MATH 257/316 Assignment 2 Supplementary Exercises - Not to be handed in.

Problem 1:

Consider the IVP (initial value problem):

$$(x-1)y'' - (x-3)y' - y = 0$$
, $y(0) = 3$, $y'(0) = 3$

Determine a power series solution centred about $x_0 = 0$. Rewrite your answer in terms of elementary functions.

Problem 2:

By using a power series representation centred about $x_0 = 0$ determine the general solution of

$$(x^2+1)y'' + \frac{7}{2}xy' + y = 0.$$

Problem 3:

Substitute the power series $\sum_{n=0}^{\infty} a_n x^n$ into

$$y'' + x^2 y' + y = 0 ,$$

and determine a recursion relation describing the a_n 's. Compute a_2 , a_3 , a_4 and a_5 in terms of a_0 and a_1 .

Problem 4:

Find all singular points of the following ODEs and determine whether each one is regular or irregular.

a)
$$x^2y'' + 3y' + 2xy = 0$$

b)
$$(x^2 - 1)^2 y'' + (x + 1)y' + (x + 2)y = 0$$

c)
$$\sin^2(x)y'' + \sin(\frac{x}{2})y' + 2y = 0$$

d)
$$x^{2}\sinh(x)y'' + x^{3}y' + \cosh(x)y = 0$$

Problem 5:

Determine a lower bound for the radius of convergence of series solutions for the given ODE about the corresponding point x0. (You should not try to compute the series solution itself.)

a)
$$(x^2 - 3)y'' + y' + \tan(x)y = 0, x_0 = 0$$

b)
$$(4x^2 + 9)y'' + x^3y' + y = 0. x_0 = 2$$