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Abstract

This study introduces a novel methodology for the design of the proppant pumping schedule for a hydraulic fracture, in which the final proppant 
distribution along the crack is prescribed. While the design is based on the assumption that the particles have relatively weak impact on the fracture 
propagation, the validity of this assumption can be tested a posteriori. This makes it possible to relate the proppant velocity to the clear fluid velocity 
inside the fracture, which is calculated assuming no proppant. Having the history of the clear fluid velocity distribution, the prospective proppant 
motion can be computed. Volume balance is then used to relate the final concentration at some point inside the fracture to the corresponding input 
concentration at a specific time instant, which helps to avoid solving an inverse problem. One exceptional feature of the approach lies in the fact 
that it is applicable to multiple fracture geometries and can be implemented using various hydraulic fracturing simulators. To verify the technique, 
two fracture geometries are considered - Khristianovich-Zheltov-Geertsma-De Klerk  (KGD) and pseudo-3D (P3D). It is shown that the developed 
approach is capable of properly estimating the pumping schedule for both geometries. In particular, the proppant placement along the fracture at 
the end of the pumping period, calculated according to the adopted proppant transport model, shows close agreement with the design distribution. 
Comparison with Nolte’s scheduling scheme shows that the latter is not always accurate, and cannot capture the essential differences between the 
schedules for the fracture geometries considered.

Hydraulic fracturing (HF) is a process in which a viscous fluid that 
is injected into a fracture drives crack propagation. Use of proppant 
prevents complete closure of the fracture after pumping has stopped 
and the fluid has leaked off. Despite the fact that many studies have 
been devoted to proppant transport modelling and investigating the 
effects of settling, Daneshy (1978), Mobbs and Hammond (2001), 
Shokir and Al-Quraishi (2007), only a few consider the design of a 
proppant schedule Crawford (1983), Nolte (1986), Meng and Brown 
(1987), Gu and Desroches (2003). The appropriate proppant schedule 
is as important as the correct prediction of the fracture footprint, since 
it directly affects the proppant distribution inside the fracture, and thus 
influences the conductivity and the production rate.

One of the most common approaches for generating the pumping 
schedule is a protocol developed by Nolte (1986). This is a very convenient 
method, as it provides an analytical formula for the schedule for a given 
efficiency, total pumping time, and a desired (uniform) concentration 
inside the fracture at the end of the job. The approach is based on the 
conservation of volume, and the estimation of the total volume of fluid 
that leaks off during the HF treatment.  A power-law type schedule is 
then suggested and the exponent is calculated based on the proppant 
volume balance. Not being tied to any fracture geometry, this scheduling 
approach is considered applicable to multiple fracture geometries, such 
as PKN or radial. The universality, the consistency with the global 
balance laws, and the ease of use are possibly the main reasons why 
this scheduling methodology is commonly used, see e.g. Economides 
and Nolte (2000), Rahman and Rahman (2010). There is an alternative 
method, developed in Gu and Desroches (2003), which suggests using 
an iterative scheme together with an appropriate proppant transport 
model to solve an inverse problem to generate a pumping schedule. The 
basis of that procedure is to divide the schedule into intervals and then 
adjust the input concentration values iteratively based on the results of 
the forward problem solution using the previous schedule. In principle, 

this iterative algorithm can yield the most accurate solution, however 
the accuracy and the required computational resources depend heavily 
on the complexity of the forward model.

It would be desirable to develop a proppant scheduling methodology 
that is more accurate than Nolte’s method, but less computationally 
challenging than the iterative procedure described by Gu and 
Desroches. To facilitate this, the proppant is assumed to have a minor 
impact on fracture propagation. This allows us to avoid an iterative 
scheme and lengthy simulations with proppant transport. At the same 
time, the influence of the fracture geometry and other features that can 
be built into a HF simulator are taken into account. One of the biggest 
advantages of the proposed technique is its applicability to various 
HF simulators, which do not need the ability to model the proppant 
transport itself, see the examples of such simulators in Adachi et al. 
(2007), Peirce and Detournay (2008). 

The paper is organized as follows: Section 2 outlines the procedure for 
the method; then Sections 3 and 4 illustrate the implementation for 
KGD and P3D fracture geometries, respectively; and, finally, Section 5 
compares different schedules (including Nolte’s schedule) and discusses 
the applicability and possible extensions of the approach.

Idea behind estimation of pumping schedule
Assume that the properties of the rock, the fluid and the proppant, as 
well as the pumping rate are all known and fixed. Before a pumping 
schedule can be designed, the following target characteristics need to 
be prescribed by the user: 

i.  the geometry of the hydraulic fracture (HF), which can be 
interpreted as the type of HF model that is used for the design, 
such as KGD, radial, PKN, P3D, or a fully planar HF solver. 
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ii.  the size of the fracture at the end of pumping, which is nominally 
the half-length (or radius) of the HF. 

iii.  the desired proppant distribution inside the fracture at the end of 
the job.

Since it is unclear what the optimal proppant pattern should be, item 
(iii) could, in itself could be a separate topic for research; see e.g. Neto 
and Kotousov (2013) where the residual fracture opening supported 
by proppant is analyzed, or Cipolla et al. (2009) where the effect of the 
proppant distribution on the conductivity is studied. Thus, investigating 
the optimal proppant pattern is beyond the scope of this study. It is 
therefore assumed that the desired distribution of the proppant 
concentration is prescribed or known. Thus the schedule design process 
should be sufficiently adaptable to be able to accommodate any desired 
proppant distribution. 

The main objective of this study is the calculation of the pumping 
schedule for given material properties, HF geometry, the design length 
of the HF, and the desired proppant distribution at the end of the 
fracturing job.

To design the pumping schedule, it is imperative to know where the 
proppant would be transported to. This can be achieved by estimating 
the proppant velocity inside the fracture as a function of time and 
space. At the same time, assuming that the proppant concentrations are 
sufficiently small (i.e. that the particles have small impact on the fracture 
propagation), the proppant velocity can be related to the fluid velocity, 
where the latter is calculated assuming no proppant. Consequently, the 
tentative procedure for the pumping schedule design is:

i.  run an appropriate HF solver without proppant, record time 
histories of all velocity components, width and fracture footprint, 
and find the time required to achieve the desired fracture size/
footprint, 

ii.  find the location of the proppant injected at time instant ti by 
“tracking” its position with time by integrating the actual velocity 
field, and 

iii.  use conservation of volume to relate the input concentration (at 
any given time ti) to the concentration at the end of pumping. 

It is important to note, that this procedure is applicable to any HF 
solver and can be implemented as a separate module. Also, the solution 
for the proppant location resembles the Lagrangian approach used in 
continuum mechanics, and has a clear advantage over the “classical” 
Eulerian approach (i.e. solving the advection equation for proppant 
transport), by making it possible to relate the final proppant distribution 
to the schedule concentration. Another important advantage of the 
proposed approach is that any desired concentration distribution can be 
achieved through the appropriate scheduling, which opens interesting 
research possibilities for the optimal proppant placement inside the HF. 

To illustrate the methodology, two fracture geometries are examined: 
KGD and P3D. The schedules for both are verified numerically by using 
a proppant transport model described in Dontsov and Peirce (2014).  

Pumping schedule for KGD fractures
To address the proppant scheduling problem in a more straightforward 
way, the one-dimensional KGD fracture geometry is analyzed 
first. Given the properties of the rock and the fracture design  

half-length le, an appropriate HF simulator (without the proppant)  
can be used to deduce the total injection time te, as well as to record the 
histories of the fracture footprint l(t), width w(x,t), and average fluid 
velocity Vf(x,t), where  is the coordinate along the fracture. Due to the 
nonuniform distribution of the proppant across the fracture width, the 
average proppant velocity is higher than that of the slurry. It follows 
from Dontsov and Peirce (2014) in the limit of low concentrations, 
that the ratio between these two corresponding velocities is β =1.2. 
This can be understood in the following way: the proppant tends to 
concentrate near the center of a channel, where it flows with nearly the 
maximum velocity, which is always higher than the average velocity in 
the channel. By denoting the position of the particles at time t, injected 
at ti, by x(t,ti), the governing equation for the proppant front is

(1)

where the parameter   enters the problem through the initial condition, 
so that (1) is actually an ordinary differential equation. It is also 
implicitly stated that the coordinate x originates from the wellbore and 
that the proppant enters the fracture (not the wellbore) at time ti. The 
solution of (1) allows us to find x(t,ti), i.e., the current location of the 
proppant, which is injected at any time ti. 

Fig. 1 shows schematics of proppant front movement in the fracture. 
Here ø is the proppant volume fraction, QΟ is the slurry injection rate, 
while  is the coordinate along the fracture. The schedule for the proppant 
injection concentration is shown in the top right picture, and the red 
area is proportional to the total amount of proppant pumped during 
the interval ∆t, which is equal to  øiQΟ∆t. This proppant (injected over 
time ∆t) is schematically shown at t=ti in the top left picture. At this 
time instant the particles leave the borehole and enter the fracture. At 
time t>ti the same proppant (half of it due to symmetry) is inside the 
fracture, as shown in the bottom picture. To calculate the “pad” time, 
tp, (the time up to which pure fluid is pumped and before the proppant 
injection) one may use the solution for x(t,ti) and require

(2)

i.e. determine tp by requiring that the particles reach the crack tip by 
the end of pumping. Note that for a more accurate prediction for larger 
diameter proppant, it is reasonable to replace le in (2) by a smaller 
length,   , where the latter is calculated based on 

(3)

where a is the particle radius. This ensures that the proppant bridging 
criterion (i.e. a minimum fracture width of 3 particle diameters) is 
satisfied and that there is no proppant in the tip region. Given the 
prescribed proppant concentration distribution inside the fracture, 
ød(x), the balance of mass can be used to obtain

(4)

where the left side reflects the volume of the proppant injected between 
ti and ti +∆t (the 1/2 factor comes from the symmetry), while the right 
side calculates the same volume at the end of the fracturing job. By 
taking a limit of               in (4), the result can be simplified to
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(5)

which allows us to calculate the proppant schedule for any desired 
concentration distribution along the fracture. Note that due to the 
1D nature of the geometry, Qo is the injection rate per unit length, i.e. 
measured in m2/s. Also note that any function ød(x) can be used in (5), 
i.e. any proppant distribution can be achieved without introducing 
extra complexities. In addition, all specifics of the hydraulic fracturing 
model, such as leakoff or, possibly, stress barriers, are naturally 
accounted for by the fluid velocity field Vf(x,t) and the fracture width 
w(x,t), which then influence the solution of (1) and consequently the 
schedule through equation (5).

Figure 1. Schematics of the proppant schedule (top right), the proppant 
in the borehole at t=ti (top left) and the same proppant at time t in the 

KGD fracture (bottom picture).

Numerical examples. From the point of view of numerical 
implementation, the task of finding the pumping schedule according 
to (5) requires an appropriate numerical scheme for the solution of 
Eq.(1), numerical differentiation in Eq. (5), as well as an extensive use 
of interpolation. The interpolation is used in Eq. (1), since Vf(x,t) is 
computed for a discrete set of x and t and in Eq. (5) for the evaluation of 
w(x(te,ti),te) and ∂x(te,ti)/ ∂ti (the x values are first interpolated and then 
differentiated numerically). To achieve high accuracy and to preclude 
possible oscillations (that can be caused by spline interpolation), 
the built-in Matlab function “PCHIP” (Piecewise Cubic Hermite 
Interpolating Polynomial) is used for the interpolation. To deal with 
the numerical solution of Eq. (1), a 4th order Runge-Kutta method is 
used. 

Figure 2. Left panel: pumping schedule calculated according to 
equation (5) and Nolte’s model with the efficiency η =0.63. 

Right panel: concentration distribution along a KGD fracture  
for the proposed and Nolte’s schedules.

To verify the proposed approach, an example problem is considered. As 
follows from Dontsov and Peirce (2014), the proppant transport model 
allows for simulation of fracture propagation by a slurry, which consists 
of a Newtonian fluid mixed with spherical particles. The selected 

parameters for the example problem are E’=25 GPa for the plane strain 
modulus, μ=0.1 Pa .s for the shear viscosity of the fracturing fluid,  
Qo=10-3 m2 /s for the inlet flux, C’=5×10-5 m/s1/2 for Carter’s total leakoff 
coefficient, KIC=1MPa .m1/2 for the fracture toughness and a=0.2 
mm for the particle radius. The design length of the fracture is set to 
le=100m, while the target concentration is considered to be uniform 
and is equal to ød = 0.2 × øm. Here øm=0.585 is the maximum volume 
concentration that can be achieved, Boyer et al. (2011), Dontsov and 
Peirce (2014). Note that, assuming the proppant mass density of 2300 
kg/m3, this concentration can be translated to approximately 2.6 lb/gal. 
The HF simulator for KGD fractures, described in Dontsov and Peirce 
(2014), is used to calculate the duration of the HF treatment and to 
record the history of the average velocity without proppant, which is 
then used to calculate the schedule. Given the pumping schedule, the 
same simulator is used to verify the design. 

Fig. 2 shows the schedule, calculated according to equation (5) and 
the concentration distribution along the fracture at the end of the 
simulation (black solid lines). In addition, these results are compared to 
Nolte’s scheduling from Nolte (1986) (blue solid lines). Note that Nolte’s 
model including the correction for the pad length is used; (see Appendix 
A for a description of Nolte’s pumping schedule). Despite using the 
correction, the prediction of Nolte’s model notably underestimates the 
pad size, which causes premature tip screen-out leading to a fracture 
length under 80 m (as opposed to the prescribed 100 m length). The 
current approach shows better performance, as it just slightly distorts 
the designed 100 m fracture length, and produces a nearly uniform 
concentration distribution along the fracture. Note that the propped 
length for the design concentration is under 100 m due to the condition 
enforced in (3). The spikes in the concentration correspond to plug 
formation, i.e. a zone where the proppant is compacted to nearly the 
maximum value that corresponds to the volume fraction of øm=0.585. 
For the current schedule, the plug just started to form and therefore 
does not significantly affect the fracture propagation. The “dip” in the 
proppant distribution is due to both numerical diffusion and the effect 
of coupling between proppant transport and HF propagation, namely 
the change of the slurry viscosity with concentration. This “dip” is the 
result of assumption that particles produce small influence on the 
fracture propagation, and, at the same time, the discrepancy between 
the actual solution and the design highlights the error introduced by 
such an assumption. Note that the schedule for the proposed approach 
has a region in which the concentration exceeds ød, while the resultant 
concentration inside the fracture is approximately equal to ød. This is 
due to the fact that the ratio between particle and slurry velocities is 
β =1.2, which effectively reduces the mixture concentration by β when 
it reaches a steady flow (i.e., according to the proppant transport model 
assumptions, when it enters the fracture).
  

Figure 3. Pumping schedule and the corresponding concentration 
distribution along a KGD fracture for a “zebra” configuration.

To highlight the versatility of the proposed scheduling procedure, Fig. 
3 shows the pumping schedule and resultant proppant distribution for 
regular (ød = 0.2 × øm) and small (ød = 0.02 × øm) concentrations giving 
a “zebra” configuration. This configuration suggests that, at the end of 
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pumping, the proppant should be concentrated in three equal stripes, 
placed equidistantly inside the fracture. This increases the permeability, 
as hydrocarbons can flow between the bridges. In practice, this 
technique can use numerous pulses, while only three are considered 
here since a large number of pulses would require a much finer mesh, 
which is computationally demanding. As can be seen from the results, 
the calculated schedule indeed leads to the desired proppant placement 
with adequate accuracy. As was the case for Fig. 2, the discrepancy 
comes mainly from numerical diffusion and the coupling between HF 
propagation and proppant transport. Since the coupling is minimal for 
small concentrations, the blue line (which corresponds to the small 
concentration solution) can be used to estimate the discrepancy caused 
by the numerical scheme only. Hence, the difference between the 
solutions for regular and small concentrations indicates the effect of 
coupling. Even though the effect of coupling leads to visible differences, 
the overall accuracy of the approach is still satisfactory. It is important 
to note that higher concentrations can lead to bigger differences, 
which is the limitation of the proposed design approach.  It is hard to 
estimate the universal upper bound for concentration, below which this 
approach gives accurate results since the accuracy may depend on the 
type of HF model and different levels of accuracy may be required in 
different cases. For this reason, it is imperative to verify the accuracy 
before treatment by performing a comparison similar to that in Fig. 2 or 
Fig. 3. At the same time, it is remarkable that the higher viscosity of the 
slurry (due to the presence of proppant) does not alter the final fracture 
length appreciably. This is because the biggest pressure gradients are 
near the fracture tip, where the width is very narrow, while the rest of 
the fracture is subject to smaller pressure gradients. When the proppant 
is introduced, the higher viscosity of the slurry perturbs mostly the 
small pressure gradients, which are away from the tip and thus does not 
significantly affect the pressure distribution and fracture propagation. 
When the proppant eventually reaches the tip region, it starts to disturb 
the fracture, but it is already too late since the fracturing job is over 
once the proppant reaches the crack tip. In other words, even though 
the particles change the viscosity of a slurry, the time interval during 
which the proppant can affect the fracture behavior is small, which 
makes the consequences of the coupling effect relatively insignificant. 
This statement is independent of fracture geometry and can also be 
extended to radial fractures, P3D fractures, or more general fracture 
geometries for example.

Pumping schedule for P3D fractures
The design of a pumping schedule for the P3D geometry (Adachi et al. 
(2010)) is conceptually similar to that for the KGD model, but there 
are several notable differences. One of them comes from the fact that 
a line source is used in the P3D model, as opposed to a point source. 
Another difference is related to the two-dimensional nature of the 
proppant flow, and the presence of a vertical velocity component. For 
the purpose of schedule calculation, it is assumed that the gravitational 
settling is negligible, and hence the vertical component of the velocity 
is zero along the x axis (z=0), see Fig. 4. 

Figure 4. Schematics of the P3D fracture with the “proppant tracking 
box” indicated near the center of the fracture.

In this case, the proppant that is pumped in the vicinity of z=0 remains 
close to the x axis during the fracture growth. This fact allows us to 
“track” the proppant along the x axis and not to consider its vertical 
migration. The schematics of the P3D fracture together with the 
“proppant tracking box” are shown in the Fig. 4. This box is the area 
that is occupied by proppant, injected over time interval from ti to  
ti +∆ti, which propagates together with particles as they move inside the 
fracture. The function x(t,ti) has the identical meaning as for the KGD 
fracture; it represents the position of the proppant at time t, that was 
injected at time ti. As will be shown later, the height of the box, ∆z(t), 
varies with time due to the presence of the vertical velocity component. 
Since the particles can easily be traced along the x coordinate, it is 
natural to establish the target concentration along the x axis as well. 
As for the KGD fracture, the simulations without proppant are first 
performed, and for given problem parameters and design length, le, 
the pumping time te is calculated and the histories of the appropriate 
quantities are recorded. Knowing the history of the x component of 
the average fluid velocity at z=0, Vf,x, the motion of the particles can be 
described by solving

(6)

which is identical to (1). Also, the “pad” time, tp, is calculated in a 
similar fashion as

where the final length of the fracture le can be replaced by    for larger 
diameter proppant. Here     is determined from
 

where w(x,t) is the fracture width along the x axis for z=0. With 
reference to Fig. 4, the volume of the proppant at the injection point 
and at the end of the fracture treatment can be equated to find

(7)

where ød (x) is the design concentration distribution along the x -axis,   
is the average fluid velocity at the inlet (and z=0), while w(0,ti) is the 
corresponding width of the fracture at that point. By noting that

(8)

where ∆Vf,z is the difference between the vertical components of the 
fluid velocity at the top and bottom of the “proppant tracking box”, 
equation (7) can be simplified to
            

(9)

Note that ∂Vf,z / ∂z is evaluated at z=0 and its history has to be “pre-
computed” in addition to the history of the horizontal velocity 
component, Vf,x. It is important to understand that β should not enter 
on the left side in (7), since the ratio between the proppant and slurry 
fluxes is ø(ti), while the slurry flux is proportional to Vf,x(0,ti). At the 
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same time, since the proppant’s vertical velocity (as opposed to the 
fluid’s) is responsible for the vertical “box” growth, β appears in (8). 
As with the expression for the KGD fracture (5), the relation (9) can be 
used to design a proppant schedule for any target concentration profile 
along the x axis, ød(x). This adds versatility to the approach.

Numerical examples. To illustrate these developments for P3D 
fractures and to assess the validity of (9), several numerical examples 
are considered. The parameters used for the calculations are E’=25 
GPa for the plane strain modulus, μ=0.1 Pa .s for the shear viscosity 
of the fracturing fluid,  Q0 = 10-2 m3 /s for the total inlet flux, H =25 m 
for the reservoir layer, ∆σ = 2.5 MPa for the magnitude of the stress 
barriers, C’ = 5x10-5 m/s1/2 for the Carter (total) leakoff coefficient,  
KIC = 1 MPa .m1/2  for the fracture toughness, a = 0.2 mm for the particle 
radius, g = 9.8 m/s2  for the gravitational acceleration and ρP – ρf = 1300 
kg/m3 for the difference between particle and fluid mass densities. Refer 
to Fig.4  and Adachi et al. (2010), Dontsov and Peirce (2014) for more 
details. Note that the gravitational settling is formally included in the 
simulations, but, since a relatively small particle size is considered, 
there is almost no distortion in the symmetry due to settling. As 
noted in Dontsov and Peirce (2014), the dimensionless parameter that 
determines the settling extent is
 

where te is the total pumping time, while tp is the time at which the 
proppant is first injected, as shown in the top right panel in Fig. 1. 
The parameter Gs reflects the ratio between proppant travel time and 
the settling time. When Gs >> 1, then settling occurs before the end 
of pumping, while if Gs << 1, then, practically, gravity does not alter 
the particle distribution. For the set of parameters under consideration, 
Gs = 0.035, which indeed suppresses the effect of settling. As with the 
KGD fracture geometry, the design length of the fracture is set to le = 
100 m, while the target concentration is considered to be uniform and 
is equal to ød = 0.2 × øm, where øm = 0.585. The HF simulator for P3D 
fractures, described in Dontsov and Peirce (2014), is used to calculate 
the duration of the HF treatment and to record the history of the 
average x component of the velocity and the derivative of the vertical 
velocity component (assuming no proppant), which are then used to 
calculate the schedule using (9). The same numerical techniques that 
were used for dealing with the KGD fracture scheduling in Section 3, 
are utilized for the numerical solution of (6) and for the interpolation, 
which are both necessary for the evaluation of (9). Given the pumping 
schedule, the same HF simulator for the P3D fracture, this time with 
proppant, is used to verify the efficacy of the design. 
    
To evaluate the accuracy of the proposed scheduling, the top left panel 
in Fig. 5 compares the schedule that is calculated according to (9) with 
that suggested by Nolte (1986). The differences are similar to those found 
for the KGD model; namely, Nolte’s approach underestimates both the 
time of the first proppant injection, tp, and the maximum concentration 
near the end of pumping. The consequences are similar as well, i.e. 
Nolte’s schedule leads to premature tip screen-out (which in turn leads 
to a shorter than desired fracture length) and smaller concentration 
near the inlet, see Fig. 5. With regard to the accuracy of the current 
approach, there is also a “dip” near the fracture tip and a small plug (i.e. 
zone where ø = øm = 0.585) starts to form thereafter. Despite the fact 
that P3D and KGD consider different types of fractures, the reasons for 
the “dip” are similar; namely, the coupling between proppant transport 
and HF propagation and numerical diffusion. Note that the term with 
the vertical velocity derivative in (9) plays an important role and its 
absence can lead to observable inaccuracy of the final concentration, 
while the tp stays unaffected. Of course, the degree of influence depends 

Figure 5. Top left: comparison between the current and Nolte’s 
(efficiency η = 0.39) pumping schedules for P3D fracture. Top right: 
comparison between the normalized proppant concentration along 

the x axis for the current and Nolte’s schedules with the design 
concentration distribution. Bottom left: footprint of the P3D fracture for 
the current schedule with the color indicating the normalized proppant 
concentration ø/ød , so that the color associated with 1 corresponds to 

the desired concentration specified in the design. Bottom right: footprint 
of the P3D fracture for Nolte’s schedule with the color indicating the 

normalized proppant concentration ø/ød.

on the problem parameters, and in particular on the fracture growth 
in the vertical direction and the characteristics of the line source 
implementation in the HF simulator (i.e. the variation of source 
intensity versus z at x = 0). In addition, the developed proppant plug for 
Nolte’s design shown in the bottom right panel in Fig. 5 has a strange 
shape - the particles are concentrated near the top and the bottom of 
the fracture, leaving the central part underpropped. Unfortunately, 
this is due to an inaccuracy in the P3D model as indicated by Adachi 
et al. (2010), as well as Dontsov and Peirce (2014). The cause of this 
inaccuracy is that a uniform pressure is assumed along every vertical 
cross-section, which in turn leads to unrestricted motion of the slurry 
in the vertical direction. The fact that the slurry is transported to the tip 
region mainly through the central part of the fracture, and the leakoff 
occurs uniformly along the height, together lead to strong off-central 
vertical velocities in the tip region, which move the proppant away from 
the center to the sides of the fracture. This feature is more pronounced 
for a smaller particle size, which can reach the region near the fracture 
tip where most of the leakoff takes place. Larger particles will form a 
plug some distance away from the crack tip, and are influenced to a 
much lesser extent; see Dontsov and Perice (2014). It should be noted 
that this discussion about particle size can be interpreted as competition 
between the length scale associated with the leakoff and the distance 
from the fracture tip to the place at which the fracture width is equal 
to three particle diameters. The ratio between aforementioned length 
scales (which depends on many problem parameters) is actually 
responsible for the separation of “small” and “large” particles in the 
context of near tip behavior. Note that even though Fig. 5 indicates 
smaller sensitivity of the proppant placement to the schedule type than 
Fig. 2, one should always keep in mind that those are the examples for 
one set of parameters, and some variations are possible for different 
problem parameters.
    
To show the capabilities of the proposed scheduling paradigm, Fig 
6 shows the pumping schedule and the results of the simulations for 
regular (ød = 0.2 × øm) and small (ød = 0.02 × øm) concentrations for 
P3D fractures with “zebra” distributions of proppant. As for the KGD 
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Figure 6. Top left: pumping schedule for a so-called “zebra” proppant 
distribution for the P3D fracture. Top right: comparison between 

normalized proppant concentration along the x axis for regular (ød = 0.2 
× øm) and small (ød = 0.02 × øm) concentrations along with the design 

concentration distribution. Bottom left: footprint of the P3D fracture for 
regular concentration with the color indicating the normalized proppant 
concentration, ø/ ød.  Bottom right: footprint of the P3D fracture for a 
small proppant concentration with the color indicating the normalized 

proppant concentration,ø/ ød.

geometry, this “zebra” configuration is defined by requiring a specified 
proppant placement in three equidistant stripes of the same width 
along the   axis by the end of the simulation (see Fig. 6). Due to the 
planar nature of the P3D model, the stripes form an interesting shape, 
which reflects the velocity pattern inside the fracture. The comparison 
between the solutions for small and regular concentrations allows 
estimation of the effect of coupling between proppant transport and 
HF propagation. This coupling is more pronounced than for the KGD 
geometry (see Fig. 6) and leads to some notable visual distortions of the 
proppant pattern, see the bottom panels in Fig. 6. Also, note that both 
bottom panels in Fig. 6 are not perfectly symmetrical. This is due to the 
presence of small gravitational settling.

Comments

Comparison between different schedules. While Figs. 2 and 5 show 
the comparison between Nolte’s schedule and the predictions based 
on equations (5) and (9), it is instructive to make a comparison for a 
broader range of efficiencies, η. Fig. 7 compares different schedules: for  
η = 0.9, 0.5, and 0.1.

 Figure 7. Comparison between different schedules for 
different values of the efficiency, .

Nolte’s schedules are compared to the corresponding KGD and P3D 
schedules, as well as to the schedule for a KGD fracture, which is 

affected by the presence of symmetric stress barriers. For the purpose 
of comparison, the stress barriers are placed 60 m from the inlet 
and have a magnitude ∆σ = 2.5 MPa. To achieve the desired value 
of the efficiency for both KGD and P3D models, the Carter leakoff 
coefficient is adjusted. The comparison shows significant variability 
among the different models. As mentioned previously, Nolte’s model 
underestimates tp (the time instant at which the proppant is introduced), 
and the maximum concentration near the end of pumping. What is 
not clear so far, is the large difference between the schedules for the 
KGD and P3D geometries. This clearly indicates that there is no 
universal schedule that can work for all fracture geometries. Even 
with the same fracture type (KGD), the introduction of stress barriers 
affects the schedule to some extent. This also supports the fact that a 
universal schedule can not be generated. One peculiar feature that can 
be seen from Fig. 7 is the hierarchy between the schedules, namely 
Nolte’s schedule suggests the earliest proppant injection, followed by 
the corresponding KGD and, finally, P3D schedules. The difference 
between Nolte’s and the KGD schedules can be related to the ratio 
between particle and slurry average velocities, β =1.2, which allows the 
proppant to reach the crack tip faster. At the same time, since the P3D 
model has another dimension, it effectively introduces another factor, 
which is the ratio between the peak proppant velocity and the average 
proppant velocity with respect to the vertical, i.e. the z direction. This 
can be seen in the bottom panels in Fig. 6. While the proppant at  
z = 0  is already at the tip, on average, the boundary of the corresponding 
first “zone” of the proppant is some distance away from the tip. The 
ratio between the peak proppant velocity and average slurry velocity is 
important, since the former “moves” proppant forward, while the latter 
is responsible for the fracture growth. This ratio is higher for P3D than 
for KGD fractures, which allows proppant to reach the crack tip notably 
faster for a P3D geometry. While the differences between the schedules 
are prominent for high efficiencies, they become less pronounced for 
smaller efficiencies, see Fig. 7. Regarding the implementation, Nolte’s 
schedule is the easiest to deal with since analytical formulas are used. At 
the same time, once executed, the proposed approach facilitates rapid 
numerical calculations for either KGD or P3D fractures.

Assumptions and limitations. Despite the fact that the scheduling 
has been verified numerically, it is essential to understand all of the 
assumptions behind the model. First, it is assumed that the presence of 
proppant does not disturb fracture propagation. While this is a critical 
ingredient for developing a pumping schedule, it limits the applicability 
to relatively small concentrations, for which the viscosity of the slurry 
is not significantly perturbed by the presence of proppant particles. 
However, for the design proppant concentration ød = 0.2 × øm, which 
was used for the verification, the change in the apparent viscosity is 
approximately 20%, see the proppant transport model in Dontsov and 
Peirce (2014). Despite this notable change in the viscosity, Figs. 2 and 5 
show good agreement between the target proppant placement and the 
one that is calculated using the generated schedule. As discussed before, 
this is due to the fact that the particles spend little time at the near-tip 
region; since this part of the fracture is primarily responsible for the 
propagation, the higher slurry viscosity does not substantially alter the 
fracture footprint. However, due to the nonlinear variation of the slurry 
viscosity versus particle concentration, higher design concentrations 
could introduce greater discrepancies. Consequently, it is essential 
to verify the schedule using numerical simulation. In addition to the 
reduced accuracy for higher concentrations, the proposed schedule 
cannot be used for tip screen-out applications, since the proppant plug 
near the crack tip significantly changes the fracture behavior relative to 
the corresponding fracture with pure fluid.

The pumping schedule calculation that is proposed in this paper is 



always consistent with some hydraulic fracturing model, such as KGD 
or P3D model. For this reason, it is clear that the correctness of the HF 
model plays a crucial role in scheduling. This stipulation should not be 
underestimated, since, according to Fig. 7, there might be a significant 
difference among various fracture models. In addition, the scheduling 
is tailored to the specific proppant transport model (see Dontsov and 
Peirce (2014)), which, in particular, provides the value for β, as is 
indicated in (1). If one considers a different model, which, for instance, 
includes the effect of turbulent flow, then the value of β has to adjusted 
accordingly.

Possible extensions. One of the biggest advantages of the proposed 
scheduling procedure is its applicability to multiple hydraulic 
fracturing models. As an example, a HF simulator with a more accurate 
leakoff model can be used for the design. Another possibility is to use 
a HF simulator that accounts for inertial effects near the wellbore. In 
the latter case, it might be necessary to introduce β(x) in (1), since the 
proppant distribution across the width of the fracture will not resemble 
its laminar analog, causing the proppant-to-slurry average velocity 
ratio to change.

Since the accuracy of the proposed scheduling approach deteriorates for 
higher proppant concentrations, it might be useful to adjust the average 
velocity history iteratively. In other words, given an initial guess for a 
schedule, one may run the appropriate HF simulator with proppant and 
record the history of the average velocity. Then, this velocity history 
can be used to recalculate a schedule. This process could be repeated 
until the results converge. Note that the proppant velocity history can 
be recorded instead of the fluid velocity history, which eliminates the 
use of β in (1). The current design approach therefore represents the 
first step in such an iterative process. The iterative approach, although 
effective, is computationally demanding, and sacrifices the efficacy of 
the original non-iterative methodology.

Summary

This paper introduces a universal approach for designing a proppant 
schedule, which complements a given hydraulic fracture simulator. To 
calculate a schedule, it is assumed that the proppant particles do not 
affect the fracture propagation until they reach the tip region and cause 
proppant plug formation. This makes it possible to “pre-compute” 
the history of the velocity distribution assuming no proppant. This is 
then used to evaluate the prospective proppant movement. Once the 
prospective movement is calculated, volume balance is used to relate 
the desired proppant concentration at a given point in space (the 
concentration does not have to be uniform) to a corresponding input 
concentration at a certain time instant. In this way, the schedule is 
obtained without solving an inverse problem. The scheme is illustrated 
for two fracture geometries; namely, KGD and P3D. It is shown that 
Nolte’s schedule suggests earlier proppant injection, which leads to a 
premature tip screen-out, while the current approach produces more 
accurate results and does not alter the desired final fracture half-
length. In addition, the effect of coupling between proppant transport 
and hydraulic fracture propagation is studied. As expected, smaller 
proppant concentrations lead to more accurate results, while the 
agreement for higher concentrations is still adequate. The comparison 
between the schedules for different fracture geometries together with 
Notle’s schedule for different efficiencies shows that knowledge of the 
efficiency alone is not sufficient to predict the schedule. In particular, a 
noticeable difference is observed between all of the models considered. 
This demonstrates that although there is no universal schedule that is 
applicable to multiple fracture geometries, the proposed technique is 
able to accurately and rapidly generate an optimal pumping schedule.
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Appendix: Nolte’s pumping schedule

This appendix summarizes Nolte’s pumping schedule that is used in 
this paper for comparison purposes. As follows from Nolte (1986), the 
proppant concentration, which should lead to uniform distribution of 
proppant at the end of the fracturing job, can be written as

  
(t) = d(

t tp

te tp

)1 fd / , t > tp ,

where ød is the design concentration, te is the total injection time of 
the fluid and slurry, tp = ((1- η)2 + fd)te is the time at which proppant 
is introduced, η denotes the efficiency calculated as the ratio between 
the volume of the fracture and the total volume that is injected, and fd = 
0.05 is a correction factor. As discussed in Nolte (1986), this correction 
factor makes it possible to match the data obtained through numerical 
simulations. Note that it is implicitly assumed that ø(t) = 0 for t<tp.

Nomenclature

le = fracture design half-length
te = total injection time
tp = “pad” time
w = fracture width
Vf = average fluid velocity for KGD fracture
x(t,ti) = position of the particles at time t, injected at time ti  
β =1.2 =  the ratio between proppant and fluid average 

velocities for small particle concentration
ø = proppant volume fraction
Q0 = slurry injection rate
a = particle radius
ød(x) =  design proppant concentration distribution inside 

the fracture
ød  = 0.585 = maximum volume fraction of proppant 
η = efficiency 
Vf,x, Vf,z     =  lateral and vertical average fluid velocity 

components for P3D fracture
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