

We now consider the case with K ¼ 1, which corresponds to the
viscosity-toughness transition. We use the MK-edge solution with
K ¼ 1 as a reference solution. The tip enrichment used by the
XFEM-t scheme assumes k ¼ 2=3. The universal tip asymptote
(37) is used by the level set algorithm in both XFEM solutions to
locate the fracture front and to set the tip widths. This asymptote
is applied within 1–7% of the fracture length from the fracture tip.
Fig. 9 shows that within this range the universal asymptote can
approximate the tip width in this problem with an accuracy of
roughly 10�2.

We ran the ILSA-XFEM schemes for Lx ¼ 12, Ly ¼ 6:04, h ¼ 0:04,
and Ds ¼ 0:1. The typical number of front iterations required for
convergence to the fracture front were 4–6. The results for both
schemes show close agreement with the reference MK-edge
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solution (see Figs. 10–12). The relative errors asymptote at around
10�3 for XFEM-t and lower than 10�2 for XFEM-s, and do not in-
crease with time. The relative errors are smaller for the XFEM-t
scheme, however, the XFEM-s scheme provides stable results with-
in 1%.

4.4. Beyond the viscosity-toughness transition regime (K ¼ 2)

We now consider the case K ¼ 2, which is just beyond the vis-
cosity-toughness transition. We use the MK-edge solution with
K ¼ 2 as a reference solution, and choose k ¼ 1=2 as the power-
law exponent for the singular tip enrichment. We ran the simula-
tions for the same discretization level as in the previous example
with K ¼ 1 (that is, Lx ¼ 12, Ly ¼ 6:04, h ¼ 0:04, and Ds ¼ 0:1).
Again, the universal asymptote (37) was used to locate the fracture
front by the level set algorithm and to provide the boundary condi-
tion for the crack tip width in the mixed BVP, within 1–7% of the
fracture length from the tip. Fig. 9 shows that within this distance
from the fracture tip, the universal asymptote can approximate
the tip width for K ¼ 2 with a relative accuracy of roughly 10�2.
The results show close agreement with the reference solution,
as can be seen from Figs. 13–15. The relative errors asymptote at
around 10�2 for the XFEM-s and lower for the XFEM-t and do not
increase with time (Fig. 15). As in the previous example, the results
of the XFEM-t are better than those from the XFEM-s, however, the
XFEM-s scheme still provides stable results having an error of 2% or
lower. It can be seen that, for the same level of discretization, the
approximation errors for K ¼ 1 asymptote at lower levels, than
for K ¼ 2. This observation is consistent with Fig. 9, which shows
that within the distance 1–7% of the fracture length from the frac-
ture tip, where the universal asymptote was applied in the simula-
tions, the asymptote for K ¼ 1 provides a more accurate
approximation than that for K ¼ 2.

The typical number of front iterations required to converge to
the fracture front in this example was 8–10 for the XFEM-t scheme
and was less than 20 for XFEM-s scheme. We observe from this and
from the following example with K ¼ 3, the tendency of conver-
gence rate for the front iterations to deteriorate with increasing
toughness K.
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4.5. HF propagation in a toughness dominated regime (K ¼ 3)

Finally we consider a large toughness case for which K ¼ 3. The
reference solution for this problem is given by the MK-edge solu-
tion. The toughness tip asymptote (38) is used in the level set ap-
proach to locate the front, and the power-law exponent for the
singular enrichment is set to k ¼ 1=2. Fig. 9 shows that the tough-
ness asymptote approximates the tip width in this case with less
than 10�2 relative error within 15% of the crack length from the
tip. This large region of validity of the tip asymptote makes it pos-
sible to apply the level set logic further from the fracture tip, which
enables one to use less elements for the fracture discretization.
However, the non monotonic behavior of this asymptote, which
can be seen in Fig. 9, implies that the error will not necessarily de-
crease as the tip region relative to the crack length decreases. In-
deed, one cannot guarantee a relative error level less than
5� 10�3 when using this asymptote. Because of this observation,
the simulation was performed for Lx ¼ 12, Ly ¼ 6:06, and
h ¼ 0:06. The asymptote (38) was typically applied within 2–11%
of the fracture length from the fracture tip.
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Fig. 16. Simulation results for K ¼ 3: evolution of the crack half-length c, the fluid
volume

R c
�c Xdf, the inlet crack width Xð0; sÞ, and the inlet pressure Pð0; sÞ. Results

correspond to: XFEM-t (solid red with squares), XFEM-s (solid blue with circles), and
the reference solution (solid black). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
It was found that it was necessary to use a relatively large time-
step Ds for XFEM-s to achieve convergence. Stair-casing can occur
in the XFEM-s fracture length solution if the time-step is too small
to advance the fracture tips significantly. Similar stair-casing
behavior has also been observed in ILSA-DDM schemes if the
time-step is so small that the front advance can stagnate. For this
experiment we used the following simple adaptive time-stepping
scheme: the time-step was chosen so that the expected crack front
advance was approximately equal to one element size h, that is
Ds ¼ h= _c where _c is the crack front velocity at the previous time-
step.

The number of front iterations required for convergence to the
fracture front typically exceeded 20 for the XFEM-t and was typi-
cally between 8 and 30 for the XFEM-s, which is considerably larger
than that for K ¼ 0 and 1. This supports the tendency, observed in
the previous three examples, that as K increases the rate of conver-
gence of the fracture front iterations deteriorates.

The results of the XFEM schemes agree well with the MK-edge
solution, as shown in Figs. 16–18. The relative errors for both
schemes do not increase with time and asymptote to roughly the
same order (see Fig. 18). The fact that both schemes are limited
to errors that are larger than 5� 10�3 is consistent with the accu-
racy limitations of the K ¼ 3 tip asymptote mentioned above. In
Fig. 17 the fracture widths and pressures at selected time steps
are compared with the MK-edge solution. Since the two XFEM
schemes use different time-steps the solutions are sampled at dif-
ferent times. However, each numerical solution is compared to the
reference solution at the corresponding time horizon. Except for
the initial pressure, in which there is a noticeable difference in
the XFEM-s solution, all the other solutions show close agreement
with the corresponding reference solutions. These initial errors in
the XFEM-s solutions can also be seen at earlier times, but these
oscillations reduce to less than 1%.

4.6. Convergence with respect to the finite element mesh size

Convergence of the XFEM-t and XFEM-s schemes with respect to
the finite element mesh size h has been investigated in [17] for a
static elastic mixed BVP with given displacement along the outer
boundary C, given tractions along the channel part of the crack
Rc , and a prescribed power-law crack width Xt � f̂k in the tip zone
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Fig. 17. Simulation results for K ¼ 3: the crack width and pressure at times
s ¼ 3:79, 7.32, 11.58, 16.48 for XFEM-t and at times s ¼ 3:79, 7.15, 10.45, 13.71 for
XFEM-s. Results correspond to: XFEM-t (solid red with squares), XFEM-s (solid blue
with circles), and the reference solution (solid black). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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Rt , with 1=2 6 k < 1. These numerical experiments show that the
approximation error in the crack width within the channel Rc in
the XFEM-t solution decays according to

jjX�Xref jjL2ðRcÞ � Oðh2Þ ð71Þ

and in the XFEM-s solution according to

jjX�Xref jjL2ðRcÞ � OðhÞ ð72Þ

Here, L2ðRcÞ is the integral L2 norm over the channel.
To study the convergence of the XFEM-t and XFEM-s schemes for

a propagating hydraulic fracture, we performed simulations for
K ¼ 0 with several finite element mesh refinements. To have an
identical computational domain in each simulation, we used a
square domain ½�Lx=2; Lx=2� � ½�Ly=2; Ly=2� of size Lx ¼ Ly ¼ 7:2,
discretized into Nx � Nx square finite elements with side length
h ¼ Lx=Nx, in which an odd number Nx varied between 47 and
171 for the XFEM-t scheme, and between 47 and 221 for the
XFEM-s scheme. Infinite elements of order 9 were used. The fluid
source was located at the origin x ¼ y ¼ 0. The initial horizontal
crack of half-length c1 ¼ 1 was propagated for 20 steps assuming
a constant time-step Ds ¼ 0:15. The viscous tip asymptote (39)
was used by the level set algorithm to locate the fracture front
and to set the tip widths. In the XFEM-t scheme the radius of the
tip enrichment region was set to q ¼ 0:25 and the power-law
exponent for the singular tip enrichment was set to k ¼ 2=3. The
relative tolerance for the location of the fracture front was set to
dc ¼ 10�4. To avoid the instabilities associated with extremely
small elements along the crack that can result from an awkward
intersection of the crack with the underlying FEM mesh, we en-
sured that the size of the tip region Rt at each crack tip was no
smaller than 0:01� h for the XFEM-t scheme and up to h=5 for
the XFEM-s scheme; one tip element at each crack tip was typically
sufficient for most of the time-steps.

The results were compared with the reference semi-analytical
M-vertex solution [18,19]. The convergence plots for the error in
the crack length, EcðsÞ, and the error in the crack width, EXðsÞ,
are shown in Fig. 19. To account for the fact that the XFEM solu-
tions settle over the first few steps, the errors EcðsÞ and EXðsÞ
shown in Fig. 19 were averaged over steps 5–20.

In the log–log plots shown in Fig. 19, the errors initially decay
linearly and then stagnate over the last three mesh refinements.
The same was observed in the behavior of the averaged errors in
the inlet width and inlet pressure, EXð0Þ and EPð0Þ. There are two
possible explanations for this phenomenon. Firstly, the errors will
stagnate if the approximation error due to the infinite elements be-
comes significant compared to the other approximation errors in
the coupled XFEM schemes. Secondly, such a stagnation in the er-
rors will also occur if the error in the reference semi-analytical
solution [18] exceeds the error in the XFEM schemes at such a fine
mesh. This reference solution is available in the form of a series
expansion in which the series coefficients are found numerically.
The relative error in this solution (based on 10 terms in the series)
is of the order 10�3–10�4 [18]. There is similar evidence of such er-
rors in the reference solution [18] reported in [24]. It is thus only
meaningful to use this reference solution for the convergence
study while the XFEM results differ from this solution by about
10�3 or more. This stagnation effect can also be seen in the numer-
ical results presented in Sections 4.2, 4.3, 4.4 and 4.5. For example,
for the error plots for the case K ¼ 0 shown in Fig. 8, the XFEM-t
and XFEM-s schemes have relative errors that are of a similar order
when they approach the level of accuracy of the 10-term reference
solution, which is of the order 10�3–10�4. However, for the case
K ¼ 2 shown in Fig. 15, the XFEM-t scheme is clearly superior to
the XFEM-s scheme. The difference, in this case is that the reference
solution uses a 30-term series approximation for which the error
level is of the order 10�4–10�5.

For this reason we only sample the convergence rates for results
that fall within the range of linear decay of the logarithms of the
errors. Thus the rates shown in Fig. 19 were computed by exclud-
ing the last three mesh refinements for each XFEM scheme.

As expected, the results converge faster for the XFEM-t scheme
than for the XFEM-s scheme. In particular, the convergence rate for
the width error EX in Fig. 19 is approximately quadratic for the
XFEM-t scheme and linear for the XFEM-s scheme. As mentioned
before (70), EX is roughly equivalent to the scaled L2-norm of the
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Fig. 20. Fragment of the FEM mesh and the initial crack configuration in the
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error in the crack width. These results are therefore consistent with
the estimates (71) and (72) for the related static mixed BVP.

4.7. Propagation of a hydraulic fracture through a bi-material interface

To show the potential of the proposed coupled XFEM schemes
for modeling propagating hydraulic fractures in non-homogeneous
materials, we simulate a situation in which a fracture is crossing a
bi-material interface. For this purpose, we assume that the crack
tips propagate according to the viscous tip asymptote (39), applica-
ble for the case when most of the energy is dissipated by driving
the viscous fluid through the fracture compared to the energy re-
quired to break the rock. We choose not to investigate the case
of a hydraulic fracture propagating through the bi-material inter-
face in the toughness dominated regime as this would require an
asymptotic solution that constantly changes as the crack tip ap-
proaches the interface. This, far more complex situation, is still
an open question that needs to be resolved by detailed asymptotic
analysis and is beyond the scope of this paper.

The two materials are assumed to have contrasting Young’s
moduli such that E2 < E1, where the material to the left (right) of
the interface has a Young’s modulus E1 (E2) (see Fig. 20); the rest
of the material properties are identical. The fracture is assumed
Fig. 21. Crack width for a static crack crossing a bi-material interface. The crack is subject
pressure p2 within material II with E2 ¼ 4:45� 105 psi, m2 ¼ 0:35. Results correspond to:
lines with circles). The scaled coordinate along the crack is defined by n ¼ X=b1 fo
G1 ¼ E1=ð2ð1þ m1ÞÞ. (For interpretation of the references to color in this figure legend, t
to propagate initially within material I and orthogonal to the inter-
face. The materials are assumed to be perfectly bonded, so that the
hydraulic fracture propagates through the interface without mate-
rial debonding along the interface.

Due to the bi-material interface the fracture does not grow sym-
metrically. The only modification to the formulation presented
above to accommodate this situation is for the left crack tip located
at f ¼ �cL with respect to the source and the right crack tip located
at f ¼ cR to be able to grow independently. The level-set algorithm
is used to locate the position of each crack tip independently
according to the M-vertex tip asymptote.

Before embarking on the dynamic crack experiments in the bi-
material medium, we tested the XFEM-s scheme with infinite ele-
ments for a static elastic BVP in which a crack crosses a bi-material
interface and for which reference solutions have been provided by
Erdogan and Biricikoglu using a singular integral equation ap-
proach [31] and Peirce and Siebrits using a uniform asymptotic
solution for a displacement discontinuity in a layered elastic med-
ium [32]. In this problem, the crack faces are subject to a given
pressure. Since the XFEM-s is based on using mixed boundary con-
ditions along the crack, we used the given pressure only within the
channel Rc , while within the tip region Rt we specified the crack
width according to the solution from [32]. As can be seen from
Fig. 21 the resulting crack width in the channel region Rc com-
puted using 84 elements for b2=b1 ¼ 0:05 and 90 elements for
b2=b1 ¼ 1;2 by the XFEM-s scheme is in good agreement with the
solution provided by Erdogan and Biricikoglu [31] and virtually
indistinguishable from the high resolution uniform displacement
discontinuity (DD) solution provided by Peirce and Siebrits [32]
in which 840, 1600 and 2400 elements were used, respectively,
for b2=b1 ¼ 0:05, 1, 2. Indeed, the only solution for which there is
a noticeable difference is the small penetration case, in which
b2=b1 ¼ 0:05. Because of the stretched coordinate, these results
are quite deceptive. The XFEM solution only uses 4 elements to
represent that part of the crack that has penetrated into region II.
to a uniform pressure p1 within material I with E1 ¼ 107 psi, m1 ¼ 0:3, and a uniform
[31] (black diamonds), [32] (solid black lines with triangles), and XFEM-s (solid blue
r X � 0 and n ¼ X=b2 for X > 0. The crack width is scaled by p1=G1 in which

he reader is referred to the web version of this article.)



Fig. 22. Simulation results obtained by XFEM-s for a hydraulic fracture crossing a bi-material interface: the crack width and pressure at times s ¼ 0:95 and 3:10 (top),
s ¼ 5:97 (middle), and s ¼ 9:42 (bottom). Results correspond to: E2=E1 ¼ 0:2 (solid red), E2=E1 ¼ 0:5 (solid blue), and the M-vertex solution [18] with E2=E1 ¼ 1 (solid black).
Dashed black line depicts the location of the interface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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The XFEM-s solution enforces the correct volume in this tip ele-
ment in a weak sense according to the variational principle given
in (43). Within the tip element the XFEM-s solution is represented
by the appropriate linear approximation that has the same volume
as the prescribed asymptotic solution. The close agreement be-
tween the XFEM solution and the uniform DD solution, which
use completely different approximation schemes, indicates that
the results in [32] provide more accurate reference solutions than
those given in [31].

The propagation was modeled by the XFEM-s scheme for the two
cases: E2=E1 ¼ 0:5 and E2=E1 ¼ 0:2. The Poisson’s ratio for each
material is set to m ¼ 0:2. In both cases, in order to present the re-
sults in a dimensionless form, the scaling factor E0 ¼ E1=ð1� m2Þ is
applied. The rectangular computational domain ½�7;5��
½�3:015;3:015�was discretized into 400� 201 finite elements each
having a side length h ¼ 0:03. Infinite elements of order 9 were used
along the outer boundary. The material interface was set along the
line x ¼ 0, and the fluid source was set at x ¼ �1, y ¼ 0 (see Fig. 20).
The initial solution for the horizontal crack of half-length
c1

L ¼ c1
R ¼ 0:5 was set according to the viscosity-dominated M-ver-

tex solution [18,19]. The fracture was then propagated for 25 steps
assuming a variable time-step. For the case when E2=E1 ¼ 0:5, an
adaptive time-step was chosen so that the expected crack front ad-
vance at the crack tip approaching or crossing the interface is
approximately equal to 0.1, that is Ds ¼ 0:1= _cR, where _cR is the
crack front velocity at the previous time-step for the crack wing
to the right of the fluid source. To compare the solutions for
E2=E1 ¼ 0:5 and E2=E1 ¼ 0:2 at the same times, we set the same
time-steps for E2=E1 ¼ 0:2 as those obtained when using the adap-
tive time-stepping for E2=E1 ¼ 0:5. The relative tolerance for the
locating the fracture front was set to dc ¼ 10�3. As before to avoid
the instabilities associated with extremely small elements along
the crack that can result from an awkward intersection of the crack
with the underlying FEM mesh, we ensured that the size of the tip
region Rt at each crack tip was no smaller than h=3; thus one or two
tip elements per crack wing were used at each time-step.

Fig. 22 shows snapshots of the computed crack width and the
fluid pressure, together with the M-vertex solution [18,19] that is
associated with the case when E2=E1 ¼ 1. The interface is located
at f ¼ 1 in this figure. For each value of the ratio E2=E1 the fracture
volume is equal to the dimensionless time s.

At the first time-step (s ¼ 0:95), the fracture is within material I
and the crack has had very little time to evolve from the initial
solution, which is assumed to be symmetric, thus the crack width
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is approximately same as in the symmetric initial solution. When
the fracture crosses the interface, as expected, the fracture opening
is larger in material II because it has a smaller Young’s modulus.
We note that since each of the cases is sampled at the same time,
volume conservation dictates that each of the fractures should in-
clude the same volume. The bi-material crack propagates more
rapidly into the softer region than in the homogeneous case. In
addition, because of the herniation effect in the softer region, the
right moving wing of the fracture accepts more fluid than the left
moving wing, which is relatively starved of fluid and therefore
has a crack front that moves more slowly. We note that as a result
of this herniation effect, the progress of the left moving front be-
comes markedly less as the ratio E2=E1 decreases, while this differ-
ence between the front positions for the right moving fronts is
much less in the softer medium.

Since there is no reference solution for this problem, we per-
formed several tests to check the accuracy of the results. We mod-
eled the same problem with E2=E1 ¼ 0:2, 0.5, 1 and with a larger
mesh-size h ¼ 0:05 to identify the level of accuracy with respect
to the finite element mesh. The solution with E2=E1 ¼ 1 was com-
pared with the M-vertex solution. Even for this homogeneous case,
for which the solution should be symmetric, it is possible to induce
a small asymmetry in the XFEM solution if the crack is initiated too
close to the infinite element boundary. This problem can be elim-
inated if the computational domain is centered on the fluid source
and there is a sufficient distance between the source and the finite
element-infinite element boundary. For this reason, for the results
presented in the plots provided, we used a computational domain
that was centered at the fluid source. It is interesting to note that
the results for E2=E1 ¼ 0:2, 0.5 do not change noticeably between
an asymmetric location of the source within the computational do-
main and when the source is centered at the origin x ¼ y ¼ 0 of
computational domain. This is because the asymmetry in the bi-
material solution dominates any minor asymmetry that might be
introduced by the crack coming too close to the infinite element
boundary.

We then performed simulations with increased and decreased
time-steps to test convergence of the results for the time when
the crack tip is approaching and crossing the interface. Indeed,
the viscous tip asymptote (39) applies when the immediate neigh-
borhood of the crack tip is contained within a homogeneous part of
the domain and is not tailored to the case when the crack tip is
near a bi-material interface. Naturally, if the time step is so large
that the crack front moves over several elements including the
interface itself, then one would expect significant errors to result.
However, as the crack fronts move away from the interface, these
errors attenuate and the solutions move closer to those obtained
with smaller time-steps.
5. Conclusions

In this paper we have described two P&W XFEM schemes that
use a novel implicit level set algorithm to resolve the singular free
boundary problem for HF propagating without a fluid lag. The level
set scheme is able to accommodate fracture front advances that
can be asymmetric. This algorithm is able to make use of the local
asymptotic behavior to locate the unknown free boundary and is
particularly useful for singular free boundary problems in which
calculating the fluid velocity involves evaluating an indeterminate
form. To demonstrate its versatility in this regard, we use the ILSA
scheme to capture HF propagation for a wide range of values of the
dimensionless toughness K. These correspond to points along the
MK edge of parameter space [2] associated with quite different re-
gimes of propagation and asymptotic solutions close to the fracture
tips. To achieve this the algorithm uses the universal asymptote of
Garagash [3] and Garagash and Detournay [4], which is derived by
considering a semi-infinite HF propagating with a constant velocity
V.

The two P&W XFEM schemes differ in the way in which the tip
enrichment and the tip asymptotic behavior is implemented. The
tip enriched scheme XFEM-t, makes use of sign enrichment to rep-
resent the geometry of the crack in the channel region, tip enrich-
ment around the tip regions with a power law that is consistent
with the current propagation regime of the HF, and blending at
the interface between these two enrichments. The union of these
two enrichment regions coincides with the current crack curve.
This scheme imposes the asymptotic behavior as a boundary con-
dition in the tip region and uses the pressure field derived from a
finite volume solution to the lubrication equation in the channel
region. The XFEM-t scheme also requires that the computationally
intensive singular enrichment integrals be updated at each new
trial position for the crack tips. To avoid this costly exercise, we
also considered the simpler XFEM-s scheme, which does not re-
quire specialized tip enrichment and for which the geometry of
the crack is defined throughout by sign enrichment. The XFEM-s
enrichment not only encompasses the crack but may also extend
beyond the actual crack tips to the edge of the nearest element
in the FE mesh. The asymptotic behavior in the crack tip is only ap-
plied in a weak sense by imposing the asymptotic behavior for the
intersection of the crack tip region and the last sign enriched ele-
ments deemed to be in the tip region. The advantage of this scheme
is that it does not require singular tip enrichment and can accom-
modate a number of front advances in the leading element without
updating even the sign enrichment. Naturally, because it incorpo-
rates the correct enrichment, the tip enriched scheme is more
accurate when required to solve the mixed boundary value prob-
lem in which asymptotic tip widths are imposed and pressures
are prescribed in the channel. However, this additional precision
will not always translate to superior performance of the XFEM-t
scheme compared to XFEM-s scheme, if, for example, the errors
due to the infinite elements are not sub-dominant. The conver-
gence rates for the dynamic XFEM schemes are shown to approxi-
mately follow those of the static XFEM schemes when solving the
corresponding mixed boundary value problem. In particular, the
XFEM-t scheme achieves an Oðh2Þ asymptotic convergence rate,
while the XFEM-s scheme achieves an OðhÞ asymptotic convergence
rate. Given the additional computational burden of the numerical
integrations required to implement the XFEM-t scheme, the addi-
tional accuracy might not be warranted.

XFEM models for fractures in bi-material elastic media were
also considered. Comparisons with static reference solutions dem-
onstrated that the XFEM scheme yields extremely accurate results
with relatively few resources. The XFEM models of hydraulic frac-
tures propagating in bi-material elastic media demonstrate that
the XFEM schemes are able to capture the interesting herniation
behavior of the fracture width field in the softer materials and
the corresponding effect on the location of the fracture front posi-
tions. The proposed ILSA-XFEM schemes demonstrate a robust and
flexible framework for discretizing and solving the singular free
boundary problems associated with hydraulic fractures propagat-
ing without a fluid lag.
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