
HEAT EQUATION EXAMPLES

1. Find the solution to the heat conduction problem:

4ut = uxx, 0 ≤ x ≤ 2, t > 0
u(0, t) = 0
u(2, t) = 0

u(x, 0) = 2 sin
(πx

2

)
− sin(πx) + 4 sin(2πx) = f(x)

Solution:
We use separation of variables. Let u(x, t) = X(x)T (t). Then 4ut = uxx becomes 4X(x)T ′(t) =

X ′′(x)T (t). We divide both sides by X(x)T (t) to obtain:

4
T ′

T
=
X ′′

X
= λ, (1)

where λ is a constant.
What happens to the boundary conditions under the separation of variables?

0 = u(0, t) = X(0)T (t)⇒ X(0) = 0 (sinceT (t) won′t be 0 for allt)

0 = u(2, t) = X(2)T (t)⇒ X(2) = 0 (sinceT (t) won′t be 0 for allt)

So we have X(0) = X(2) = 0. Can the initial condition tell us anything at this stage?

f(x) = u(x, 0) = X(x)T (t)⇒ T (t) = f(x)/X(x)???

No, it can’t. The trick worked on the boundary conditions b/c they were homogeneous (= 0). We’ll actually
use the initial condition at the end to solve for constants.

Let’s start with the T -equation from (3):

T ′(t) =
λ

4
T (t).

Solving, we notice that this is a separable equation

dT

dt
=
λ

4
T ⇒ dT

T
=
λ

4
dt.

Integrating both sides, ˆ
dT

T
=
ˆ
λ

4
dt⇒ ln(T ) =

λ

4
t+ C ⇒ T (t) = Ceλt/4,

taking the exponential of both sides.
Next we deal with the X-equation in (3) with conditions X(0) = X(2) = 0 derived from the boundary

conditions

X ′′ = λX

X(0) = X(2) = 0.

This is an eigenvalue problem. There are 3 cases to consider: λ > 0, λ = 0, and λ < 0.
We begin with the λ > 0 case - note that we expect this to only yield the trivial solution (akaX = 0), since

T (t) = Ceλt/4so u(x, t) = X(x)T (t) = X(x)eλt/4 and λ > 0 would suggest that the temperature u → ∞,
which doesn’t make sense. Set λ = µ2 > 0. Then X ′′(x)− µ2X(x) = 0. Use the substitution X(x) = erx to
get the characteristic equation r2 − µ2 = 0, which has roots r = ±µ.Thus X(x) = C1e

µx +C2e
−µx. We now

use the boundary conditions to find constants such that the conditions are satisfied:

X(0) = 0 ⇒ C1 + C2 = 0
X(2) = 0 ⇒ C1e

2µ + C2e
−2µ = 0.

1



−5 0 5
−30

−20

−10

0

10

20

30

θ
 

 

sinh(θ)
cosh(θ)

Figure 1: Hyperbolic functions sinh(θ) and cosh(θ).

Solving simultaneously we find C1 = C2 = 0. (The first equation gives C2 = −C1, plugging into the first
equation gives C1e

2µ−C1e
−2µ = 0⇒ C1(e2µ− e−2µ) = 0, and this means that C1 = 0 because e2µ− e−2µis

only zero at µ = 0, which it isn’t here - µ2 = λ > 0). Thus we have recovered the trivial solution (aka zero
solution). Therefore for λ > 0 we have no eigenvalues or eigenfunctions. As we had expected.
ASIDE

It is actually more convenient to use hyperbolic functions, and write down X(x) = C̃1 sinh(µx) +
C̃2 cosh(µx),because they have some nice properties. Recall

sinh(θ) =
eθ − e−θ

2
, cosh(θ) =

eθ + e−θ

2
.

See Fig.1 for an illustration. The convenient properties include that sinh(θ) = 0 ONLY at θ = 0, cosh(θ) = 0
NEVER, and cosh(0) = 1. So when applying the boundary conditions X(0) = X(2) = 0:

X(0) = 0⇒ C̃1 sinh(0) + C̃2 cosh(0) = 0 ⇒ C̃2 = 0,

since sinh(0) = 0, cosh(0) = 1. Then X(x) = C̃1 sinh(µx);

X(2) = 0⇒ X(2) = C̃1 sinh(2µ) ⇒ C̃1 = 0.

This is the case because sinh(2µ) is only zero at µ = 0, but µ is non-zero by definition.
END OF ASIDE

All right, next we consider the λ = 0 case (we could consider it jointly with the λ < 0 or λ > 0 cases, if
we’re very careful, but for the purposes of a systematic approach we won’t here). Then X ′′ = 0⇒ X(x) =
Ax + B. Applying boundary conditions, 0 = X(0) = B ⇒ B = 0; 0 = X(2) = 2A ⇒ A = 0. Thus
we have recovered the trivial solution (aka zero solution). Therefore for λ = 0 we have no eigenvalues or
eigenfunctions.

Finally we look at the λ < 0 case. Set λ = −µ2 < 0. Then X ′′(x) + µ2X(x) = 0. Use the substitution
X(x) = erx to get the characteristic equation r2 + µ2 = 0, which has roots r = ±iµ.Thus X(x) = C̃1e

iµx +
C̃2e

−iµx or X(x) = C1 sin(µx) +C2 cos(µx) (for more details on solving this ode, see your textbook, section
3.3). We now use the boundary conditions to find constants such that the conditions are satisfied:

X(0) = 0 ⇒ C1 sin(0) + C2 cos(0) = 0 ⇒ C2 = 0
X(2) = 0 ⇒ C1 sin(2µ) = 0.

Since sin(θ) has roots at θ = nπ, n = 1, 2, 3, . . . , the second condition tells us that 2µ = nπ or µ = nπ/2,
n = 1, 2, 3, . . . Thus we have our eigenfunctions an eigenvalues for λ < 0:

λn = −
(nπ

2

)2

Xn(x) = sin(nπx/2).

2



Now we re-assemble. Recall u(x, t) = X(x)T (t). Therefore

un(x, t) = Xn(x)Tn(t) = sin
(nπx

2

)
exp

(
−n

2π2

16
t

)
for n = 1, 2, 3, . . . are each solutions to the pde. The pde is linear so we can use the principle of superposition,
and sum them to make up a general solution:

u(x, t) =
∞∑
n=1

bn sin
(nπx

2

)
exp

(
−n

2π2

16
t

)
,

where the bn are constants.
We solve for the bn using the initial condition. That is, u(x, 0) = f(x) so

f(x) =
∞∑
n=1

bn sin
(nπx

2

)
,

which is a Fourier sine series. We exploit orthogonality of the sines, that is,
ˆ L

0

sin
(nπx
L

)
sin
(mπx

L

)
dx =

{
0, m 6= n

L/2, m = n

where L = 2 to solve for the individual bn:

bn =
2
L

ˆ L

0

f(x) sin
(nπx
L

)
dx =

ˆ 2

0

f(x) sin
(nπx

2

)
dx

since L = 2. Now here f(x) = 2 sin
(
πx
2

)
− sin(πx) + 4 sin(2πx), so

bn =
ˆ 2

0

f(x) sin
(nπx

2

)
dx =

ˆ 2

0

(
2 sin

(πx
2

)
− sin(πx) + 4 sin(2πx)

)
sin
(nπx

2

)
dx

⇒ bn = 2
ˆ 2

0

sin
(πx

2

)
sin
(nπx

2

)
dx−

ˆ 2

0

sin(πx) sin
(nπx

2

)
dx+ 4

ˆ 2

0

sin(2πx) sin
(nπx

2

)
dx.

This is less scary than it looks! We can use orthogonality of the sines:
ˆ 2

0

sin
(πx

2

)
sin
(nπx

2

)
dx =

{
1, n = 1
0, otherwise

ˆ 2

0

sin (πx) sin
(nπx

2

)
dx =

{
1, n = 2
0, otherwise

ˆ 2

0

sin (2πx) sin
(nπx

2

)
dx =

{
1, n = 4
0, otherwise

So then

b1 = 2
ˆ 2

0

sin
(πx

2

)
sin
(nπx

2

)
dx− 0 + 0 = 2

b2 = 0−
ˆ 2

0

sin (πx) sin
(nπx

2

)
dx+ 0 = −1

b4 = 0− 0 + 4
ˆ 2

0

sin (2πx) sin
(nπx

2

)
dx = 4

bn = 0 if n 6= 1, 2, 4.

Thus b1 = 2,b2 = −1, b4 = 4, and bn = 0 for all other values of n. We can now re-write our solution:

u(x, t) = 2 sin
(πx

2

)
exp

(
−π

2

16
t

)
− sin (πx) exp

(
−π

2

4
t

)
− sin (2πx) exp

(
−π2t

)
.
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——————————————————————————————————————

2. Find the solution to the heat conduction problem:

ut = α2uxx, 0 ≤ x ≤ π, t > 0
u(0, t) = 0
ux(π, t) = 0

u(x, 0) = 3 sin
(

5x
2

)
= f(x)

The mechanics of this problem are very VERY similar to the previous problem. In fact, that’s the case with
most of the heat equation problems. The main difference is in the eigenvalue/eigenfunction part!
Solution:

We use separation of variables. Let u(x, t) = X(x)T (t). Then ut = α2uxx becomes X(x)T ′(t) =
α2X ′′(x)T (t). We divide both sides by α2X(x)T (t) to obtain:

T ′

α2T
=
X ′′

X
= λ, (2)

where λ is a constant.
What happens to the boundary conditions under the separation of variables?

0 = u(0, t) = X(0)T (t)⇒ X(0) = 0 (sinceT (t) won′t be 0 for allt)

0 = ux(π, t) = X ′(π)T (t)⇒ X ′(π) = 0 (sinceT (t) won′t be 0 for allt)

So we have X(0) = X ′(π) = 0.
Let’s start with the T -equation from (3):

T ′(t) = λα2T (t),

which means T (t) = Ceα
2λt (see above for details on solving this ODE).

Next we deal with the X-equation in (3) with conditions X(0) = X ′(π) = 0 derived from the boundary
conditions

X ′′ = λX

X(0) = X ′(π) = 0.

This is an eigenvalue problem. There are 3 cases to consider: λ > 0, λ = 0, and λ < 0.
We begin with the λ > 0 case - recall from above that we expect this to only yield the trivial solution

(aka X = 0). Set λ = µ2 > 0. Then X ′′(x) − µ2X(x) = 0. Use the substitution X(x) = erx to get the
characteristic equation r2 − µ2 = 0, which has roots r = ±µ.Thus X(x) = C1e

µx +C2e
−µx. We now use the

boundary conditions to find constants such that the conditions are satisfied:

X(0) = 0 ⇒ C1 + C2 = 0
X ′(π) = 0 ⇒ µC1e

πµ − µC2e
−πµ = 0.

Solving simultaneously we find C1 = C2 = 0. (The first equation gives C2 = −C1, plugging into the
first equation gives C1µe

πµ + C1µe
−πµ = 0 ⇒ C1µ(eπµ + e−πµ) = 0, and this means that C1 = 0 because

eπµ+e−πµ is never zero. You could also use X(x) = C̃1 sinh(µx)+C̃2 cosh(µx), and would find C̃1 = C̃2 = 0.
All right, next we consider the λ = 0 case (we could consider it jointly with the λ < 0 or λ > 0 cases, if

we’re very careful, but for the purposes of a systematic approach we won’t here). Then X ′′ = 0⇒ X(x) =
Ax + B. Applying boundary conditions, 0 = X(0) = B ⇒ B = 0; 0 = X ′(π) = A ⇒ A = 0. Thus
we have recovered the trivial solution (aka zero solution). Therefore for λ = 0 we have no eigenvalues or
eigenfunctions.
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Finally we look at the λ < 0 case. Set λ = −µ2 < 0. Then X ′′(x) + µ2X(x) = 0 and X(x) =
C1 sin(µx) + C2 cos(µx) (key steps to solving that ode above; for more details see your textbook, section
3.3). We now use the boundary conditions to find constants such that the conditions are satisfied:

X(0) = 0 ⇒ C1 sin(0) + C2 cos(0) = 0 ⇒ C2 = 0
X ′(π) = 0 ⇒ µC1 cos(πµ) = 0.

Since cos(θ) has roots at θ = (2n − 1)π/2, n = 1, 2, 3, . . . (or, equivalently, that θ = (2n + 1)π/2, n =
0, 1, 2, 3, . . . ), the second condition tells us that πµ = (2n−1)π/2 or µ = (2n−1)/2 = (n−1/2), n = 1, 2, 3, . . .
Thus we have our eigenfunctions an eigenvalues for λ < 0:

λn = −
(
n− 1

2

)2

Xn(x) = sin ((n− 1/2)x) .

Now we re-assemble. Recall u(x, t) = X(x)T (t). Therefore

un(x, t) = Xn(x)Tn(t) = sin
((

n− 1
2

)
x

)
exp

(
−α2

(
n− 1

2

)2

t

)

for n = 1, 2, 3, . . . are each solutions to the pde. The pde is linear so we can use the principle of superposition,
and sum them to make up a general solution:

u(x, t) =
∞∑
n=1

sin
((

n− 1
2

)
x

)
exp

(
−α2

(
n− 1

2

)2

t

)
,

where the bn are constants.
We solve for the bn using the initial condition. That is, u(x, 0) = f(x) so

f(x) =
∞∑
n=1

bn sin
((

n− 1
2

)
x

)
,

which is a Fourier sine series. As discussed above,

bn =
2
L

ˆ L

0

f(x) sin
((

n− 1
2

)
x

)
dx =

ˆ π

0

f(x) sin
((

n− 1
2

)
x

)
dx

which we find by exploiting the orthogonality of sines:

ˆ π

0

sin
((

n− 1
2

)
x

)
sin
((

m− 1
2

)
x

)
dx =

{
0, m 6= n

π/2, m = n
.

Now here f(x) = 3 sin (5x/2), so

bn =
2
π

ˆ π

0

f(x) sin
((

n− 1
2

)
x

)
dx =

6
π

ˆ π

0

sin
(

5x
2

)
sin
((

n− 1
2

)
x

)
dx.

This is less scary than it looks! We can use orthogonality of the sines:

ˆ π

0

sin
(

5x
2

)
sin
((

n− 1
2

)
x

)
dx =

{
π/2, n = 3
0, otherwise

So then

bn =
6
π

ˆ π

0

sin
(

5πx
2

)
sin
((

n− 1
2

)
x

)
dx =

{
3, n = 3
0, otherwise

.
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Thus b3 = 3π/2, bn = 0 for n 6= 3. We could also just read it off:

f(x) =
∞∑
n=1

bn sin
((

n− 1
2

)
x

)
3 sin

(
5x
2

)
= b1 sin

(x
2

)
+ b2 sin

(
3x
2

)
+ b3 sin

(
5x
2

)
+ b4 sin

(
7x
2

)
+ b5 sin

(
9x
2

)
+ . . . ,

we can see quite plainly that b3 = 3, bn = 0 for n 6= 3.
Thus we have found our solution:

u(x, t) = 3 sin
(

5x
2

)
exp

(
−
(

5α
2

)2

t

)
.

Note that we can always check our solutions by plugging them back into the pde!

ut(x, t) = −75
4
α2 sin

(
5x
2

)
exp

(
−
(

5α
2

)2

t

)

uxx(x, t) = −75
4

sin
(

5x
2

)
exp

(
−
(

5α
2

)2

t

)

and then
ut = α2uxx ⇒

−75
4
α2 sin

(
5x
2

)
exp

(
−
(

5α
2

)2

t

)
= α2

(
−75

4
sin
(

5x
2

)
exp

(
−
(

5α
2

)2

t

))
;

check! The solution is correct.

——————————————————————————————————————

3. Find the solution to the heat conduction problem:

ut = uxx, 0 ≤ x ≤ 2π, t > 0
ux(0, t) = 0
ux(2π, t) = 0
u(x, 0) = x = f(x)

Again, the mechanics of this problem are very VERY similar to the previous problem. In fact, that’s the case
with most of the heat equation problems. The main difference is in the eigenvalue/eigenfunction part! Note
that this time around we have Neumann boundary conditions (the boundary conditions are on the spatial
derivative of the function; think of this as insulation, no heat flow in or out).
Solution:

We use separation of variables. Let u(x, t) = X(x)T (t). Then ut = uxx becomes X(x)T ′(t) = X ′′(x)T (t).
We divide both sides by X(x)T (t) to obtain:

T ′

T
=
X ′′

X
= λ, (3)

where λ is a constant.
What happens to the boundary conditions under the separation of variables?

0 = u(0, t) = X ′(0)T (t)⇒ X ′(0) = 0 (sinceT (t) won′t be 0 for allt)

0 = ux(π, t) = X ′(2π)T (t)⇒ X ′(2π) = 0 (sinceT (t) won′t be 0 for allt)

So we have X ′(0) = X ′(2π) = 0.
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Let’s start with the T -equation from (3):

T ′(t) = λT (t),

which means T (t) = Ceλt (see above for details on solving this ODE).
Next we deal with the X-equation in (3) with conditions X ′(0) = X ′(2π) = 0 derived from the boundary

conditions

X ′′ = λX

X ′(0) = X ′(2π) = 0.

This is an eigenvalue problem. There are 3 cases to consider: λ > 0, λ = 0, and λ < 0.
We begin with the λ > 0 case - recall from above that we expect this to only yield the trivial solution

(aka X = 0). Set λ = µ2 > 0. Then X ′′(x) − µ2X(x) = 0. Use the substitution X(x) = erx to get the
characteristic equation r2 − µ2 = 0, which has roots r = ±µ.Thus X(x) = C1e

µx +C2e
−µx. We now use the

boundary conditions to find constants such that the conditions are satisfied:

X ′(0) = 0 ⇒ µC1 − µC2 = 0
X ′(2π) = 0 ⇒ µC1e

2πµ − µC2e
−2πµ = 0.

Solving simultaneously we find C1 = C2 = 0. (The first equation gives C2 = C1, plugging into the first
equation gives C1µe

2πµ − C1µe
−2πµ = 0 ⇒ C1µ(e2πµ − e−2πµ) = 0, and this means that C1 = 0 because

e2πµ − e−2πµ is never zero for µ 6= 0 (which it isn’t by assumption on λ, λ > 0). You could also use
X(x) = C̃1 sinh(µx) + C̃2 cosh(µx), and would find C̃1 = C̃2 = 0.

All right, next we consider the λ = 0 case (we could consider it jointly with the λ < 0 or λ > 0 cases, if
we’re very careful, but for the purposes of a systematic approach we won’t here). Then X ′′ = 0⇒ X(x) =
Ax+B. Applying boundary conditions, 0 = X ′(0) = A⇒ A = 0; 0 = X ′(2π) = A⇒ A = 0. So X(x) = B,
a constant, is still a possible solution! Therefore we do NOT have a trivial solution; rather we have found
that λ0 = 0 is an eigenvalue with corresponding eigenfunction X0(x) = 1, a constant (which we will multiply
by an arbitrary constant below to give the general solution).

Finally we look at the λ < 0 case. Set λ = −µ2 < 0. Then X ′′(x) + µ2X(x) = 0 and X(x) =
C1 sin(µx) + C2 cos(µx) (key steps to solving that ode above; for more details see your textbook, section
3.3). We now use the boundary conditions to find constants such that the conditions are satisfied:

X ′(0) = 0 ⇒ C1 cos(0) + C2 sin(0) = 0 ⇒ C1 = 0
X ′(2π) = 0 ⇒ µC2 sin(2πµ) = 0.

Since sin(θ) has roots at θ = nπ, n = 1, 2, 3, . . . , the second condition tells us that 2πµ = nπ or µ = n/2,
n = 1, 2, 3, . . . Thus we have our eigenfunctions an eigenvalues for λ < 0:

λn = −
(n

2

)2

Xn(x) = cos
(nx

2

)
.

Now we re-assemble. Recall u(x, t) = X(x)T (t). Therefore

un(x, t) = Xn(x)Tn(t) = cos
(nx

2

)
exp

(
−n

2t

4

)
for n = 0, 1, 2, 3, . . . are each solutions to the pde. Notice that this includes the n = 0 case! u0(x, t) =
cos(0) exp(0) = 1. The pde is linear so we can use the principle of superposition, and sum them to make up
a general solution:

u(x, t) =
a0

2
+
∞∑
n=1

an cos
(nx

2

)
exp

(
−n

2t

4

)
where the an are constants. We have used here the convention of writing the n = 0 term as a0/2.
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We solve for the bn using the initial condition. That is, u(x, 0) = f(x) so

f(x) =
a0

2
+
∞∑
n=1

an cos
(nx

2

)
,

which is a Fourier cosine series. Similar to the case for sines,

an =
2
L

ˆ L

0

f(x) cos
(nx

2

)
dx =

1
π

ˆ 2π

0

f(x) cos
(nx

2

)
dx

which we find by exploiting the orthogonality of cosines:

ˆ 2π

0

cos
(mx

2

)
cos
(nx

2

)
dx =


0, m 6= n

π, m = n 6= 0
2π, m = n = 0

.

What is different from the sine series here (other than the fact that we have cosines) is that we treat the
0-eigenvalue term as well, and that gives a different result. That is for m = n 6= 0:

ˆ 2π

0

cos2
(mx

2

)
dx =

1
2

ˆ 2π

0

(1− cos (mx)) dx =
1
2

(
x− 1

m
sin(mx)

)∣∣∣∣x=2π

x=0

= π,

but for m = n = 0: ˆ 2π

0

dx = 2π.

So now we integrate with f(x) = x to find an. First let’s look at a0:

a0 =
1
π

ˆ 2π

0

x dx =
1
π

x2

2

∣∣∣∣x=2π

x=0

= 2π.

You can also think if this integral as 1
π

´ 2π

0
x cos(n ∗ 0/2) dx. Now, for an, n 6= 0:

an =
1
π

ˆ 2π

0

x cos
(nx

2

)
dx.

We integrate by parts; u = x ⇒ du = dx and dv = cos(nx/2) ⇒ v = 2 sin(nx/2)/n. Then an = 1/π(uv −´
vdu) or

an =
1
π

[
2x
n

sin
(nx

2

)∣∣∣∣x=2π

x=0

− 2
n

ˆ 2π

0

sin
(nx

2

)
dx

]

=
1
π

[
− 2
n

(
− 2
n

)
cos
(nx

2

)∣∣∣x=2π

x=0

]
an =

4
πn2

(cos(nπ)− 1) ,

since cos(0) = 1. Now, cos(nπ) = (−1)n, so

an =
4
n2π

((−1)n − 1).

Notice that this means for n even, an = 0; for n odd, an = −8/πn2. We can therefore say:

a2m = 0 and a2m−1 = − 8
π(2m− 1)2

.
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Figure 2: Our Fourier cosine representation of f(x) = x for n = 0, 1, 5, 10.

Now let’s re-assemble our solution.

u(x, t) =
a0

2
+
∞∑
n=1

an cos
(nx

2

)
exp

(
−n

2t

4

)
=
a0

2
+
∞∑
m=1

a2m cos(mx) exp
(
−m2t

)
+
∞∑
m=1

a2m−1 cos
(

(2m− 1)
2

x

)
exp

(
− (2m− 1)2t

4

)
,

separating out even and odd terms b/c our coefficients are different for evens and odds! In particular,
a2m = 0. Thus,

u(x, t) = π − 8
π

∞∑
m=1

1
(2m− 1)2

cos
(

(2m− 1)
2

x

)
exp

(
− (2m− 1)2t

4

)
.

That’s our answer. Notice that as t→∞, u→ π, a constant solution, as expected. And that constant is π,
which is the average initial temperature in the bar, again as expected.

Let’s think about how quickly our series solution converges to the actual solution by looking at the Fourier
cosine series representation we created of the initial condition. We showed that

x = π − 8
π

∞∑
n=1

1
(2n− 1)2

cos
(

(2n− 1)
2

x

)
, 0 ≤ x ≤ 2π.

Fig.2 shows x and the Fourier series version for m = 0, 1, 5, 10. Notice that the approximation is quite good
even for n = 5, and very good for n = 10! The series converges most slowly at the endpoints.
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