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a b s t r a c t

We describe coupled algorithms that use the Extended Finite Element Method (XFEM) to solve the elastic
crack component of the elasto-hydrodynamic equations that govern the propagation of hydraulic frac-
tures in an elastic medium. With appropriate enrichment, the XFEM resolves the Neumann to Dirichlet
(ND) map for crack problems with Oðh2Þ accuracy and the Dirichlet to Neumann (DN) map with OðhÞ
accuracy. For hydraulic fracture problems with a lag separating the fluid front from the fracture front,
we demonstrate that the finite pressure field makes it possible to use a scheme based on the Oðh2Þ XFEM
solution to the ND map. To treat problems in which there is a coalescence of the fluid and fracture fronts,
resulting in singular tip pressures, we developed a novel mixed algorithm that combines the tip width
asymptotic solution with the Oðh2Þ XFEM solution of the ND map away from the tips. Enrichment basis
functions required for these singular pressure fields correspond to width power law indices k > 1

2, which
are different from the index k ¼ 1

2 of linear elastic fracture mechanics. The solutions obtained from the
new coupled XFEM schemes agree extremely well with those of published reference solutions.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hydraulic fractures (HFs) are a class of fractures that occur in
brittle materials due to the injection of a viscous fluid. HF occur
both naturally and are deliberately created for engineering applica-
tions. Buoyant magma flow provides an example of a natural HF, in
which magma from deep pressurized chambers is driven by buoy-
ancy forces to propagate in finger-like fractures toward the surface
of the Earth. Engineering applications include: the enhancement of
the block-caving process used in mining by pre-fracturing ore
bodies [1,2]; the deliberate propagation of fractures to increase
the connectivity in geothermal reservoirs as well as in oil and
gas reservoirs to enhance the recovery of hydrocarbons [3,4];
waste disposal; and the remediation of contaminated soils by the
injection of oxidizing reagents [5,6]. There is considerable interest
in developing accurate models of this complex propagation process
in order to increase the design and placement of HF.

The prohibitive re-meshing cost of tracking a propagating frac-
ture has hampered the development of domain-based methods,
such as Finite Volume or Finite ElementMethods [7,8], formodeling
fully coupled propagating HF. The relatively recent development of
the XFEM [9–11] holds much promise for the efficient numerical
modeling of propagating HF within the FEM paradigm. In the XFEM
methodology, the fracture is represented by enriched basis func-
tions that are restricted to elements in the vicinity of the fracture
and its tips, while field variables in the bulk of the solid medium

can be represented by standard polynomial basis functions. Thus
fracture propagation can be captured even on a structured mesh
by dynamically adjusting the enrichment process to incorporate
the location of the moving fracture tips. Previous research on using
the XFEM for HF propagation [12,13] have either focused on propa-
gating so-called dry cracks inwhich the effect of fluid viscosity is not
taken into account, or [14] who considered enrichment for a width
field having a power law index k within the interval 1

2 6 k < 1 and
focused on solving the elasticity equation for both k ¼ 1

2 and the vis-
cous asymptote k ¼ 2

3 [15]. However, none of this research has ade-
quately addressed the fully-coupled HF propagation problem.

The model for HF propagation that we consider involves a
degenerate PDE in the form of the Reynolds lubrication equation
describing the conservation of the viscous fluid flowing within
the fracture. This degenerate conservation law needs to be coupled
to the equilibrium PDEs for a solid body in a state of plane strain,
which express the balance of forces within the solid medium in
which the fracture is propagating.

The degeneracy of the PDEs and the challenges of coupling the
fluid and the solid media, each having vastly different time scales,
is exacerbated by the potential for two distinct moving boundary
problems – one for the fluid front and the other for the fracture
front. When the fluid front and the fracture front do not coincide,
in which case there is a so-called fluid lag, a zero pressure bound-
ary condition obtains at the fluid front while the crack faces are
free of pressure in the remainder of the lag region. In spite of fact
that the two moving boundaries are involved, the fluid-lag prob-
lem is, in fact, simplified by the regularity of the pressure field at
the fluid front and the fact that the fracture width asymptotics
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and fracture front location are governed by the classic square root
width power law associated with Linear Elastic Fracture Mechanics
(LEFM), so that the classic k ¼ 1

2 enrichment basis functions can be
used. However, if there is a confluence of these two fronts then the
problem reduces to a single free boundary problem in which the
pressure field has a singularity at the tip. This pressure singularity
results in a combined front velocity that can only be determined by
evaluating an indeterminate form. In addition, even though we
consider a Newtonian fluid and an elastic medium, the dynamics
of a propagating HF is complicated by a number of competing
physical processes that are associated with length scales that can
differ by several orders of magnitude. This multiscale behavior pre-
sents significant challenges for computational models of HF. Ana-
lytic and asymptotic solutions (see [16–23]), which can capture
this multiscale behavior, can only be developed for the symmetric
geometries for propagation in states of plane strain or radial sym-
metry in 3D elastic media. Thus computational models need to be
developed in order to capture more complex geometries or even to
incorporate simple features such as layered elastic media or mate-
rial inhomogeneities. Recent developments have made it possible
for numerical models [24] to achieve a high degree of accuracy
with relatively few computational resources by accounting for
the dominant physical process active at the computational length
scale, while ignoring sub-dominant physical processes that are
only important on a much finer length scale. This type of decompo-
sition is reminiscent of matched asymptotic analysis used in
boundary layer problems, in which the details at length scales finer
than the computational length scale are captured by an inner
asymptotic solution. This approach exploits the limiting behavior
of the solution close to the crack tip, which is established by de-
tailed asymptotic analysis [15,18,25,20].

The objective of this paper is to present two XFEM-Hydrody-
namic coupling schemes, of increasing complexity, that can cope
with a representative variety of tip behaviors and propagation re-
gimes typically encountered in HF modeling. At the heart of the
challenge for developing an XFEM strategy tomodel HF propagation
is the accuracy with which it can resolve the Neumann to Dirichlet
map as opposed to the Dirichlet to Neumann map. In this context
the Neumann to Dirichlet map (ND) is defined as follows: given
Neumanndata (the fluid pressure applied to thewalls of the fracture
in case of a HF) the XFEM, with the appropriate tip enrichment, can
be used to determine the Dirichlet data (the fracture width in the
case of a HF) with an error that is Oðh2Þ [26]. Conversely, for the
Dirichlet to Neumann map the XFEM error only decreases at a rate
OðhÞ. We will demonstrate that if there is a finite fluid lag, then an
XFEM formulation based on inverting the ND map and using the
appropriate enrichment, is sufficient to capture theHF solutionwith
the required precision. If the fluid and fracture fronts coalesce, then
the degenerate lubrication equation admits a singular pressure
field, which precludes the use of a coupling scheme based on the
ND map. In particular, a tip asymptotic solution, applicable at the
computational length scale, is required. In order to implement this
tip asymptotic solution, we have devised novel mixed scheme,
which exploits both the detailed knowledge of the asymptotic solu-
tion for the fracturewidth in the tip and theOðh2Þ accuracy of theND
map to capture the solution away from the tip.

In Section 2, we describe the governing elasto-hydrodynamic
equations and their non-dimensionalization. In Section 3, we de-
scribe the two XFEM formulations used in the construction of the
coupled HF algorithms. In Section 4, we describe the discretization
and coupling of the elasto-hydrodynamic equations as well as the
iterative scheme used to locate the fluid and fracture free bound-
aries. In Section 5, we present the results of three numerical exper-
iments in which we compare the XFEM solutions to published
reference solutions. The first two examples involve HF propagating
close to a free surface. In the first of these, the HF is initiated par-

allel to the free surface and is constrained to propagate parallel to
the free surface by a high confining stress field parallel to the free
surface, which resists any symmetry-breaking deviations of the
crack path. In the second, the HF is initiated parallel to the free sur-
face, but the confining stress is absent so that the crack is able to
curve toward the free surface as it grows. In the third example,
we consider an HF propagating in the viscosity dominated regime
in an infinite elastic medium in a state of plane strain, which we
compare to the so-called M-vertex solution [27,16].

2. Problem formulation

2.1. Plane strain model

Consider a hydraulic fracture growing in an impermeable elastic
medium in a state of plane strain whose stiffness is characterized
by the Young’s modulus E and Poisson’s ratio m (see Fig. 1), and
whose breaking strength is characterized by the fracture toughness
KIc . The fracture is assumed to be driven by the injection of a New-
tonian fluid with a dynamic viscosity l from a point source located
at the origin of the coordinate system ðX;YÞ, at a constant volumet-
ric rate Qo per unit length in the out-of-plane direction. In two
dimensions, the fracture geometry is represented by a curve RðtÞ
evolving with time t; a curvilinear coordinate s is introduced along
RðtÞ, with the origin s ¼ 0 located at the fluid source. For conve-
nient comparison with the published reference solutions, we re-
strict ourselves to problems in which the fracture will grow
symmetrically with respect to the fluid source so that its two wings
are characterized by the length ‘ðtÞ and the crack width wðs; tÞ,
where �‘ðtÞ < s < ‘ðtÞ. However, the algorithms we describe can,
with little modification, be extended to non-symmetric situations.
Thus the XFEM we present is in a form that can easily be general-
ized to model non-symmetric crack growth. Indeed, other than the
front location device, which determines the time-step correspond-
ing to a trial fracture growth increment, the implementation does
not exploit the symmetry of the problem being considered. The
fluid may lag behind the fracture tips, which results in two moving
fluid fronts within the fracture that are located at s ¼ �‘f ðtÞ. The
medium is additionally assumed to be subjected to a uniform
stress state bS (such as the ambient geological confining stress field)

Fig. 1. This figure represents a hydraulic fracture of length 2‘ that is assumed to
grow along the curve R within the solid medium occupying the region V with
boundary C due to the injection of a viscous fluid at a rate Qo.The fracture depicted
is assumed to be subject to a normal confining stress Ŝn only and no shear stress.
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that can equivalently be represented by normal and shear tractions
applied along the crack, denoted by bSnðsÞ and bSsðsÞ. This stress field
naturally satisfies the equilibrium equation (2) below with a zero
body force vector. More general confining stress fields must also
satisfy the equilibrium equation but require the inclusion of a body
force field. Since we are considering a linear elastic medium it is
computationally convenient to decompose the total stress field
Stot as follows Stot ¼ Snet þ bS. For the purposes of HF we focus on
determining the net stress field Snet knowing that the total stress
field within the elastic body can be obtained by merely adding in
the geological stress field bS. Thus by superposition, it is possible
to proceed without explicitly including the body force term in
the equations, provided the traction vector components bSnðsÞ andbSsðsÞ associated with a given body force field are known. However,
for the completeness of the formulation, we will include the body
force term although it will not be required for the problems consid-
ered. The solution of this moving boundary problem consists of
determining: the complete fracture curve RðtÞ, the location of the
fluid front ‘f ðtÞ, the fracture width wðs; tÞ, and the net pressure
pðs; tÞ ¼ pf ðs; tÞ � bSnðsÞ in the fluid-filled portion of the fracture
(�‘f ðtÞ < s < ‘f ðtÞ), in which pf ðs; tÞ is the fluid pressure, for a spec-
ified time t within the interval ð0; TÞ.

Finally, throughout the paper it is convenient to employ scaled
material parameters K 0; E0 and l0, defined by

K 0 ¼ 4
2
p

� �1=2

KIC ; E0 ¼ E
1� m2

; l0 ¼ 12l ð1Þ

2.2. Governing equations

2.2.1. Elasticity equations and corresponding boundary conditions
The displacement field U and the stress field S in the domain are

defined with respect to the Cartesian coordinate system ðX;YÞ cen-
tered at the fluid source point and are represented by the compo-
nents Ui and Sij, respectively. The equilibrium equation for a body
force field b per unit volume and Hooke’s law for the linear elastic
medium can be written in the following tensor form

r � Sþ b ¼ 0 ð2Þ

S ¼ C : EðUÞ ð3Þ
in which C is the tensor of elastic constants, and E(U) is the strain
tensor associated with the displacement U,

EðUÞ ¼ 1
2
ðrUþ ðrUÞTÞ ð4Þ

The domain is denoted by V, while its outer boundary is de-
noted by C, and the fracture surface is denoted by R (see Fig. 1).
At the outer boundary C, the displacement is assumed to be given
by a known function GðX;YÞ,
UjC ¼ G ð5Þ

The two crack faces are identified as Rþ and R�, and the values
of the displacement and the stress along each face are denoted by
Uþ and U� and by Sþ and S�, respectively. The unit normal and tan-
gential vectors along the crack are denoted by n and s, respectively,
and are oriented as shown in Fig. 1. This definition of n and s is
consistent with the outward normal direction for the crack face R�.

The normal displacement jump at a point s along the crack is
equal to the crack width,

½½U��R � n ¼ ðUþ � U�Þ � n ¼ wðs; tÞ ð6Þ
The normal and shear tractions are continuous across the crack,

the normal traction Sn is equal to the net pressure (but opposite in
sign), and the shear traction Ss is equal to the applied shear stress,
which result in the conditions:

Sþn ¼ S�n ¼ �pðs; tÞ; Sþs ¼ S�s ¼ bSsðsÞ ð7Þ
Here the superscript + or � again denotes the crack face along
which the stress component is computed. The normal and the shear
tractions are obtained from the stress tensor as S�n ¼ nTðS� � nÞ and
S�s ¼ sTðS� � nÞ.

2.2.2. Lubrication equation and corresponding boundary conditions
The fluid flux within the fluid-filled portion of the fracture,

qðs; tÞ, is assumed to be related to the fluid pressure gradient and
the fracture width via Poiseuille’s law,

q ¼ �w3

l0
@pf

@s
; �‘f ðtÞ < s < ‘f ðtÞ ð8Þ

and must satisfy the law of mass conservation, which is expressed
by the PDE

@w
@t

þ @q
@s

¼ QodðsÞ; �‘f ðtÞ < s < ‘f ðtÞ ð9Þ

Here dðsÞ is the Dirac Delta function representing a point source at
the well-bore. By combining (8) and (9), the Reynolds lubrication
equation is obtained,

@w
@t

¼ 1
l0

@

@s
w3 @pf

@s

� �
þ QodðsÞ; �‘f ðtÞ < s < ‘f ðtÞ ð10Þ

The boundary conditions for the fluid flow comprise a vanishing
fluid flux at the fluid fronts, which do not necessarily coincide with
the fracture fronts. Thefluid-front free boundary is determined from
the expression for the fluid-front velocity, which is derived from
Poiseuille’s law. These two conditions are expressed as follows:

qð�‘f ðtÞ; tÞ ¼ 0 ð11Þ

d‘f ðtÞ
dt

¼ �w2

l0
@pf

@s
when s ¼ �‘f ðtÞ ð12Þ

Along the fracture the net pressure field is defined to be

pðs; tÞ ¼ pf ðs; tÞ � bSnðsÞ; jsj < ‘f ðtÞ fluid filled region

0� bSnðsÞ; jsj P ‘f ðtÞ lag region

(
ð13Þ

Observe that in the lag zone the fluid pressure is assumed to be
zero so that the net pressure is the negative of the applied normal
stress.

If there is no lag, ‘f ðtÞ ¼ ‘ and the pressure field is typically sin-
gular at the coalescent fluid and fracture fronts. This singular pres-
sure needs to be determined by detailed asymptotic analysis and
the combined front velocity (12) needs to be evaluated using a dis-
tinguished limit. If the fracture half-length ‘ðtÞ was known, (2)–
(13) would provide a closed system sufficient to determine the
fracture width and the fluid pressure. An additional constraint, re-
quired for locating the moving fracture tip ‘ðtÞ, is given by the
propagation condition formulated in terms of the asymptotic
behavior of the fracture width at the crack tips. The two limiting
regimes of hydraulic fracture propagation that we consider in this
paper are:

(i) the toughness dominated regime (the so-called K-vertex
solution, [28,29]), is characterized by the asymptotic behavior [30]

wðs; tÞ � K 0

E0 ŝ
1=2; ŝ ! 0 ð14Þ

where ŝ ¼ ð‘� sÞ is the distance from the fracture tip located at
s ¼ �‘. This regime occurs either when the fluid lag is significant
so that the tip region of the fracture is not fluid-filled, or in zero
lag situations in which the viscous energy dissipated by driving
the fluid through the fracture is sub-dominant to the energy re-
quired to break the rock.
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(ii) the viscosity dominated regime (the so-called M-vertex
solution, [27,16]), is characterized by the asymptotic behavior [15]

wðs; tÞ � bm
l0

E0 _‘ðtÞ
� �1=3

ŝ2=3; ŝ ! 0 where bm ¼ 21=335=6 ð15Þ

This regime occurs in zero lag situations in which the energy re-
quired to break the rock is sub-dominant to the viscous energy dis-
sipated by driving the fluid through the fracture.

By integrating the local mass balance equation (9) over the
crack length and over the time since the fluid injection was initi-
ated, and using the boundary conditions (11), we obtain the global
fluid balance conditionZ ‘f ðtÞ

�‘f ðtÞ
wðs; tÞds ¼ Qot ð16Þ

2.3. Scaling

The governing equations can be rewritten in a dimensionless
form following a scaling procedure similar to that described in
[31]. In order to achieve this, the following dimensionless variables
are introduced,

t ¼ t�s; X ¼ ‘�x; Y ¼ ‘�y; s ¼ ‘�f; ‘ðtÞ ¼ ‘�cðsÞ; ‘f ðtÞ
¼ ‘�cf ðsÞ ð17Þ

wðs; tÞ ¼ w�Xðf; sÞ; pðs; tÞ ¼ p�Pðf; sÞ; pf ðs; tÞ
¼ p�P

f ðf; sÞ ð18Þ

qðs; tÞ ¼ QoWðf; sÞ; b ¼ p�f=‘� ð19Þ

UðX;YÞ ¼ w�uðx; yÞ; SðX;YÞ ¼ p�rðx; yÞ; bSn ¼ p�r̂n; bSs

¼ p�r̂s ð20Þ
where t�; ‘�;w� and p� are the characteristic scales for time, length,
the crack width and the net pressure that are active in the problem.
The dimensionless quantities are: the time s, the Cartesian coordi-
nates ðx; yÞ, the tangential coordinate along the crack f, the crack
half-length c, the fluid front location cf , the net pressureP, the fluid
pressurePf , the crack widthX, the fluid fluxW, the displacement u,
the stress r, and the scaled body force field f.

When the governing equations are reformulated in terms of the
dimensionless variables, the following four dimensionless groups
can be identified in the governing equations:

Ge ¼ E0w�
p�‘�

; Gv ¼ Qot�
w�‘�

; Gm ¼ l0‘2�
w2

�p�t�
; Gk ¼ K 0‘1=2�

E0w�
ð21Þ

In order to reformulate the governing equations in terms of the
dimensionless variables of order one, three of these groups are set
to 1. These three constraints combined with a characteristic length
or time scale of interest, such as the maximum fracture length ex-
pected in the simulation or the specified maximum injection time
T, are used to identify the four characteristic scales t�; ‘�;w� and p�.
Proceeding in this way two distinct scalings emerge:

	 Toughness scaling: Ge ¼ Gv ¼ Gk ¼ 1. Combining these three
conditions with the definitions of the dimensionless groups
(21) we obtain the following power-law relationships between
the characteristic length, width, and pressure time scales:

‘� ¼ E0Q0

K 0

� �2=3

t2=3� ; w� ¼ K 02Q0

E02

 !1=3

t1=3� ; p� ¼
K 04

E0Q0

 !1=3

t�1=3
�

ð22Þ

The dimensionless viscosity in this scaling Gm ¼ l0E03Q0

K 04 :¼M is con-
sidered a parameter.
	 Viscosity scaling: Ge ¼ Gv ¼ Gm ¼ 1. Combining these three con-
ditions with the definitions of the dimensionless groups (21) we
obtain the following power-law relationships between the char-
acteristic length, width, and pressure time scales:

‘� ¼ E0Q3
0

l0

 !1=6

t2=3� ; w� ¼ l0Q3
0

E0

 !1=6

t1=3� ; p�

¼ ðl0E02Þ1=3t�1=3
� ð23Þ

The dimensionless toughness in this scaling Gk ¼ K 04

l0E03Q0

� �1=4
:¼

K ¼M�1=4 is considered a parameter.

The governing equations and boundary conditions can then be
rewritten in the following dimensionless form:

	 Equilibrium equation

r � rþ f ¼ 0 ð24Þ
	 Hooke’s law

r ¼ C : eðuÞ ð25Þ
in which C is the scaled elasticity tensor, C ¼ C=E0, and eðuÞ is the
strain tensor associated with the scaled displacement u and scaled
coordinates (x,y),

eðuÞ ¼ 1
2
ðrx;yuþ ðrx;yuÞTÞ ð26Þ

	 Boundary conditions for the displacement and stress field

ujC ¼ g ð27Þ

½½u��R � n ¼ ðuþ � u�Þ � n ¼ Xðf; sÞ ð28Þ

rþ
n ¼ r�

n ¼ �Pðf; sÞ; rþ
s ¼ r�

s ¼ r̂sðfÞ ð29Þ
where g ¼ G=w� is the scaled prescribed displacement at the outer
boundary C, and r�

g ¼ S�g =p� for g ¼ n; s are the scaled normal and
shear stresses;
	 Poiseuille’s law

W ¼ �X3 @P
f

@f
ð30Þ

	 Conservation law

_Xþ @W
@f

¼ dðfÞ ð31Þ

where we use the notation _X ¼ @X
@s;

	 Boundary conditions at the fluid fronts

Wð�cf ðsÞ; sÞ ¼ 0; _cf ðsÞ ¼ �X2 @P
f

@f
; f ¼ �cf ðsÞ ð32Þ

	 Net pressure in the lag region

Pðf; sÞ ¼ �r̂nðfÞ; jfj > cf ð33Þ
	 Propagation conditions for the toughness or viscosity domi-
nated cases, respectively:

X � K f̂1=2; f̂ 
 1 ð34Þ

X � bm _cðsÞ1=3f̂2=3; f̂ 
 1 ð35Þ
where f̂ is the distance from the crack tip and f̂ ¼ c� f in the vicin-
ity of the crack tips at f ¼ �c, respectively.
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The Reynolds lubrication equation and the global volume bal-
ance equation assume the dimensionless form

_X ¼ @

@f
X3 @P

f

@f

 !
þ dðfÞ ð36Þ

Z cf

�cf
Xdf ¼ s ð37Þ

3. The XFEM for elastic boundary value problems in a domain
with a crack

XFEM strategies are developed in [26] to solve two types of
boundary value problems that are important for modeling hydrau-
lic fracture problems. We briefly outline these formulations. The
two types of boundary conditions considered are:

(I) P ! W (Neumann to Dirichlet map: ND): given a prescribed
pressure PnðfÞ along R determine the crack opening dis-
placement XðfÞ,
PðfÞ ¼ PnðfÞ; f 2 R ð38Þ

(II) P&W (mixed: interior Neumann to Dirichlet ND, given tip
widths): given the crack opening displacement XtðfÞ in a
neighborhood Rt of the crack tip and the prescribed pressure
PcðfÞ in the interior of the crack Rc ¼ R n Rt , determine the
crack opening displacement XðfÞ along Rc ,

XðfÞ ¼ XtðfÞ; f 2 Rt ; PðfÞ ¼ PcðfÞ; f 2 Rc ð39Þ
We also consider a general class of tip asymptotic behavior in the
limit as the distance f̂ to the fracture tip tends to zero:

Xtðf̂Þ �f̂!0Af̂k; where
1
2
6 k < 1 ð40Þ

for some constant A. It can be shown [32] by local analysis of the tip
asymptotics that the corresponding pressure behavior is of the form
Pt �f̂!0 1

4Ak cotðpkÞf̂k�1 when 1
2 < k < 1. Consistent with this asymp-

totic behavior, the appropriate enrichment basis functions for thedis-
placement and corresponding stress fields are of the form (see [26]):

wu;k ¼ rkfsinðkhÞ; cosðkhÞ; sinðk� 2Þh; cosðk� 2Þhg ð41Þ
wr;k ¼ rk�1fsinðk� 1Þh; cosðk� 1Þh; sinðk� 3Þh; cosðk� 3Þhg ð42Þ
where ðr; hÞ are polar coordinates centered at the fracture tip, so
that the values h ¼ �p correspond to the two crack faces.

3.1. P ! W scheme

3.1.1. Weak formulation
Following [33] the domain V is discretized into a finite element

mesh comprising a set of non-overlapping quadrilateral elements.
The displacement inV is approximated by elements of the trial space
Uh

u ¼ fuhjuh 2 U;uh ¼ g on Cg while variations are taken from the
test space Vh

u ¼ fvhjvh 2 U;vh ¼ 0 on Cg. Here U is a finite-dimen-

sional subspace of the Sobolev spaceH1ðV n RÞ � H1ðV n RÞ that con-
sists of the shape functions representing the discretization uh. The
domain V n R that does not contain the crack R is assumed to be
piecewise Lipshitz. The test and trial functions are assumed to be
discontinuous in a direction normal to the crack R.

For a test function uh that is represented by a linear combina-
tion of shape functions, the corresponding strain eðuhÞ can be com-
puted from (26), while the corresponding stress can be obtained
from Hooke’s law (25) to yield rðuhÞ ¼ C : eðuhÞ. The discretized
formulation of the elasticity problem (24)–(29) and (38) seeks to
find uh 2 Uh

u such that

0 ¼
Z
VnR

eðvhÞ

: rðuhÞdV �
Z
VnR

vh�f dV þ
Z
R
½½vh�� � ð�PnðfÞnþ r̂sðfÞsÞdf ð43Þ

for all vh 2 Vh
u. In the above, ½½v�� ¼ ðvþ � v�Þ denotes the jump of v

across the crack.

3.1.2. Shape functions with fixed radius enrichment
Following [33] the crack is represented by two forms of enrich-

ment, namely: Heaviside enrichment (HðxÞ ¼ ð�1Þ if x 2 R� and
HðxÞ ¼ 0 if x is on the crack) used to define the crack geometry,
and tip enrichment, given by the four singular functions fwu

j g de-
fined in (41), that is used to represent the singular behavior at
the fracture tips. The tip enrichment is introduced at all nodes that
are within a prescribed radius q from the crack tip xtip, i.e.,
It ¼ fi 2 I : jxi � xtipj 6 qg, where xi 2 V denote coordinates of the
finite element node i, and I is the set of all nodes. Heaviside enrich-
ment is introduced for nodes of the set IH comprising all the nodes
of the elements cut by the crack, excluding the nodes already in It ,
so that It \ IH ¼ £.

The finite-dimensional Galerkin space U is defined by
U ¼ H1h � H1h and is spanned by the following shape functions:

H1h ¼
X
i2I

aiNiðxÞ þ RHðxÞ
X
i2I�H

biNiðxÞðHðxÞ � HðxiÞÞ
8<:

þRtðxÞ
X
i2I�t

NiðxÞ
X4
j¼1

cjiðwu
j ðxÞ � wu

j ðxiÞÞ
9=; ð44Þ

where x 2 V n R;Ni are the standard piecewise linear Lagrange basis
functions; and ai; bi; c

j
i 2 R. Here I�H is the set of nodes enriched by

the Heaviside function and all nodes in elements that are cut by
the crack and which have Heaviside-enriched nodes, and I�t is the
set of tip-enriched nodes and all nodes in elements that have tip-
enriched nodes. In addition, the two blending functions RtðxÞ ¼P

i2It NiðxÞ and RHðxÞ ¼ 1� RtðxÞ are introduced to blend the two
enrichments (see [33,34]) so that the representation (44) maintains
the partition of unity property [35] that is sufficient to obtain an
optimal convergence rate for the XFEM [36].

3.2. P&W scheme

3.2.1. Weak formulation
We use the localized mixed hybrid formulation introduced by

Zilian and Fries [37] to specify the displacement jumpXt along that
part of the domain which is adjacent to the crack boundary Rt , and
use an approach similar to the formulation in the P ! W scheme
for the rest of the domain. The domain V is discretized into a mesh
M of non-overlapping quadrilateral elements e each of which
occupies the region Vh

e having an elemental boundary @Vh
e , such

that: V ¼ [e2MVh
e . The subset of elements that overlap with that

part of the crack Rt along which Xt is prescribed is denoted K:
K ¼ fe 2M : Vh

e \ Rt –£g. The domain V is thus artificially parti-
tioned into two domains: Vo and [e2KV

h
e , where Vo ¼ V n [e2KV

h
e

contains all elements that do not overlap with Rt .
To approximate the displacement in V, we use the same test and

trial function spaces Uh
u and Vh

u that were introduced for the P ! W
scheme, with the shape functions in U ¼ H1h � H1h. However, in
each element e 2 K, the stress r is introduced as an auxiliary ten-
sor variable for which Hooke’s law (25) is weakly imposed. Follow-
ing [37] we approximate r, by introducing the test (and trial)
tensor function space

Shr ¼ frhjrh
ij ¼ rh

ji; r
h
ij 2 H�1h for i ¼ 1;2 and j ¼ 1;2g
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in which H�1h is a finite-dimensional subspace of the space of func-
tions that are square-integrable in each element in K and which are
discontinuous at the element edges and in a direction normal to the
crack R. In the next subsection we define the shape functions for
this subspace on the element level for each e 2 K .

The discretized formulation of the elasticity problem (24)–(29)
and (39) seeks to find ðuh;rhÞ 2 Uh

u � Sh
r such that, for all

ðvh; shÞ 2 Vh
u � Shr ,

0 ¼
Z
VonR

eðvhÞ : rðuhÞdV �
Z
VnR

vh�f dV þ
Z
Rc

½½vh�� � ð�PcðfÞnþ r̂sðfÞsÞdf

ð45Þ
þ
X
e2K

Z
Vh
e nR

eðvhÞ : rh dV þ
X
e2K

Z
Vh
e nR

sh : ðeðuhÞ � C�1 : rhÞdV ð46Þ

þ
X
e2K

Z
Rt;e

ð½½vh�� � nÞðn � frhg � nÞ þ ðn � fshg � nÞð½½uh�� � n�XtðfÞÞ

þ ð½½vh�� � sÞr̂sðfÞdf
ð47Þ

where Rt;e ¼ Rt \ Vh
e ; f�g denotes the averaged quantity obtained

from the two crack faces R�, e.g. frg ¼ 1
2 ðrþ þ r�Þ, and

½½v�� ¼ ðvþ � v�Þ denotes the jump of v across the crack.

3.2.2. Shape functions
As before, enrichment for the displacement is chosen in order to

guarantee that all nodes of the elements in the set K are located
within the distance q from the closest crack tip. Hence the dis-
placement shape functions (44) do not involve Heaviside enrich-
ment in the domain [e2KV

h
e . The stress in each element Vh

e , e 2 K,
is represented by the four singular functions fwr

j g given in (42)
and by standard Lagrange basis functions. The finite-dimensional
space H�1h is defined as follows:

H�1h ¼ [
e2K
veðxÞ : veðxÞ ¼

X
i2Ie

aei NiðxÞ þ
X
i2Ie

NiðxÞ
X4
j¼1

cj;ei ðwr
j ðxÞ

(

�wr
j ðxiÞÞ if x 2 Vh

e ; v
eðxÞ ¼ 0 if x R Vh

e

)
where x 2 [

e2K
Vh

e n R; aei ; cj;ei 2 R; and Ie denotes the set of all nodes in
element e.

3.3. Infinite elements

In modeling hydraulic fracture propagation in large-scale prob-
lems, the boundary conditions at a finite outer boundary are often
unknown. This can be resolved by modeling a fracture propagation
in an infinite domain, assuming a vanishing displacement at infin-
ity. To represent an infinite domain, we employ mapped infinite
elements that make it possible to capture a decaying far-field dis-
placement [38,39]. The details of the infinite elements used in this
paper are summarized in Appendix B.

4. Coupling schemes

We considered a number of different strategies of varying com-
plexity to couple the XFEM framework with the fluid flow equa-
tions in order to model propagating hydraulic fractures.
However, only the P ! W scheme and the P&W scheme were
found to be suitable. Given that the XFEM, with the appropriate
enrichment, can resolve the Neumann to Dirichlet map with
Oðh2Þ accuracy, the P ! W scheme (in which the XFEM uses nodal
pressures Pi as Neumann boundary conditions to determine the
nodal crack widths Xi) would seem a natural choice. However,
the P ! W scheme will only work for situations in which there is
a finite fluid lag and cannot be used if the fluid and fracture fronts

coalesce. When there is a finite fluid lag the separation of the fluid
front cf from the fracture front c significantly simplifies the cou-
pling strategy that is required. In this case, the fluid pressure tends
to zero at cf while there is zero or finite pressure in the fluid lag
region, so that the fracture growth is governed by the standard
X � f̂1=2 asymptote of LEFM. When the two fronts coalesce the
pressure field is typically singular at the tip, which complicates
the numerical approximation process considerably. Unfortunately,
the asymptotic solution for this singular pressure field cannot be
used by the P ! W scheme, since the domain of validity of this
asymptotic expansion is extremely small [1% of the fracture
length. Because the domain of validity of the corresponding
asymptotic expansion for the tip widths is much larger and ex-
tends to �10% of the fracture length, it is natural to consider a
W ! P scheme (in which the XFEM uses the nodal widths Xi as
Dirichlet boundary conditions to determine the nodal pressures
Pi). However, the XFEM, even with the appropriate enrichment,
can only resolve the Dirichlet to Neumannmap with OðhÞ accuracy.
In addition, spurious parasitic modes due to the blending corrupt
the pressure field near the transition from the tip to Heaviside
enrichment regions. Thus in order to arrive at a scheme that com-
bines the Oðh2Þ accuracy of the ND map with the larger domain of
validity of the width asymptotic expansion in the tips, we devel-
oped the P&W scheme. In the P&W scheme, the XFEM uses nodal
widths Xt;i from the asymptotic solution at the crack tip and nodal
pressures Pi as Neumann boundary conditions in the interior part
of the crack away from the tips, which we refer to as the channel
region, and solves for the nodal widths within this channel region
(see Section 3). In this way the P&W scheme can employ the
asymptotic width as the boundary condition at the crack tip.

An important component of any HF coupling scheme is a strat-
egy to locate the free boundaries in the problem. Typically there
exist a multiplicity of pairs ðX;PÞ that equilibrate and satisfy the
fluid conservation equations, which may be regarded as being
parameterized by the location of the free boundaries ðcf ; cÞ. In or-
der to identify the desired solution it is crucial that the coupling
algorithm be able to determine cf and c accurately. In the case of
a finite lag, (i.e., cf < c), cf can be determined by solving the evolu-
tion equation (32) using the Forward Euler method, while c can be
determined by imposing the f̂1=2 asymptote of LEFM. In the case of
zero lag, (i.e., cf ¼ c), one possibility is to solve the evolution equa-
tion (32), which provides an expression for the combined front
velocity. However, because of the singular pressure field, solving
(32) involves evaluating a distinguished limit numerically – a pro-
cess that is notoriously susceptible to round-off errors. In this case,
some form of implicit scheme is required to locate the fracture free
boundary that does not depend directly on (32). In this paper, we
use a fairly simple device in which a fracture growth increment
Dc in a given direction is prescribed and the corresponding time
increment Ds is determined so that the coupled equations and
the applicable propagation condition are both satisfied, which
thereby locates the free boundary in space–time. This approach
has the advantage that the fracture front only has to be moved
once per growth increment, which means that the tip enrichment
only needs to be updated once per growth increment resulting in
significant computational savings. However, for more complex sit-
uations, such as non-symmetric fracture growth, this scheme will
not work as fixed spatial growth increments on different fronts will
then not necessarily occur at the same time. Though the above
scheme suffices for the purposes of this paper, more complex situ-
ations will require more generally applicable algorithms such as
the implicit level set scheme [24], which exploits the local tip
asymptotic behavior to locate the free boundary in space.

In this paper we assume that the fracture grows symmetrically
at both crack tips. The general algorithm, which follows those pre-
sented in [40,41], starts with a crack of an initial half-length c0, at
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which point the pair ðX;PÞ is initialized to an available reference
solution such as an early time solution for an initially straight
crack. At step M of the algorithm, M P 1, the crack growth is sim-
ulated by adding a crack increment of a fixed length DcM to each
crack tip, inclined at a given deflection angle hM to the current
propagation direction. Thus, the crack half-length at stepM is given
by cM ¼ c0 þ

PM
i¼1Dci. For this new crack configuration, the algo-

rithm determines: the corresponding time sM ¼ sM�1 þ DsM , the
crack width Xðf; sMÞ, the pressure Pðf; sMÞ, and the location of
the fluid front cfM for a problem with fluid lag, so that the coupled
governing equations (24)–(35) are satisfied. Based on the solution
at time-step M, the new deflection angle hMþ1 is determined that
defines the propagation direction for time-step M þ 1.

At each step of the simulation, the structure of the Heaviside
and the crack tip enrichments is introduced as described in Sec-
tion 3. The radius of the tip enrichment is a fixed pre-defined
parameter q. To discretize the governing equations for nodal val-
ues of the crack width Xi ¼ Xðfi; sMÞ, the nodes f ¼ fi are chosen
at the intersections of the crack with the edges of the finite ele-
ment mesh (see Fig. 2). The nodes along the crack are numbered
consecutively, by f0; . . . ; fNþ1, where �c ¼ f0 and c ¼ fNþ1 are the
locations of the crack tips. The nodal widths are abbreviated into
the vector X ¼ ðX1; . . . ;XNÞT . We denote the nodal net pressures
by Pi ¼ Pðfi; sMÞ and the nodal fluid pressures by Pf

i ¼ Pi þ r̂nðfiÞ.
Each scheme we consider below employs an approximation of

the pressure and the width by basis functions, which are defined
in terms of the standard piecewise linear Lagrange hat functions
associated with the nodes fi

hiðfÞ ¼

f�fi�1
fi�fi�1

; if fi�1 6 f < fi
fiþ1�f
fiþ1�fi

; if fi 6 f < fiþ1

0; else

8>><>>: ð48Þ

4.1. P ! W scheme for a crack with fluid lag

In this section we consider a crack partially filled with fluid so
that the width in the crack tip is governed by the toughness
asymptote (34). At time sM , the fluid front is located at cfM < cM .
The crack is divided into two fluid lag regions (ð�c;�cf Þ and
ðcf ; cÞ, i.e., one for each wing of the crack), and the fluid-filled re-
gion ð�cf ; cf Þ (designated by the shaded region), which contains
the channel region ð�cc; ccÞ (see Fig. 2). Each of the two lag regions
includes m finite elements, m P 1, starting with the element con-
taining the crack tip and including an element that is partially
filled with fluid. The elements that are cut by the crack and are
completely fluid-filled form the so-called channel. The nodes fm
and fN�mþ1 are located at the channel boundaries. The problem is
reduced to finding unknown nodal fluid pressures in the channel,
abbreviated below into a vector Pf

c ¼ ðPf
m; . . . ;P

f
N�mþ1ÞT .

4.1.1. Pressure and width basis functions
The present scheme employs the XFEM to provide the nodal

crack widths X, given the nodal channel fluid pressures Pf
c . This

link between the vectors Pf
c and X can be constructed by means

of a linear operator D:

X ¼ DPf
c þ X̂ ð49Þ

where X̂ is the vector of nodal widths that results from the solution
of the elasticity problem (24)–(27) augmented by the boundary
condition, in which the tractions along the crack are given by the
normal and shear stresses induced by the external state of stress:

rþ
n ¼ r�

n ¼ r̂nðfÞ; rþ
s ¼ r�

s ¼ r̂sðfÞ; for f 2 R ð50Þ
The crack width resulting from the solution of this elasticity prob-
lem at any point f along the crack is denoted X̂ðfÞ. Eq. (49) repre-
sents the superposition of the crack width induced by the fluid
pressure within the crack and the crack width induced by the exter-
nal state of stress.

We approximate the net pressure Pðf; sMÞ in the fluid-filled
portion of the crack by a linear combination of pressure basis func-
tions PiðfÞ (i ¼ m : N �mþ 1) as follows,

Pðf; sMÞ �
XN�mþ1

i¼m

Pf
i PiðfÞ � r̂nðfÞ ð51Þ

where the basis functions PiðfÞ for i ¼ mþ 1 : N �m are the hat
functions defined in (48), i.e.,

PiðfÞ ¼ hiðfÞ; i ¼ mþ 1 : N �m ð52Þ
Within the partially-filled elements the basis functions PiðfÞ for
i ¼ m;N �mþ 1 are hat functions that vanish at the fluid fronts
�cf :

PmðfÞ ¼
fþcf
fmþcf ; if � cf 6 f < fm

hmðfÞ; if fm 6 f < fmþ1

0; else

8>><>>: ð53Þ

PN�mþ1ðfÞ ¼
f�cf

fN�mþ1�cf ; if fN�mþ1 6 f < cf
hN�mþ1ðfÞ; if fN�m 6 f < fN�mþ1

0; else

8>><>>: ð54Þ

Functions (52)–(54) satisfy the Kronecker d property, PiðfjÞ ¼ dij,
for i; j ¼ m : N �mþ 1, so that the value of the approximated pres-
sure Pðf; sMÞ at fi is equal to the nodal net pressure Pi for
i ¼ m : N �mþ 1.

The XFEM can be used to solve the elasticity problem (24)–(27)
complemented by the boundary condition, in which the pressure
along the crack is given by a pressure basis function PiðfÞ
(i ¼ m : N �mþ 1):

rþ
n ¼ r�

n ¼ �PiðfÞ; rþ
s ¼ r�

s ¼ 0; for f 2 R ð55Þ
For consistency with the toughness asymptote, the square-root
enrichment k ¼ 1=2 must be used by the XFEM formulation in this
case. The solution of this elasticity problem yields the correspond-
ing width basis functions, which we denote by xiðfÞ.

Fig. 2. Discretization of a crack with a fluid lag within the regular FEM mesh. The lag regions ð�c;�cf Þ and ðcf ; cÞ and the channel region ð�cc ; ccÞ are indicated while the
fluid-filled region ð�cf ; cf Þ is designated by the shading.
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Due to the linearity of the elasticity problem, the width Xðf; sMÞ
along the crack corresponding to the pressure (51) is given by the
linear combination of the width basis functions,

Xðf; sMÞ �
XN�mþ1

i¼m

Pf
i xiðfÞ þ X̂ðfÞ ð56Þ

The nodal width Xi can thus be found as

Xi ¼
XN�mþ1

j¼m

Pf
j xjðfiÞ þ X̂i ð57Þ

in which the expansion coefficients are not nodal widths, but are
the nodal fluid pressures Pf

j . Eq. (57) can be interpreted as a com-
ponent form of (49) in which the linear operator D is given by its
components

Dij ¼ xjðfiÞ; i ¼ 1 : N; j ¼ m : N �mþ 1 ð58Þ

4.1.2. Discretization of the fluid flow equations
The fluid flow equations are reformulated in a weak form as fol-

lows. Let /ðfÞ be a test function defined in the channel,
f 2 ð�cc; ccÞ. Using integration by parts applied to the integralR cc
�cc /ðfÞ _Xdf, the conservation law (31) can be reformulated asZ cc

�cc
/ðfÞ _Xdf ¼ �/ðccÞWðccÞ þ /ð�ccÞWð�ccÞ

þ
Z cc

�cc
/0ðfÞWdfþ /ð0Þ ð59Þ

At stepM of the algorithm, the time derivative _X is approximated by
the backward difference approximation

_X ¼ Xðf; sM�1 þ DsÞ �Xðf; sM�1Þ
Ds

ð60Þ

where Ds ¼ sM � sM�1 is the unknown time-step. For brevity, we
denote all quantities obtained at the previous time-step by the sub-
script or the superscript o; e.g. so ¼ sM�1 and Xo ¼ Xðf; sM�1Þ, while
quantities without sub or superscripts are assumed to be evaluated
at time sM , i.e., X ¼ Xðf; sMÞ.

By substituting the time derivative into (59) and using Poiseu-
ille’s law (30), we obtainZ cc

�cc
/ðfÞXdf ¼

Z cc

�cc
/ðfÞXo dfþ Dsð�/ðccÞWðccÞ

þ /ð�ccÞWð�ccÞ þ /ð0ÞÞ � Ds
Z cc

�cc
/0ðfÞX3 @P

f

@f
df

ð61Þ
Assuming that the pressure and the width are given by combi-

nations of the basis functions (51) and (56) and using the pressure
basis functions PiðfÞ for i ¼ m : N �mþ 1 as the test function /ðfÞ,
(61) can be rewritten for i ¼ m : N �mþ 1 as follows

XN�mþ1

j¼m

Pf
j

Z cc

�cc
PiðfÞxjðfÞdf ¼

Z cc

�cc
PiðfÞðXo � X̂Þdf

þ Dsð�PiðccÞWðccÞ
þ Pið�ccÞWð�ccÞ þ Pið0ÞÞ

� Ds
XN�mþ1

j¼m

Pf
j

Z cc

�cc
P0
iðfÞX3P0

jðfÞdf ð62Þ

Further, we define the mass matrix M and a tri-diagonal matrix A,
both having dimensions ðN � 2mþ 2Þ � ðN � 2mþ 2Þ, by

Mij ¼
Z cc

�cc
PiðfÞxjðfÞdf; i; j ¼ m : N �mþ 1 ð63Þ

Aij ¼ �
Z cc

�cc
P0
iðfÞX3P0

jðfÞdf; i; j ¼ m : N �mþ 1 ð64Þ

The integrals in the entries of both matrices are computed numer-
ically. To compute the matrix A, the crack width X is reconstructed
from the expansion (56).

Thus, the weak form (62) of the fluid flow equations can be
rewritten in a discretized form as a system of nonlinear algebraic
equations for the vector Pf

c of unknown nodal fluid pressures as

ðM� DsAÞPf
c ¼ F ð65Þ

where the components of the vector F are

Fi ¼
Z cc

�cc
PiðfÞðXo � X̂Þdfþ Dsð�PiðccÞWðccÞ

þ Pið�ccÞWð�ccÞ þ Pið0ÞÞ ð66Þ
In the numerical examples presented in this paper the applied

shear stress is zero, i.e., r̂s ¼ 0. The boundary fluxes Wð�ccÞ in-
volved in (66) characterize the exchange of fluid volume outside
the channel boundaries, over the time-step Ds. The flux WðccÞ is
computed from

WðccÞ ¼
1
Ds

Z cf

cc
ðX�XoÞdf ð67Þ

and the flux Wð�ccÞ is found similarly. The non linearity in the sys-
tem (65) arises from the dependence of the matrix A and the right
hand side vector F (via (67)) on the crack width X, and thus on the
fluid pressures Pf

c via (49). The primary unknown in this scheme is
the vector of nodal fluid pressures Pf

c .

4.1.3. Time-step and deflection-angle determination
Following the scheme introduced by Gordeliy and Detournay

[42,40] and Bunger et al. [41] for flat and curved cracks with fluid
lag, the condition for finding the unknown time-stepDs can be im-
posed by enforcing the propagation criterion at the crack tip, from
which the time-step is found as a root of an implicit function f ðDsÞ:
f ðDsÞ ¼ 0 ð68Þ
When the crack grows along its initial direction due to symmetry
in stress distribution around the crack tip, the deflection angle
can be set to zero, hMþ1 ¼ 0. To construct f ðDsÞ in simulations per-
formed for a flat crack with fluid lag (Section 5.1), one can apply
the tip asymptote (34) in a weak form over the tip element as
follows:

f ðDsÞ ¼
Z c

fN

Xdf� 2
3
Kðc� fNÞ3=2 ð69Þ

This function f depends on Ds via the solution X obtained for the
current time-step Ds.

To model a curving crack, the propagation criterion may be cho-
sen according to the maximum tensile stress criterion [43]:

f ðDsÞ ¼ K� cos
hMþ1

2

� �
KI cos2

hMþ1

2

� �
� 3
2
KII sin hMþ1

� �
ð70Þ

in which KI and KII are the dimensionless mode I and II stress inten-
sity factors corresponding to the behavior of the dimensionless nor-
mal and shear displacement jumps near the crack tip. The deflection
angle is defined by Erdogan and Sih [43]

hMþ1 ¼ 2arctan
KI �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ 8K2
II

q
4KII

0@ 1A ð71Þ
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in which the sign is chosen so that the tensile stress normal to the
deflection direction ahead of the crack tip, which is proportional to
the second term on the right of (70), achieves its maximum value.
The function f in (70) depends on Ds via the stress intensity factors
KI and KII obtained for the current time-step Ds. For the numerical
examples presented in this paper, the stress intensity factors were
computed using a domain form of the interaction integral, which
is outlined in Appendix A.

4.1.4. Fluid front location
The fluid front is located by applying the Forward Euler scheme

to the evolution equation (32)

cf ¼ cof þ DsVf

where cof is the location of the front at the previous time so and Vf is
the fluid front velocity determined from (32) and evaluated at
f ¼ cc ,

Vf ¼ �XðccÞ2
@Pf

@f

�����
cc

ð72Þ

The pressure gradient required in (72) can be computed by fitting a
polynomial to the nodal pressures Pf

i , including the pressure
Pf ðcf Þ ¼ 0, and finding the gradient of the polynomial at f ¼ cc .
For the numerical examples in this paper, the pressure gradient
was computed by fitting either a quadratic or a cubic polynomial
to the pressuresPf

i (i ¼ N �m� 1; . . . ;N �mþ 1) andPf ðcf Þ, which
are equivalent to second or third order backward difference
approximations.

To accelerate the convergence of the iterative scheme in the
numerical examples in Sections 5.1 and 5.2, we use a Picard relax-
ation scheme for the velocity at successive iterates. Thus for the jth
iteration of the fluid front, we use the following expression for the
fluid velocity

V ðjÞ
f ¼ vV ðj�1Þ

f � ð1� vÞXðccÞ2
@Pf

@f

�����
cc

ð73Þ

where 0 < v < 1 is the relaxation parameter. The iterations are run
until convergence is reached within a pre-defined relative tolerance
df ,

jcðjÞf � cðj�1Þ
f j < df c

ðj�1Þ
f ð74Þ

where cðjÞf is the fluid front at iteration j.

4.1.5. Iterative solution of the coupled equations
We describe the iterative algorithm that uses the P ! W

scheme to solve for: the time sM (or equivalently the time-step
DsM), the location of the fluid front cfM , the crack width Xðf; sMÞ,
and the pressure Pðf; sMÞ, given the crack length cM at the simula-
tion step M. For a curving crack, the algorithm also determines the
deflection angle hMþ1 for the new crack growth increment. This
algorithm uses the same logic to locate the fluid front and to deter-
mine the time-step as that used in [42,40,41].

For a fixed crack configuration corresponding to the crack tip at
f ¼ cM , and for a trial location of the fluid front, the width basis
functions xiðfÞ are obtained for i ¼ m : N �mþ 1 from the XFEM
solutions for the elasticity problems, in which the pressures along
the crack are given by the pressure basis functions PiðfÞ defined in
(52)–(54). The mass matrix M is constructed using these width ba-
sis functions, according to (63).

For each trial location of the fluid front, the secant method is
used to solve the nonlinear equation (68) for the time-step Ds.
For each value of the time-step involved, the system (65) is solved
by fixed point iteration to yield the nodal fluid pressures Pf

c in the

channel region. At iteration k;Pf ;ðkÞ
c is determined by solving the

linear system:

ðM� DsAðk�1ÞÞPf ;ðkÞ
c ¼ Fðk�1Þ

in which the superscripts (k) and ðk� 1Þ denote the quantities at
current and previous iterations. The crack width XðfÞ, required for
the construction of the function f in (68), is found from the channel
fluid pressures Pf

c via (56).
When the iterations for the nodal pressures and the time-step

reach a desired tolerance, the fluid front location is updated via
(73). The iterative procedure for locating the fluid front, the
time-step, and the nodal pressures runs until a desired tolerance
has been obtained. Then the stress intensity factors are computed
and the deflection angle hMþ1 for the new crack increment of length
DcMþ1 is found from (71).

4.2. P&W scheme for cracks with singular tip pressures

The P&W XFEM scheme described above makes it possible to
incorporate the asymptotic behavior of the width in the neighbor-
hood of the crack tip as a boundary condition. The advantage of
this scheme is that it can treat problems in which the fluid pressure
is singular at the crack tips, such as the viscous mode of crack prop-
agation [27,16]. In order to facilitate comparison with published
reference solutions we only consider the propagation of cracks
along straight lines, so that the deflection angle at each step of
propagation is zero, i.e., hM ¼ 0. This assumption does not limit
the class of problems that can be solved using the coupled P&W
scheme. Indeed, this restriction can be relaxed by incorporating
an appropriate search strategy (e.g., for the maximum tensile stress
direction in the vicinity of the crack tip) to identify the propagation
direction of the crack at each growth increment. For the problems
we consider, we also assume that the shear stress applied along the
crack faces vanishes: i.e., r̂s ¼ 0. Non-zero applied shear stress
fields r̂s can easily be incorporated using superposition as was
done for the P ! W scheme in Section 4.1.

Though the coupled P&W scheme can easily be applied to prob-
lems with fluid lag (i.e., cf < c), the additional complexity of this
scheme compared to the P ! W scheme is unwarranted in this
case. Therefore for the presentation of the coupled P&W scheme
we consider cracks that are completely filled with fluid, i.e.,
cf ¼ c, for which the P ! W scheme does not work. The crack is di-
vided into two crack tip regions and a channel region (see Fig. 3).
Each of the two tip regions includes n finite elements, n P 1,
counting from the element containing the crack tip. The width in
the crack tip zone is assumed to be governed by the tip asymptote
(34) or (35). Thus the XFEM uses the crack width boundary condi-
tion (28) in the tip regions ðf0; fnÞ [ ðfN�nþ1; fNþ1Þ, and the pressure
boundary condition (29) in the channel region ðfn; fN�nþ1Þ. It is as-
sumed that blending of the two enrichments takes place in the
channel. Hence we choose the tip enrichment radius q so that ele-
ments for which tip enrichment is applied completely cover the tip
regions ðf0; fnÞ and ðfN�nþ1; fNþ1Þ.

4.2.1. The XFEM solution
The XFEM solution can be represented as a superposition of

solutions that approximate the width boundary condition (28)
and the pressure boundary condition (29). The aim is to use the no-
dal net pressures Pi in the channel and the asymptotic widths in
the tips to reconstruct the appropriate boundary conditions (28)
and (29) for the XFEM.

Since the crack is assumed to propagate along a straight line,
the applied normal stress r̂nðfÞ 
 r̂n is uniform along the crack
and the fluid flow equations (30), (32) and (36) can be reformu-
lated in terms of the gradient of the net pressure @P

@f ¼ @Pf

@f .
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Di0 ¼

1 if 0 2 ðfi; fiþ1Þ
1
2 if 0 ¼ fiþ1

� 1
2 if 0 ¼ fi

0 if 0 R ½fi; fiþ1�

8>>><>>>:
The arguments X and Ds in the function FW are omitted for brevity.

Similarly, (87) is integrated over ðfi; fiþ1Þ for i ¼ n : N � n as

Piþ1 �Pi ¼ Dfi
2

ðFPðfiÞ þ FPðfiþ1ÞÞ þ OðDf3Þ ð90Þ

4.2.3. Iterative solution of the coupled equations
Given the crack length cM at the simulation step M, the iterative

solution is obtained for the time-step Ds, as well as for the follow-
ing nodal quantities in the channel, comprising: the crack widths
Xi, the pressures Pi, and the fluxes Wi (for i ¼ n : N � nþ 1). This
leads to 3ðN � 2nþ 2Þ þ 1 unknowns. Eqs. (85), (89) and (90) pro-
vide 3ðN � 2nþ 2Þ � 2 equations.

The remaining three equations are provided by the tip asymp-
tote for the crack width at each tip according to (76),

Xn ¼Wðfn � f0; _cÞ; XN�nþ1 ¼WðfNþ1 � fN�nþ1; _cÞ ð91Þ
and by the global volume balance (37) discretized as

Vðfn � f0; _cÞ þ VðfNþ1 � fN�nþ1; _cÞ þ
XN�n

i¼n

Dfi
2

ðXi þXiþ1Þ ¼ s ð92Þ

Above, V is the fluid volume stored in the tip region, computed
according to (76):

Vðf̂; _cÞ ¼
Z f̂

0
Wðg; _cÞdg ð93Þ

The above equations form a closed system for the
3ðN � 2nþ 2Þ þ 1 unknowns. For a given crack length cM , the width
basis functions xp

i ðfÞ (for i ¼ n : N � nþ 1 and p ¼ 0;1) and xiðfÞ
(for i ¼ 0;N þ 1) are first constructed from the XFEM solution for
the elasticity problem (24)–(27) in which one of the boundary con-
ditions (a)–(c) is imposed (see Section 4.2.1). An initial guess for
the nodal quantities and the time-step is then chosen. These
3ðN � 2nþ 2Þ þ 1 nonlinear equations are solved iteratively using
Newton’s algorithm until a predefined tolerance is reached.

5. Numerical results

5.1. P ! W scheme: a crack parallel to a free surface with a fluid lag

We consider a partially fluid-filled hydraulic fracture propagat-
ing parallel to the free surface of a half-space. It is assumed that a
large confining stress r‘ is acting parallel to the free surface, and a
confining stress r̂n ¼ ro � r‘ acts normal to the crack plane. The
large confinement r‘ resists any symmetry-breaking curvature of
the crack so that it continues to propagate parallel to the free sur-
face [44]. The shear stress is zero along the crack faces, i.e., r̂s ¼ 0.
Due to the reduced stress environment near the surface, the fluid
front lags significantly behind the fracture front. To illustrate the
performance of the coupled P ! W scheme for this problem, we
provide a comparison with the solution obtained using a displace-
ment discontinuity method (DDM)-based algorithm Oribi [42,45].

We consider a crack at a depth H below the free surface, refer-
ring to the dimensionless coordinates ðx; yÞ, in which the crack is
located along y ¼ 0, and the fluid inlet is at x ¼ y ¼ 0. To transition
between the scaling used in the present paper and that used in Ori-
bi, we represent the results in terms of the following scaled quan-
tities, that take into account the characteristic length scale H:

T� ¼ H3=2; P� ¼ H�1=2; W� ¼ H1=2; L� ¼ H ð94Þ

so that

s ¼ T�s�; P ¼ P�P�; X ¼ W�X�; c ¼ L�c�; cf ¼ L�cf�;
f ¼ L�f�

Note that the net scaled pressure P� accounts for the confining
stress ro acting normal to the fracture plane while the scaled con-
fining stress S� is defined by

ro ¼ P�S� ð95Þ
In the following two simulations, we used K ¼ 0:5 and either

S� ¼ 0 or S� ¼ 0:05. The crack was initiated at depth H ¼ 45:5
and constrained to grow parallel to the free surface. The size of
the finite, rectangular computational domain was Lx ¼ 300,
Ly ¼ 125, with singly- and doubly-infinite elements of order 9
placed along its three sides simulating the remote boundary. The
mesh size was h ¼ 1, and the initial crack half-length was set to
c0 � 19, for which the solution initialized to the numerical solution
obtained from Oribi. Fig. 4 shows a symmetric wing of the crack
configuration after one step of the simulation and a fragment of
the FEM mesh. The crack was propagated along its initial direction,
with the crack extension on each wing of the crack being set to
Dc ¼ 1. The fluid front tolerance was set to df ¼ 10�3, and the Pi-
card iteration relaxation parameter for the fluid front velocity
was set to v ¼ 0:8 (for S� ¼ 0) and to v ¼ 0:9 (for S� ¼ 0:05).

The crack tip region was dry during propagation within the
time-frame chosen, so that the appropriate power-law exponent
for the singular tip enrichment was k ¼ 1=2. The radius of the tip
enrichment was set to q ¼ 3. Fig. 5 shows the evolution of the
scaled crack half-length c�, the fluid front cf�, the inlet crack width
X�ð0; s�Þ and the inlet net pressure P�ð0; s�Þ with scaled time s�. A
few snapshots of the scaled nodal crack widths and the nodal net
pressures are shown in Fig. 6. All the results agree well with the
Oribi solution.

In both simulations, the time-step was found by determining
the root of the nonlinear function (68). We used the averaged prop-
agation criterion (69) for the case when S� ¼ 0. We found, how-
ever, that the averaged propagation criterion (69) was not
sufficiently accurate to obtain convergent results for the time-step
when S� ¼ 0:05. We thus used the criterion in the form (70) for
S� ¼ 0:05, in which we assumed that KII ¼ 0, due to the large con-
fining stress r‘ acting parallel to the crack surface, and where the
stress intensity factor KI was computed using the interaction inte-
gral as described in Appendix B. Indeed, the gradient of f ðDsðKÞÞ
with respect to K is typically very small, which implies that a very
small error inKwill be associated with a large change inDs. Thus a
high degree of precision is required in the evaluation of K in order
that Ds can be determined sufficiently accurately.

5.2. P ! W scheme: a curving crack close to a free surface with a fluid
lag

We consider a straight crack initially at a depth H ¼ 40:5 below
the free surface of a half-space in which there are no confining
stresses, so that r‘ ¼ ro ¼ 0. The applied normal and shear trac-
tions, in the absence of the crack, are therefore zero along the crack

0 5 10 15 20 25 30
−5

0

5

Fig. 4. A fragment of the FEM mesh and the crack configuration at the first step of
the algorithm for the simulation with a flat partially-filled crack.
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path, r̂n ¼ r̂s ¼ 0. In this case the propagating fracture curves to-
wards the free surface. The crack is partially filled with fluid for
the duration of the simulation, and as it propagates towards the
surface, the two moving boundaries c and cf , as well as the shape
of the fracture, need to be determined. The results of the coupled
P ! W scheme for this problem are compared to the results of Ori-
biC, an extension of Oribi designed to treat curved cracks based on
the maximum tensile stress criterion (70) [40,41].

The dimensionless toughness is set to K ¼ 0:5. We refer again to
the dimensionless coordinates ðx; yÞ, in which the initial crack is lo-
cated along y ¼ 0, and the fluid inlet is located at x ¼ y ¼ 0. In the
XFEM simulation for this example, the size of the finite, rectangular
computational domain was Lx ¼ 300, Ly ¼ 121, with singly- and

doubly-infinite elements of order 9 placed along its three sides to
simulate the remote boundary. The mesh size was h ¼ 1, and the
initial crack half-length was set to c0 ¼ 18 and the XFEM solution
was initialized to the corresponding numerical solution from Ori-
biC. Further crack propagation was modeled by adding straight
segments to the crack tips extending over two finite elements, so
that the crack kinks were only present at edges of the finite ele-
ment mesh, and the crack path was straight within each particular
element cut by the crack. The deflection angle of each new segment
was determined from the stress intensity factors via (71). The
power-law exponent for the singular tip enrichment was k ¼ 1=2.
The tip enrichment was introduced only for finite elements that
contained the crack tip along one of its edges. The fluid front toler-

Fig. 5. Simulation results for K ¼ 0:5: evolution of the crack half-length c� , the fluid front cf � , the inlet crack width X�ð0; s�Þ and the inlet net pressure P�ð0; s�Þ. The results
correspond to S� ¼ 0 (Oribi in black; XFEM in magenta with circles) and to S� ¼ 0:05 (Oribi in blue; XFEM in red with triangles). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Simulation results for K ¼ 0:5: crack width and net pressure at times s� � 0:4, 0.8. The results correspond to S� ¼ 0 (top: Oribi in black; XFEM in magenta with circles)
and to S� ¼ 0:05 (bottom: Oribi in blue; XFEM in red with circles). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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ance was set to df ¼ 10�3, and the Picard iteration relaxation
parameter for the fluid front velocity was set to v ¼ 0:9. The result-
ing crack path obtained using the XFEM is shown in Fig. 7, together
with a fragment of the underlying FEM mesh that covers the rect-
angular box shown in the upper figure. The results show close
agreement to those obtained using OribiC.

Fig. 8 shows the evolution of the scaled crack half-length c�, the
fluid front cf�, the inlet crack width X�ð0; s�Þ, and the inlet pressure
P�ð0; s�Þ with the scaled time s�. A few snapshots of the scaled no-
dal crack widths and the nodal pressures are also shown. The same
scaling introduced in (94) is used.

In the simulation, the criterion (70) was used to find the time-
step. However, this leads to instability in the XFEM solution around
s� ¼ 0:5, as can be seen from Fig. 8. It was found that the compu-
tation of the stress intensity factors for a kinking crack, which is
sufficiently accurate to determine the deflection angle of the crack
path, is not accurate enough to determine the time-step using (68)
combined with (70). The sensitivity of the time-step selection to
errors in the stress intensity factor K was noted in the previous
example. It should be noted that using line segments to approxi-
mate a curving crack introduces mechanical artifacts, in the form
of kinks, into the numerical model. The resolution to this would
be to use C1 curvilinear crack segments with the appropriate tan-
gent asymptotics at the tips. However, this line of investigation is
beyond the scope of this paper. To demonstrate that this instability
is solely due to the time-step selection procedure, we performed a
simulation for the same set of parameters within the coupled
XFEM, but enforced the time-step given by the OribiC solution at
each crack configuration. The results of this simulation are shown
in Figs. 7 and 8, denoted by ‘‘XFEM-t’’. We note that the results of
the original coupled XFEM (for s� < 0:5) and of the simulation with
the time-step enforced are both in good agreement with each other
and with OribiC. It should be noted that the number of mesh points
along the crack in the XFEM model were an order of magnitude
(110 per crack wing) less than those used in the OribiC model
(920 per crack wing). This example does demonstrate, however,

Fig. 7. Top: the crack path obtained using OribiC, XFEM-t, and XFEM; bottom: a
fragment of the crack path within the FEM mesh sampled within the rectangular
box shown in the top figure.

Fig. 8. Simulation results for a curving partially-filled crack with K ¼ 0:5. Plots show the evolution of: the crack half-length c� , the fluid front cf� , the inlet crack width
X�ð0; s�Þ, and the inlet pressure P�ð0; s�Þ. Spatial plots of the crack width and pressure at times s� � 0:2, 0.4, 0.6 are also shown. (OribiC in black; XFEM-t in magenta with
circles; XFEM blue with circles). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that the XFEM-based P ! W scheme does provide a sufficiently
accurate representation of the elasticity problem to resolve this
challenging problem of a curving hydraulic fracture to capture
the significant geometric changes that take place during the prop-
agation. We leave the exploration of more robust time-step selec-
tion techniques or alternative front location methods to a
subsequent paper.

5.3. P&W scheme: M-vertex solution

We use the coupled P&W scheme to model the propagation of a
hydraulic fracture in an infinite domain corresponding to the M-
vertex solution, characterized by K ¼ 0 and zero lag. We use the
viscosity scaling that leads to the power law relationships (23).
To provide a comparison between the XFEM algorithm and the ref-
erence M-vertex solution [46,16] for the more challenging situa-
tion in which the crack is not aligned with the structured mesh,
we modeled a crack inclined at 30� to the x-axis, in a rectangular
domain of dimensions Lx ¼ 240, Ly ¼ 241, with singly- and dou-
bly-infinite elements of order 9 placed along its four sides to sim-
ulate the infinite domain. The mesh size was h = 1, and the initial
crack half-length was set to c0 ¼ 9:5, for which the solution was
initialized to the M-vertex solution. Fig. 9 shows the initial crack
configuration and a fragment of the FEM mesh that was used.
The crack was then propagated along its initial direction for 60
steps, with the crack extension on each wing of the crack being
set to Dc ¼ 1. The asymptotic tip region at each step was chosen
to spread over two elements for each crack tip; this corresponds
to setting n ¼ 2 in the P&W scheme.

The propagation condition in this problem corresponds to the
viscosity tip width asymptote (35), so that the power-law expo-
nent for the singular tip enrichment was set to k ¼ 2=3. The radius
of the tip enrichment was set to q ¼ 3.

Fig. 10 shows the evolution of the crack half-length c, the fluid
volume

R c
�cXdf, the inlet crack width Xð0; sÞ and the inlet fluid

pressure Pð0; sÞ with time s. A few snapshots of the nodal crack
widths and the nodal fluid pressures are shown in Fig. 11. All the
results agree well with the M-vertex solution. For this comparison,
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Fig. 9. A fragment of the FEM mesh and the initial crack configuration.

Fig. 10. Simulation results for K ¼ 0: evolution of crack half-length c, fluid volume
R c
�c Xdf, inlet crack width Xð0; sÞ, inlet fluid pressure Pð0; sÞ; and the relative errors in

length and width. These plots show the dimensionless quantities defined in (17) and (18) (M vertex in black and XFEM in blue with circles). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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we define the relative approximation errors in length and width at
each time-step as follows:

EcðsÞ ¼ jcðsÞ � cref ðsÞj
cref ðsÞ ; EXðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðXi �Xref

i Þ2PN
i¼1ðXref

i Þ2

vuut ð96Þ

where the superscript ref denotes the quantities corresponding to
the M-vertex solution at time s. Note that the above definition of
the width error EXðsÞ, based on the nodal crack widths, can be
viewed as a discrete version of the L2-norm of the error, scaled by
the L2-norm of the reference solution:

EXðsÞ �
jjX�Xref jjL2ðRÞ
jjXref jjL2ðRÞ

The evolution of the relative approximation errors in length and
width, EcðsÞ and EXðsÞ, are shown in Fig. 10. It is observed that these
errors essentially asymptote to 10�2 and do not grow with time.
These errors are not related to the approximation of the domain
by the infinite elements since they do not grow as the crack tips ap-
proach the Finite Element–Infinite Element Interface. These results
also confirm that the XFEM formulation used in the P&W scheme is
mesh-independent.

6. Conclusions

Hitherto, there has been little research on XFEM-based schemes
to couple the elasto-hydrodynamic equations that govern the prop-
agation of hydraulic fractures. Indeed, previous research in this area
focused on so-called dry cracks, in which the effect of viscosity can
essentially be neglected. These schemes exploit the Oðh2Þ ND map
provided by the XFEM. We have demonstrated that it is also possi-
ble to exploit the Oðh2Þ ND map even if viscous effects are signifi-
cant. In particular, if there is a finite fluid lag, so that the pressure
field is finite, then the so-called P ! W XFEM formulation based
on inverting the ND map and using k ¼ 1

2 enrichment, is sufficient
to capture the HF solution with the required precision. However,
if there is a coalescence of the fluid and fracture fronts, which fre-
quently occurs in typical HF treatments in deep reservoirs, then
the degenerate lubrication PDE admits singular behavior of the
pressure field in the fracture tips. Unfortunately, the singularity of

this pressure field and the fact that the domain of validity of the
tip pressure asymptotic solution is extremely small[1% compared
to the length of the fracture, makes it impracticable to use the ND
map approach, in which the singular asymptotic tip pressure field
is combined with polynomial basis functions away from the tips.
By contrast, the domain of validity of the asymptotic solution for
the width field extends farther from the fracture tip, covering up
to �10% of the fracture. This larger domain of validity of the tip
width asymptotic solution makes it natural to consider a scheme
based on the DN map. In this scheme, the tip width asymptotes
are combined with polynomial basis functions to represent the
width field away from the tips. However, we have found that this
does not lead to a successful scheme due to the poor OðhÞ XFEM
convergence rate when resolving the DN map and the errors in
the pressure field due to parasitic modes introduced by the blend-
ing between the enriched region near the tips and the remainder of
the fracture when solving the DN map. Therefore, for this class of
problem, in which the tip pressure field is singular, we have devel-
oped the novel P&W XFEM scheme. Similar to the decomposition in
[24], the fracture is logically divided into tip regions and a channel
region. Within the tip regions it is assumed that the width field is
given by the asymptotic solution, while in the channel region the
fluid-flow equations are used to define the pressure field and the
XFEM uses the Oðh2Þ ND map to determine the corresponding
widths in the channel region. At the interfaces between the tip
and channel regions, boundary conditions are prescribed that are
consistent with the tip asymptotes. Typically, for these singular
pressure fields, the index k of the power law for the tip width field
is greater than 1

2, so that non-standard enrichment basis functions
are required.

These two distinct XFEM formulations are able to deal with the
full range of complex behavior typically encountered when model-
ing propagating HF – even those with singular pressure fields. HF
propagation typically also involves multiple length scales (some-
times differing by 8 orders of magnitude) as each of the multiple
competing physical processes manifest themselves at different
characteristic lengths. The P&W XFEM scheme can also be used
in this situation by matching to an asymptotic solution that applies
at the computational length scale and which captures the behavior
of the HF at finer length scales. In all the simulations, the free
boundary was located by assuming a growth increment Dc in a
particular growth direction and the free boundary was identified
in space–time by determining the corresponding time step Ds.

In the numerical examples provided we consider three test
problems. The first two problems involved HF propagating with a
finite fluid lag due to the presence of a free surface. In both cases
the HF is assumed to initiate parallel to the free surface. In the first
of these fluid-lag problems, the HF was constrained to propagate
parallel to the free surface. The P ! W XFEM algorithm performs
well for this problem and yields results that agree well with the
solution obtained from another numerical algorithm Oribi, which
is based on a DDM. In the second fluid-lag problem, the high con-
finement perpendicular to the free surface is relaxed so that the
fracture curves toward the free surface due to the reduction in con-
fining stress. The P ! W XFEM solution captures shape of the curv-
ing fracture and generates pressure and width fields all of which
agree well with the DDM-based OribiC comparison solution. This
example highlights the limitation of the time-step approach to
locating the free boundary, due to the sensitivity of the time-step
selection to errors in the stress intensity factor K. The third exam-
ple involves a viscosity-driven HF propagating in an infinite homo-
geneous elastic medium, for which the M-vertex solution [27,16] is
used to assess the accuracy of the XFEM. In this case the fluid and
fracture fronts coalesce resulting in a pressure field that is singular
at the fracture tips. It is thus necessary to use the P&W XFEM for-
mulation, which yields a solution that shows close agreement with

Fig. 11. Simulation results for K ¼ 0: crack width and fluid pressure at times
s � 249, 507, 824, 1184 (M vertex in black and XFEM in blue with circles). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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the M-vertex solution in spite of the fact that the crack in the XFEM
model was deliberately constrained to grow along a line that is in-
clined at an angle of 30� to the x-axis so that it is not aligned with
the structured FEM mesh. The relative errors in the fracture length
c and the fracture widths X asymptote to approximately 1%.
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Appendix A. Interaction integral for SIF computation

The stress intensity factors (SIFs) for the simulation results pre-
sented in Section 5.2 were computed using a domain form of the
interaction integral (see [47–52]). We consider a 2D plane strain
problem with a curved crack, using a 2D version of the interaction
integral formulation proposed by Gosz and Moran [52] for 3D non-
planar cracks. We consider the crack tip neighborhood domain eV
illustrated in Fig. 12, which contains a part of the curved crack sur-
face R. The crack surface asymptotes to a fictitious straight line
crack C tangent to the actual crack immediately at its tip. In the
numerical implementation the curves R and C intersect over a fi-
nite segment bC , while ~R and eC denote the non-intersecting por-
tions of the curves R and C within the domain eV . The boundary
of eV is then represented by @ eV ¼ eCþ [ bCþ [ bC� [ ~R� [ Co (see
Fig. 12(a)).

The mode I and II SIFs are found from the interaction integral Im,
corresponding to mode m ¼ I; II:

Km ¼ E0

2
Im; m ¼ I; II ð97Þ

and computed from:

Im ¼ �
Z
eV cia;jP

m
ij dV �

Z
eCþ[bCþ[bC�

aciUm
l;iSljnjdC þ

Z
~R�
aciPm

ij njdR

ð98Þ
where Pm

ij ¼ SlkE
m
lkdij � Um

l;iSlj � Ul;iS
m
lj , and the superscript m denotes

the elastic fields corresponding to the (auxiliary) asymptotic mode
I (with KI ¼ 1Þ and mode II (with KII ¼ 1Þ plane strain solutions,
respectively. In (98), nj are components of the outward unit nor-
mal vector along each integration path involved; cj are compo-
nents of the vector c tangent to the fictitious crack (see Fig. 12),
and aðxÞ is a smooth function such that a ¼ 1 at the crack tip
and a ¼ 0 along the path Co. Tensors Ui, Sij and Eij above denote
the components of the displacement, stress and strain, respec-
tively. When the actual and fictitious cracks are oriented as shown
in Fig. 12(b), the two path integrals in (98) are taken overeC� [ bCþ [ bC� and ~Rþ, respectively. Expression (98) for the interac-
tion integral makes it possible to account for non-zero tractions
along a curved crack path. In adapting the general form of the
interaction integral [52] to a plane strain problem, we assume that
the auxiliary solutions satisfy equilibrium and compatibility equa-
tions and that the tractions associated with these solutions along
the fictitious crack C are zero. These assumptions are fulfilled by
the asymptotic mode I and II elastic fields.

Appendix B. Infinite elements

For the numerical examples in this paper, we consider a finite
rectangular domain V that is mapped onto an infinite domain eV .
The finite domain V is discretized into a regular rectangular mesh
of elements. The elements in the interior of V, that are away from
the crack, are standard isoparametric bilinear Lagrange elements.
The elements along the external boundary C of V are subparamet-
ric singly infinite and doubly infinite elements constructed as de-
scribed by Bettess [39].

Singly infinite element

To illustrate the infinite element construction, we consider a
rectangular element defined by its four nodes ðxI; yIÞ, I ¼ 1; . . . ;4,
such that its edges are aligned with the ðx; yÞ axes (Fig. 13a). The
mapping is based on the use of the following functions defined
in terms of the reference coordinate n 2 ½�1;1�:

M1ðnÞ ¼ �2n
1� n

; M2ðnÞ ¼ 1þ n
1� n

ð99Þ

We also consider linear Lagrange functions,

L1ðnÞ ¼ 1� n
2

; L2ðnÞ ¼ 1þ n
2

ð100Þ

To map the nodes of the parent element corresponding to n ¼ 1 to
infinity, we use the mapping of the form [38,39,53]

xðn;gÞ ¼ Mðn;gÞX; yðn;gÞ ¼ Mðn;gÞY ð101Þ

where ðn;gÞ 2 ½�1;1� � ½�1;1� are the reference coordinates, and

M ¼ ½M1ðnÞL1ðgÞ;M2ðnÞL1ðgÞ;M2ðnÞL2ðgÞ;M1ðnÞL2ðgÞ�

X ¼ ½x1;2x1;2x4; x4�T ; Y ¼ ½y1; y2; y3; y4�T

This maps the parent finite element into a strip that is infinite in po-
sitive x direction (Fig. 13(c)).

The displacement field uðn;gÞ in the reference element is rep-
resented as a product of a linear function in g and a polynomial of
order m in n. For this, a set of ðmþ 1Þ nodes ni is used in n-direc-
tion, and two nodes gj are used in g-direction. The corresponding

Fig. 12. Regions for interaction integral: (a) neighborhood domain eV containing the
R� branch of the crack surface R and (b) neighborhood domain eV containing the Rþ

branch of the crack surface R.
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shape functions comprise the products of the one-dimensional
Lagrange polynomials Lmi ðnÞ of order m and the one-dimensional
linear Lagrange polynomials LjðgÞ:

uðn;gÞ ¼
Xm
i¼1

X2
j¼1

uðni;gjÞLmi ðnÞLjðgÞ

This representation makes it possible to express the displace-
ment field in terms of a product of a linear function of y, and a poly-
nomial in x�1 of order m, providing an approximation to the decay
behavior in powers of x�1 as x ! þ1. When m > 2, this infinite
element is subparametric [39], in that a lower-order representa-
tion is used for the mapping functions than that used for the
displacement shape functions.

Doubly infinite element

A corner element of the quadrilateral mesh is mapped onto a
doubly infinite element [38,39] to represent the decaying asymp-
totic behavior of the displacement field as x; y ! þ1 (Fig. 13(d)).
To map the nodes of the parent finite element corresponding to
either n ¼ 1 or g ¼ 1, to infinity, the mapping has the form (101)
with

M ¼ ½M1ðnÞM1ðgÞ;M2ðnÞM1ðgÞ;M2ðnÞM2ðgÞ;M1ðnÞM2ðgÞ�

X ¼ ½x1;2x1;2x4; x4�T ; Y ¼ ½y1; y2;2y1;2y2�T

This maps the parent finite element into a quarter-plane that is infi-
nite in positive x and y directions.

The displacement field uðn;gÞ in the reference element is repre-
sented as a product of polynomials of orderm in both n and g. Thus,
ðmþ 1Þ nodes ni are used in n-direction, and ðmþ 1Þ nodes gj are
used in g-direction. The corresponding shape functions comprise
the products of the one-dimensional Lagrange polynomials of or-
der m:

uðn;gÞ ¼
Xm
i¼1

Xm
j¼1

uðni;gjÞLmi ðnÞLmj ðgÞ

The displacement field is thus expressed in terms of a product
of polynomials in x�1 and y�1 of order m, representing the decay
of the displacement field as x; y ! þ1. Again, this infinite element
is subparametric for m > 2 [39].

Discussion

As described above, singly and double infinite elements are con-
structed along the sides and at the corners of the rectangular finite
domain V. Due to the use of the regular quadrilateral mesh and the
mapping (101), which represents the coordinates via x ¼ xðnÞ and
y ¼ yðgÞ, the integrals required in the assembly of the stiffness ma-
trix from the infinite elements involve products of polynomials of
the reference coordinates n and g. Thus Gauss–Legendre quadra-

ture rules of sufficient order applied to these integrals in the refer-
ence domain are exact.

For a horizontal crack of half-length c in an infinite domain, we
found that to guarantee that the relative error in the interpolated
crack width due to approximation of the infinite domain by infinite
elements does not exceed 10�2, it is sufficient to use infinite ele-
ments of order 9, in the rectangular domain of dimensions
Lx � Ly, where c � Ly=2 � Lx=4 and where the crack is located in
the center of the domain. This was used as a guideline for choosing
the size of the domain in all numerical examples in this work.

Appendix C. Hermite cubic polynomials

The following are the expressions for Hermite cubic basis
functions:

H0
i ðfÞ ¼

½Dfi�1þ2ðfi�fÞ�ðf�fi�1Þ2
ðDfi�1Þ3

; if fi�1 6 f < fi

½Dfiþ2ðf�fiÞ�ðfiþ1�fÞ2
ðDfiÞ3

; if fi 6 f < fiþ1

0; else

8>>><>>>:

H1
i ðfÞ ¼

ðf�fiÞðf�fi�1Þ2
ðDfi�1Þ2

; if fi�1 6 f < fi

ðf�fiÞðfiþ1�fÞ2
ðDfiÞ2

; if fi 6 f < fiþ1

0; else

8>>><>>>:
where Dfi ¼ fiþ1 � fi.
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