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SUMMARY

We present a uniform asymptotic solution (UAS) for a displacement discontinuity (DD) that lies within
the middle layer of a three-layer elastic medium in which relative shear deformation between parallel
interfaces is controlled by linear springs. The DD is assumed to be normal to the two interfaces between
the elastic media. Using the Fourier transform method we construct a leading term in the asymptotic
expansion for the spectral coefficient functions for a DD in a three-layer-spring medium. Although a
closed-form solution will require a solution in terms of an infinite series, we demonstrate how this UAS
can be used to construct highly efficient and accurate solutions even in the case in which the DD actually
touches the interface. We compare the results using the Green’s function UAS solution for a crack crossing
a soft interface with results obtained using a multi-layer boundary element method. We also present
results from an implementation of the UAS Green’s function approach in a pseudo-3D hydraulic fracturing
simulator to analyze the effect of interface shear deformation on the fracture propagation process. These
results are compared with field measurements. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The accurate and efficient solution to fracture propagation problems in layered elastic media is of
considerable importance in a number of engineering applications such as pavement design, stress
analysis of mining excavations, and hydraulic fracturing. The particular application of interest in
this paper involves the modeling of a hydraulic fracture. Hydraulic fracturing is a process by which

∗Correspondence to: Anthony P. Peirce, Department of Mathematics, University of British Columbia, Vancouver,
BC, Canada.

†E-mail: peirce@math.ubc.ca

Copyright q 2008 John Wiley & Sons, Ltd.



286 A. P. PEIRCE, H. GU AND E. SIEBRITS

a crack is forced to propagate in an assumed elastic medium by the injection of a viscous fluid
under high pressure. Hydraulic fractures occur naturally when pressurized magma flows cause
fractures to propagate deep in the earth’s crust. In the petroleum industry, hydraulic fractures are
deliberately created in oil and gas reservoirs to substantially enhance production. It is important
to be able to model the evolution of these propagating fractures in order to control their location
within the reservoir by adjusting the available engineering parameters. Such a design tool can,
for example, be used to prevent the fractures from breaking out of the so-called pay zone into an
unproductive zone that may be saturated with water.

Models of hydraulic fractures typically assume that the fluid flow along the crack surface can
be adequately represented by lubrication theory; the rock mass is represented by a layered elastic
medium comprising piecewise homogeneous layers separated by parallel interfaces across which
neighboring distinct elastic materials are bonded; the fractures are assumed to take the orientation
of least resistance and evolve within a plane that is perpendicular to the direction of the minimum
principal geological stress; the fracture growth is controlled by the principles of linear elastic
fracture mechanics in which the stress intensity factor at any point at the fracture tip is assumed to
be in equilibrium with the local toughness of the rock. In spite of these simplifying assumptions,
the models typically involve a degenerate coupled system of integro-partial differential equations
that are defined on a domain with a free boundary. However, such simplified models are naturally
idealizations of complex field situations that are approximated either for computational convenience
or for lack of adequate physical models. Focusing on examples of complexity in field situations
that have been ignored in the modeling of the solid rock mass, the rock may be naturally fractured;
it may be subject to plastic deformations; the layers may not be parallel; or they may slip allowing
interface shear deformation. It is this latter complexity that this paper is aimed at addressing.
Indeed, we present a model of interface shear deformation in which the pack of elastic layers
is coupled by linear springs. The assumption of linear springs is introduced in order to maintain
an elasticity description that is still linear in order to make it possible to construct a Green’s
function for this layer-spring medium. The use of linear interface conditions to model the shear
deformation across interfaces in layered elastic media is not new. Indeed, linear models of interface
deformation have been used in models of surface subsidence [1], in the analysis of deformations
in layered pavements subjected to surface loads [2], in the modeling of hydraulic fracturing in
layered elastic materials [3], and more recently in the analysis of multilayer piezothermoelastic
plates with imperfect interfaces [4]. The novelty of the technique presented here is the uniform
asymptotic solution (UAS) approach, which is crucial to the efficient and accurate modeling of
cracks that cross the interfaces undergoing shear deformation.

One of the key ingredients in a hydraulic fracture simulator is a robust and efficient technique
to solve for the crack-opening displacement for a prescribed pressure on the surfaces of a fracture
in an infinite-layered elastic medium. Although a number of numerical techniques are available to
achieve this, each has its own advantages and disadvantages. The finite element method or the finite
difference method can easily treat variations in the elastic properties and even plastic behavior.
These volume-based methods require an adequate discretization of the 3D infinite elastic medium
either by truncation of the domain or by deploying infinite elements. In addition, in order to capture
the expected singular behavior in the vicinity of the fracture tip specialized singular elements
are required. Since the fracture footprint is not known a priori these techniques will require re-
meshing and interpolation of field quantities for each new location of the fracture footprint. By
contrast, a standard boundary element method (BEM) [5] requires only discretization of the crack
plane as well as the layer interfaces. The BEM is most efficient for the treatment of piecewise
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uniform elastic media—the treatment of arbitrary inhomogeneities or plastic behavior requires the
evaluation of costly volume integrals.

A layer Green’s function approach [6–8], which has been particularly effective in the modeling
of hydraulic fractures for the case of bonded interfaces, makes use of a semi-analytic technique
based on the Fourier transform (FT) method to construct the influence function matrix for elemental
displacement discontinuities within a layered elastic medium. Although this technique is a BEM, it
is not standard in that the construction of the layer Green’s function enables one to avoid the addi-
tional computational burden of discretizing the layer interfaces as is required by the standard BEM.
In order to model a fracture that crosses bonded interfaces, a crucial component is the UAS (see
[6]) for a displacement discontinuity (DD) element that is located within an elastic layer that is
bonded to and sandwiched between two elastic half-spaces. In this paper, we present the UAS for a
DD element located within an elastic layer that is sandwiched between two elastic half-spaces and
connected by linear springs. This Green’s function can then be used to generate an efficient model
for the evolution of a hydraulic fracture within a layered elastic medium in which interface shear
deformation is possible. Although the DD element in this paper is assumed to be perpendicular to
the layer interfaces, the UAS technique can also be extended to consider a DD element that has an
arbitrary inclination to the two parallel interfaces that bound the elastic layer in which it is located.

A fixed, Eulerian mesh comprising a network of rectangular DD elements is defined. This
mesh is typically chosen to have sufficient resolution to capture early fracture footprints while
still incorporating a sufficient area to be able to enclose the fracture evolution over the desired
time frame. The Green’s function influence matrix associated with this mesh is then constructed
a priori and used repeatedly as the fracture evolves. The existence of the Green’s function for
this layer-spring medium rests on the assumption of linear springs that control the interface shear
deformation, which makes it possible to determine the influence of all the active DD elements
by superposition. Modeling more complex, nonlinear interface deformation or frictional sliding
would rule out the possibility of using superposition via a Green’s function and would necessitate
the solution to the full 3D nonlinear boundary value problem for each new trial pressure field.

In Section 2, we define the geometry and the properties of the layer-spring system and briefly
summarize the governing equations and the FT technique used to reduce the elastic partial differ-
ential equations to systems of ordinary differential equations (ODEs). In Section 3, we present the
2D and 3D UASs in the wave number domain and briefly describe the process of inversion of
the UAS for the 2D case. In Section 4, we provide some numerical results. Firstly, we compare
the solution for a pressurized crack that crosses two interfaces using the UAS algorithm to that
using a 2D multilayer BEM. Secondly, we implement the layer-spring multilayer Green’s function
approach in a pseudo-3D (P3D) hydraulic fracture simulator. In a case study, the Renshaw and
Pollard criterion [9] is used to identify interfaces that exhibit relative shear deformation thereby
terminating fracture height growth, and shear deformation along these interfaces is modeled using
a layer Green’s function with a reduced interface stiffness.

2. GOVERNING EQUATIONS AND LAYER-SPRING GEOMETRY

2.1. An elastic material in 3D

Consider a linear elastic material that occupies a region in a 3D space and which is in a state of
equilibrium. In this case, the stresses �i j and the strains �i j =1/2(ui, j +u j,i ), which are defined
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in terms of the displacement gradients ui, j =�ui/�x j at any point within the body, satisfy the
following partial differential equations:

�i j = ��kk�i j +2G�i j (1)

�i j, j + fi = 0 (2)

where � and G are Lamé’s constants that can be expressed in terms of Young’s modulus E and
Poisson’s ratio � of the material by the formulae �=E�/(1+�)(1−2�) and G=E/2(1+�) and fi
are the applied body forces. Following [10] it is convenient to introduce the constants a, b, and f
that are defined by a=�+2G, b=�, and f =2G.

It is also useful in this context, in which the layer properties do not change in the x- and
z-directions but do vary in the y-direction (see Figure 1); to rewrite the system equations (1)
and (2) in the form of a system in which the x- and z-derivatives have been separated from the
y-derivatives:

�yT =AT +F (3)

where T represents the vector of stresses and displacements defined by

T =[�yy �xy �yz uy ux uz]T

the body force vector is given by F=[− fy − fx − fz 0 0 0]T, andA is the differential operator
involving only x- and z-derivatives, which is defined by

A=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0 −�x 0 0
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f
−�z 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

2.2. Geometry of the elastic layers and layer-spring conditions

In this section we introduce the geometry and labeling convention that we will assume for the
elastic medium, and describe the interface deformation conditions. We assume that the body is
divided into N layers in which the moduli can be different (see Figure 1). Depending on the
problem being considered, the pack of N layers can either extend to ∞ in both directions or there
can be a free surface on the top of the pack of layers, which rests on an elastic half-space (as is
shown in Figure 1). We assign numbers to the layers starting from layer 1 for the bottom half-
space and ending with layer number N for the top layer adjacent to the free surface. These layer
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Figure 1. Geometry and labeling of a stack of elastic layers that sit on an elastic half-space.
Shear deformation across interfaces between the layers is controlled by linear springs, whereas
the normal deformation and shear and normal tractions are continuous. The interfaces with

springs are represented by thick lines.

indices are represented by the boxed sequence of numbers on the left side of Figure 1. The layer
interfaces are numbered in a similar manner and the corresponding sequence of interface indices
for this problem are shown on the extreme left-hand side of Figure 1. Observe that the interface at
the top of a layer has the same index as the layer itself. The thicknesses of the layers di , which may
all be distinct, are also shown in the figure. Similarly, the symbols Ei and �i are used to denote
the elastic moduli of the i th layer. We introduce a Cartesian coordinate system Oxyz in which the
x- and z-axes are aligned with the horizontal layers and in which the y-coordinate is measured
upwards from the interface between the pack of layers and the bottom half-space (see Figure 1).

Point displacement or force discontinuities can be introduced into the N -layer elastic medium
by specifying appropriate jump conditions in the stress and displacement fields across a horizontal
layer having the same y coordinate as the desired source point. This is achieved by introducing
a pseudo-interface, which is represented by the dashed line through layer 4 in Figure 1. This
process divides layer 4 into two layers for the purposes of this source computation and increases
the number of layers by one. For the purposes of the computation the layers are renumbered
using the same procedure as before and the layer numbers and interface indices are shown on the
right-hand side of Figure 1. The symbol s will be reserved for the s th layer immediately below
the pseudo-‘source’ interface.

The elastic layers are connected at their interfaces by linear springs that satisfy the following
conditions:

��yy = 0, ��yx =0, ��yz =0

�uy = 0, �yx = Si�ux , �yz = Si�uz
(5)
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Figure 2. Interface deformation �ux in response to a shear stress of �yx that is applied across an interface
between two elastic layers that are connected by a spring of stiffness S.

where ��kl and �uk , respectively, represent the jumps in the stress and displacement components
across the interface and Si�0 is the stiffness constant associated with the i th interface. The
stress continuity conditions in (5) express the equilibrium of forces across the interface, whereas
the continuity in the y-displacement component expresses the vertical compatibility between the
elastic layers. The linear relations between the interface shear stresses and the corresponding
shear deformations characterize the linear elastic springs. The situation in which the interfaces are
perfectly bonded corresponds to the case Si →∞ in which case the displacement jumps are forced
to be zero, i.e. �ux =0=�uz . The layer deformation corresponding to the relation �yx = Si�ux is
depicted in Figure 2.

2.3. Reduction of the layer PDEs to a system of ODEs

Since we have assumed that the material properties do not vary in the x- and z-directions we can
apply the 2D FT (see [6, 7, 10–17]) to the system of Equations (3) to obtain

�y T̂ =ÂT̂ + F̂ (6)

where Â is defined to be

Â=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

and where k=(m2+n2)1/2 and m and n are the x and z wave numbers, respectively. In (7) the
elements of T̂ and F̂ have been arranged as follows:

T̂ =[̂�yy, �̂s, û y, ûs, �̂t , ût ]T and F̂=[− f̂ y,− f̂s,0,0,− f̂t ,0]T
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Here we have followed [10] and [6, 7] by defining the displacement and stress components of T̂
to be

ûs = −i(mûx +nûz)/k

ût = −i(mûx −nûz)/k
(8)

and

�̂s = −i(m�̂xy+n�̂yz)/k

�̂t = −i(n�̂xy−m�̂yz)/k
(9)

We observe from (7) that unknowns involving �̂yy, �̂s, û y , and ûs (the s-subsystem) are completely
de-coupled from the unknowns involving �̂t and ût (the t-subsystem). The s-subsystem is sufficient
to determine boundary value problems for 2D plane strain, whereas the autonomous t-subsystem
is the only additional part that needs to be added to the plane strain equations in order to determine
boundary value problems in 3D. We note that by setting either m=0 or n=0 we obtain the
corresponding plane strain equations with the out-of-plane direction being the x- (or, respectively,
the z-) direction.

Combining the interface conditions (5) with the definitions of s and t displacements and stresses
(8) and (9), we obtain the following transformed interface conditions:

�̂s = Si�ûs and �̂t = Si�ût

2.4. Layer ODE solution, spectral coefficients, and spring layer difference equations

Considering the wave number k as a parameter, we can now determine the solution to the system of
ODEs (6), which can be expressed in terms of the solutions for the s-subsystem and the t-subsystem
as follows (see [10]): [

Ts

Tt

]
=

[
Zs 0

0 Zt

][
As

At

]
(10)

where

Ts = [�̂lyy/k �̂ls/k ûly ûls]T, As =[A1 A2 A3 A4]T

Tt = [�̂lt/k ûlt ]T, At =[A5 A6]T

Zs =

⎡⎢⎢⎢⎢⎢⎣
− f e−ky (l4− f ky)e−ky f eky (l4+ f ky)eky

− f e−ky (l5− f ky)e−ky − f eky −(l5+ f ky)eky

e−ky kye−ky eky kyeky

e−ky (ky−l2)e
−ky −eky −(ky+l2)e

ky

⎤⎥⎥⎥⎥⎥⎦
and

Zt =
⎡⎣− f

2
e−ky f

2
eky

e−ky eky

⎤⎦
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and the constants l j in (10) are defined as follows:

l2= �+3G

�+G
, l4= 2G2

�+G
, l5= 2G(�+2G)

�+G
(11)

2.5. Spectral coefficient algebraic equations and source DD

For a well-posed boundary value problem, the exact solution to (6) in each of the layers is used to
construct a system of algebraic equations for the layer spectral coefficients Al

j (k), which express

the conditions that prevail at the layer interfaces. Here Al
j (k) represents the j th spectral coefficient,

as defined in (10), for the lth layer associated with the wave number k. For the spring layer system,
these algebraic equations are constructed by using the interface jump equations (5) to obtain the
following interface conditions for the s-system:

0=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
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l
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l
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⎤⎥⎥⎥⎥⎥⎥⎥⎦
and the following interface conditions for the t-system:

0=
⎡⎢⎣ [�̂t ]l+1

l /k

[ût ]l+1
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⎤⎥⎦=
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1,t Al+1
t −Zl
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(Zl+1
2,t Al+1

t −Zl
2,t A

l
t )−

k

Sl
Zl
2,t A

l
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⎤⎥⎦
Here Zl+1

j,s is the j th row of the Zs matrix for the l+1st layer and Zl+1
j,t is the j th row of the Zt

matrix for the l+1st layer.
For a pack containing both very thick and thin layers, the elements of the matrices Zl

s and Zl
t

involve exponentials of large quantities and, as a result, the system of algebraic equations for the
Al
s(k) and Al

t (k) that result from the direct application of (10) becomes poorly conditioned. In
this case it is necessary to reformulate the algebraic equations as a well-conditioned system of
difference equations (see [7, 18] for details of this procedure) involving the following pressure
quantities at the top of each layer:

pi =
[

�̂yy/k

�̂s/k

]
at the top of the i th layer for the s-system

pi = �̂t/k at the top of the i th layer for the t-system

In order to implement interface springs, the layer difference equations can be expressed in the form

0= Ri+1
bt pi+1+(Ri+1

bb −Ri
tt −�i )pi −Ri

tb p
i−1 (12)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2009; 33:285–308
DOI: 10.1002/nag



UNIFORM ASYMPTOTIC GREEN’S FUNCTIONS 293

where the flexibility matrices Ri+1
bt , Ri+1

bb , Ri
tt , and Ri

tb are given in Appendix A and

�i =
⎡⎢⎣0 0

0
1

Si

⎤⎥⎦ for the s-system and �i = 1

Si
for the t-system

It can be shown [19] that a normal point vertical DD located at ys with a displacement jump
�u in the z-direction can be represented by stress-traction discontinuities across the plane y= ys
of the following form:

[T̂ (ys)]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
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0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ mn
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

�u(a−b)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

The first forcing vector on the right-hand side of (13) is precisely the same one that appears in
plane strain problems and only acts on the s-system and we will refer to the solutions obtained
using this forcing as the Ps solution. The second forcing vector is in the form of a forcing on
the s-subsystem and we will refer to this as the Ancillary s-solution, which we will denote by the
As solution. The third vector is in the form of a forcing on the t-subsystem and we refer to this
Ancillary solution as the At solution. Because the dependence on m and n can be factored out of
each of these forcing vectors, we can determine the solution for the forcing vectors without the
factors involving m and n, and then we can multiply these solutions by the appropriate functions
of m and n in order to get the required solution for any given wave number pair (m,n).

3. UNIFORM ASYMPTOTIC SOLUTIONS

3.1. UASs in the wave number domain

In order to determine the numerical Green’s function for a DD in a layered elastic material it
is necessary (see [6]) to make use of a three-layer asymptotic solution in which the source DD
is located in the middle layer of a three-layer elastic medium. This three-layer solution (called
the UAS in [6]) is then used to remove the high wave number components from the spectral
coefficients before they are inverted by numerical integration to obtain the stress and displacement
influences in real space. Since the system is linear, the stress and displacement components of the
UAS are then added to the inverted low-frequency components to yield the complete DD stress
and displacement components. This solution is crucial in the situation in which DD influences
are to be used to model a crack that crosses one or more interfaces. In this case, significant high
wave number components have to be removed from the spectral coefficients in order to make
numerical inversion feasible. In this section, we describe the form of the spectral coefficients
Al,�
j (k) for the UAS for a three-layer elastic medium in which two elastic half-spaces are joined

to an elastic layer (see Figure 3). Coupling between the layers assumes that across the interfaces
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Figure 3. A vertical DD in an elastic layer that is joined to two elastic half-spaces by linear springs
that control the shear deformation across the interfaces (represented by the thick horizontal lines). The
normal displacement fields are compatible across the interfaces, whereas the normal and shear tractions

are continuous to ensure force equilibrium.

between the layers the shear and normal tractions are continuous (which guarantees equilibrium),
that the normal deformations are continuous, whereas linear springs control the shear deformation
across the interfaces between the layers. We use the exact solutions for two coupled half-planes
to derive the uniformly valid leading-order asymptotic approximation to the spectral coefficients
for the three-layer problem.

If the vertical DD falls in the region where hL �hU , the three-layer solution will tend, for
large k values, to the solution for a vertical DD in the upper part of two half-planes that are joined
by springs, whereas if the DD falls in the region where hL �hU , the three-layer solution will
tend, for large k values, to the solution for a vertical DD in the lower part of two half-planes
that are joined by springs. If, on the other hand, the DD is not much closer to one interface than
the other so that hL ∼hU , then as k→∞ the ultimate asymptotic solution is the solution for a
vertical DD in an infinite medium to which both the upper and lower solutions tend. Thus, we
have a typical situation that occurs in the asymptotic analysis (see, for example, [20]), in which
two different asymptotic solutions are valid in different regions but they are both valid in a finite
overlap region that they both share. In this case, it is possible to obtain an asymptotic approximation
that is uniformly valid over the three regions by superimposing the two asymptotic solutions and
subtracting the solution in the match region:

Al,�
j (k)

k→∞∼ Al,U
j (k)+Al,L

j (k)−Al,∞
j (k) (14)

where Al,�
j (k) is used to represent the uniformly valid asymptotic solution, Al,U

j (k) represents
the corresponding spectral coefficient for two half-spaces connected by linear springs in which
the interface is above the source DD, Al,L

j (k) represents the corresponding half-space spectral

coefficient in which the spring interface is below the source DD, and Al,∞
j (k) represents the

spectral coefficient for a point vertical DD in an infinite medium having the material properties �2
and G2 of the middle layer.

The explicit expressions for the uniform asymptotic spectral coefficients Al,Ps�
j (k), Al,As�

j (k),

Al,At�
j (k) that are calculated by substituting the respective expressions for: Al,PsU

j (k), Al,PsL
j (k),

and Al,Ps∞
j (k); Al,AsU

j (k), Al,AsL
j (k), and Al,As∞

j (k); and Al,AtU
j (k), Al,AtL

j (k), and Al,At∞
j (k)
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into (14) are given in Appendix B. Generically the UAS coefficients are of the form

Al,Q�
j (k)=∑

s
gQs (k)

where the functions gQs (k) are rational functions of the wave number k of the form

gQi
s (k)= cs,i1 k+cs,i2 hi k2+cs,i3 h2i k

3+�i [c̄s,i0 + c̄s,i1 (hi k)+ c̄s,i2 (hi k)2]
k+	i�i

e−2khi (15)

where the coefficients csp can be expressed in terms of the parameters �i =Gi/G2,�i =�i/�2,

�i = Si/G2, and 
=�2/G2. The exponential factor e−2khi may or may not be present depending
upon whether the term represents an image element or not. We note that if we consider the limit
�i →∞, the rational functions are reduced to polynomials in k in which the coefficients c̄s,ip /	i
are the same as those that were obtained for the fully bonded layers [6]. We recover the fully
bonded coefficients in this limit, as expected, since an infinitely stiff interface spring is equivalent
to a fully bonded interface.

3.2. Inversion of the UAS

In order to invert the FTs of the influences and to construct integrated kernels we follow the
approach described in [6]. In order to make it possible to use the spectral method to determine
the spatial influences of the singular case, in which a crack intersects the interface between two
layers, it is necessary to first subtract the uniform asymptotic spectral coefficients Al,�

j (k) presented

in Appendix B from the numerical spectral coefficients Al
j (k). The numerical coefficients are

obtained by solving the block-tridiagonal system of linear equations (12) that corresponds to the
geometry and interface conditions for the problem under consideration. We then obtain a set of
low-frequency components Al,L

j (k) that are used in the numerical inversion process, i.e.

Al,L
j (k)= Al

j (k)−Al,�
j (k) (16)

Since Al
j (k)

k→∞→ Al,�
j (k), it follows that Al,L

j (k)
k→∞→ 0. If the uniform asymptotic approximation

closely mimics the true solution, then Al,L
j (k) will only be non-zero for relatively low frequencies.

After subtracting the asymptotic solution, the remaining spectral coefficients Al,L
j (k) that need to

be inverted contain only relatively low-frequency components. As a result, it is possible to invert
the low-frequency spectra Al,L

j (k) very efficiently using numerical integration. The high-frequency

components that are associated with the UAS Al,�
j (k) cannot be inverted numerically. However,

these uniform spectral coefficients can be inverted analytically to yield approximate spatial stress
and displacement components due to a point vertical DD in a three-layer material.

As we observed in the last section, the difference between the spectral coefficients for the fully
bonded and the spring layer system is that the fully bonded coefficients involve polynomials in k
whereas the spring layer system involves rational functions in k (see (15)). By using synthetic
division it is possible to reduce all the integrands to the same form as those required in the bonded
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case given in [6], except for the remainder term. For example, the remainder term in the 2D case
involves an inversion integral of the form

I−1(y
′) = 1

�

∫ ∞

0

e−|k|y′

b+k
dk

= 1

�
eby

′
E1(by

′)

where

E1(s)=
∫ ∞

s

e−t

t
dt=−Ei(−s)

and Ei is the exponential integral. To complete the computation of the spatial UAS due to a
piecewise constant DD, for example, involves evaluating integrals involving the product of I−1(y′)
and powers of y′ up to degree 2. These integrals are given in Appendix C.

3.3. The numerical procedure to solve crack problems

The pressurized crack problem is conveniently expressed [5] in the form of an integral equation:∫
R(t)

C(x, y;�,)w(�,, t)d�d= p(x, y, t)

where w is the unknown width (DD) profile within the crack and p is the prescribed net pressure
within the crack.

The given fracture geometry is discretized into M elements—line segments in 2D and rectangular
elements in 3D. Each of the DD elements of the discretized problem is assumed to send a set
of stress influences to each of the other receiving elements in the mesh. These stress influences
are determined by adding the integrated uniform stress components �l,�zz and the integrated low-
frequency stress components �l,Lzz at receiving points located at the centers of the receiving
elements. Assembling all possible send–receive pairs of influences and storing them in a matrix C ,
we obtain the following discrete form of the above crack integral equation:

M∑
n=1

Cmnwn = pm

3.4. Implementation in a hydraulic fracture simulator

Interfacial slip is one of the mechanisms that arrests fracture height growth in hydraulic fracturing.
To model hydraulic fracturing in formations with interfacial slip, the plane strain (2D) UAS method
described above is implemented in a P3D hydraulic fracture simulator [21]. In the simulator, the
bedding interfaces are assumed to be horizontal and parallel to each other, and the hydraulic
fracture is vertical and is perpendicular to the direction of the minimum horizontal in situ stress.
Relative shear deformation across an interface directly affects the fracture height growth in the
vertical direction and the fracture width profile. Since hydraulic fracturing is a coupled process
between the fracture deformation and the fluid flow inside the fracture, the fracture height and
width are influenced by the interfacial slip, which can affect the overall fracture pressure and
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geometry. The UAS method is used to calculate the fracture width profile along the fracture height
due to the fluid pressure inside the fracture. In addition to the UAS method, we also need a
fracture height growth criterion to determine when interfacial slip occurs. We use the Renshaw and
Pollard criterion [9] to determine if fracture propagation will occur across frictional interfaces. The
criterion was derived for cohesionless interfaces. In hydraulic fracturing, however, if the fracturing
fluid penetrates between bedding layers, the cohesion of the interface would be much weakened
and the Renshaw and Pollard criterion could be used as a first-order approximation to identify
whether fracture crossing will occur or not. For the coordinate system shown in Figure 1, the
Renshaw and Pollard criterion is given by

−�′
yy

T0−�′
xx

>

0.35+ 0.35

�
1.06

(17)

where �′
yy =�yy− p0 is the effective vertical overburden in situ stress, �′

xx =�xx − p0 is the effective
minimum horizontal in situ stress, p0 is the pore pressure, T0 is the rock tensile strength, and
� is the coefficient of friction of the interface. The vertical stress �yy acts perpendicular to the
interface, and the horizontal stress �xx can be discontinuous across the interface and the value
used in the criterion is the one in the layer into which the fracture may further propagate after
crossing the interface. According to this criterion, when the condition in (17) is satisfied, there
is no interfacial slip and the hydraulic fracture can cross the interface. If the condition in (17) is
not satisfied for a particular interface, then interfacial slip is assumed to occur and the hydraulic
fracture is assumed to terminate at the interface.

The numerical implementation in a P3D simulator follows the procedure described in [21]. The
main difference is in the building of the fracture width, height, area, and pressure tables used in
the simulator. Since the parameters involved in (17) are only dependent on the local geological
stress state and material properties, it is possible to test the different interfaces in a particular field
situation for the potential slip. First, we determine whether a bedding interface allows hydraulic
fracture crossing based on criterion (17). For an interface where the criterion indicates fracture
crossing, the conventional fracture height growth criterion

KI =KIc (18)

is applied and a large value of shear stiffness S is allocated for the perfectly bonded interface. For
an interface where criterion (17) indicates relative slip deformation, the fracture height growth is
limited and a small value (determined by user) is used for the shear stiffness S for that interface. The
small interface stiffness allocated to interfaces with relative slip makes it possible to account for any
interface shear deformation that might take place automatically within the layer Green’s function.
According to the procedure described in [21], this is achieved by using the UAS method to calculate
tables for the fracture width, height, and cross-sectional area corresponding to various pressures.
These tables are then used to determine the fracture height and geometry within a hydraulic fracture
simulation. Simulation results for a field example are presented in the following section.

4. NUMERICAL RESULTS

In this section we provide some numerical results to illustrate the use of the method outlined
above.
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4.1. A pressurized crack crossing two deforming interfaces

In this subsection we consider the problem of determining the opening displacement of a crack
subjected to an internal pressure of 10MPa. The crack is located within the interval x=0 and
0.5<y<3.5m and crosses two soft interfaces in a pack of elastic layers that are joined by linear
springs. To demonstrate the effect of layer stiffness we present results in which the crack intersects
layers with the following distinct stiffnesses: 1, 2, and 4GPa/m. The geometry of the layers, the
location of the crack, and material properties are shown in Figure 4.

The solution obtained using the FT algorithm described above is compared with the solution
obtained using a DD BEM [22]. The FT algorithm was implemented by discretizing the crack into
60 piecewise constant DD elements. Because the Green’s function matrix already incorporates the
effect of the linear springs and the free surface, there was no need to discretize along the layer
interfaces. The BEM algorithm used 2730 piecewise linear DD elements to discretize the crack,
the four interfaces with linear springs, and the free surface. Since there are two collocation points
per DD element this solution comprises 5460 degrees of freedom compared with the 60 degrees
of freedom required by the UAS layer Green’s function algorithm. The solutions generated by
these two algorithms are compared in Figure 5. There is close agreement between the solutions
generated by the two algorithms. Due to the relaxation in shear stress by the deformation of the

y
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ν
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ν

Figure 4. The layer geometry and material properties used in the pressurized crack prob-
lems. The crack location at 0.5<y<3.5m is indicated by a thick black line and the crack

is subjected to a normal stress of 10MPa.
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Figure 5. Fracture widths for cracks pressurized by 10MPa, which intersect the three layers that are
coupled by linear springs. Results are shown for the three different cases in which the interface spring
stiffnesses are Si =1,2, and 4GPa/m. The FT Green’s function solution using 60 piecewise constant DD
elements to discretize the crack is compared with a BEM solution in which 2730 piecewise linear DD

elements have been used to discretize the crack and the layer interfaces.

soft springs, both the solutions exhibit sharp jumps in the width profile as the crack crosses the
interfaces located at y=1 and 3m. The larger displacement in the center layer is due to the softer
Young’s modulus of 5GPa, whereas the displacement in the upper layer, within which the modulus
is 20GPa, is slightly larger than that in the lower layer having a modulus of 50GPa.

4.2. Field example

A hydraulic fracturing treatment was carried out in a formation at a moderate depth. There was
no apparent stress barrier above the pay zone, but the radioactive tracer logs indicated limited
fracture height. The bottom hole pressure calculated from the measured surface treatment pressure
exceeded the overburden stress �yy during the treatment. It was thus considered that the created
fracture was likely to have a T-shape: a vertical main body and a horizontal component connected
at the top of the main body. The horizontal component would allow fracturing fluid to enter
between the formation layers and the cohesion of the interface between the layers would be much
reduced. The Renshaw and Pollard criterion (17) can then be applied as a first-order approxi-
mation. The P3D simulator with the interfacial slip developed here was used to study this field
case.

Application of criterion (17) with a tensile strength T0=0 and a coefficient of friction �=0.4
predicts that the fracture will not penetrate the interface located at a depth of 1663m, where
the layer stresses for the criterion are �xx =38.37MPa, and �yy =41.28MPa, and the pore pres-
sure is p0=17.9MPa. In the layers where the main fracture body propagated, Young’s moduli
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Figure 6. Fracture geometry from the simulation of a field example using the
P3D simulator with interfacial slip.
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Figure 7. Comparison of bottom hole pressures from simulation and measurement.

ranged from 40–60GPa. The bonded interfaces were allocated stiffness Si =10GPa/m and the
interface with a relative slip stiffness Si =0.8GPa/m. Figure 6 shows the simulation results of
fracture width profile, main fracture body with proppant concentration distribution, together with
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the formation Young’s modulus and the minimum horizontal in situ stress versus depth. The
fracture height along the wellbore (at the origin of the length axis) is in good agreement with
that determined from the radioactive tracer logs (not shown in the figure). The fracture’s top
tip shown in the width profile has a wide, blunt opening due to the interfacial slip, which is
in contrast to the more familiar, conventional fracture tip as shown at the bottom of the frac-
ture where there is no interfacial slip. Figure 7 compares the bottom hole fracturing pressure
versus time between the simulation results and the measured data. Also shown in the figure are
the injection rate and proppant concentration versus time that were recorded in the treatment
and used in the simulation. Although the value of the shear stiffness of the interface with shear
deformation was adjusted to match the magnitude of the measured pressure, a single value of
the shear stiffness was used in the simulation for the entire treatment duration. There is good
agreement between the pressure from the measurement and that from the simulation during most
of the treatment. Due to the lack of measured material parameters comprising the coefficient of
friction and the interface shear stiffness, the simulator is not yet a predictive model. This field
case study indicates that interfacial slip could account for the fracture arrest at a layer interface
as well as the fracturing pressure response during the treatment. The simulator does not currently
account for the horizontal component of the T-shaped fracture. If the volume of fluid in the hori-
zontal component is significant, the simulator will over-estimate the volume and length of the
vertical main body of the fracture. On the other hand, a standard P3D simulation without inter-
facial slip would predict much larger fracture height than that determined from radioactive tracer
logs.

5. CONCLUSIONS

In this paper we have presented a UAS that makes it possible to efficiently model cracks
that touch or intersect interfaces between layered elastic media in which linear springs are
assumed to control the shear deformation between the elastic layers. The assumption of linearity
makes it possible to construct a spring layer Green’s function that automatically incorporates
the effects of the layer deformations. Assuming that the layers are parallel and that they have
piecewise homogeneous elastic moduli, it is possible to construct the UAS very efficiently using
the FT method. The UAS is constructed by superimposing the solution for a DD in a half-
space that is joined by linear springs to another elastic half-space. When modeling cracks that
touch or intersect interfaces, the source DDs introduce high wave number components into the
spectral solution to multilayer problems that cannot be treated numerically. The UAS enables
one to remove the high wave number components from the spectral solution for multiple-layer
elastic problems leaving only low wave number components that need to be inverted numeri-
cally. Since these low wave number components are associated with modes whose spatial vari-
ation is moderate, they can be inverted and integrated with low-order Gauss integration. In this
paper we have described the process by which the UAS can be constructed for 2D- and 3D-
layered elastic media. The process of analytic integration of these singular solutions is also
described.

For a problem comprising a pressurized crack intersecting two soft interfaces between three
layers with different moduli, the numerical solution using the FT UAS algorithm with few degrees
of freedom shows close agreement with a high-resolution BEM in which the crack and the layer
interfaces are discretized. The UAS technique described in this paper was also used to generate a
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layer Green’s function for use in a P3D model of hydraulic fracturing. The Renshaw and Pollard
criterion was first used to identify bonded interfaces and interfaces with slip, after which the
appropriate layer stiffnesses were then allocated. Using these layer stiffnesses the associated layer
Green’s function table was assembled and used to model the increased fracture opening and reduced
fluid pressures due to interface shear deformation for a hydraulic fracture that terminates on an
interface. The results from the P3D model indicates that interface slip is able to account for the
arrest of the fracture and the concomitant reduction in the fluid pressures that was observed in a
field treatment.

APPENDIX A: FLEXIBILITY MATRICES

The explicit expressions for these flexibility sub-matrices for the s-subsystem are as follows:

Rtt = 1

D

[ −l5(th+kd ·se2) −(l4th
2+ f k2d2se2)

−(l4th
2+ f k2d2se2) −l5(th−kd ·se2)

]
(A1)

Rbb = 1

D

[
l5(th+kd ·se2) −(l4th

2+ f k2d2se2)

−(l4th
2+ f k2d2se2) l5(th−kd ·se2)

]
(A2)

Rbt = l5
D

[−(th+kd)se −kd ·th·se
kd ·th·se −(th−kd)se

]
(A3)

Rtb = l5
D

[
(th+kd)se −kd ·th·se
kd ·th·se (th−kd)se

]
(A4)

where for the sake of brevity the superscript l identifying the layer number has been omitted
and d is the thickness of the current layer. We have also used the notation th= tanh(kd), and
se=sech(kd), and D= f 2[(1+k2d2)se2−1]. The explicit terms for the flexibility coefficients for
the t-subsystem (for the t-system the Rtt , Rbb, . . . are numbers, not matrices) are as follows:

Rtt = 2

f
coth(kd)

Rbb = − 2

f
coth(kd)

Rbt = 2

f
cosech(kd)

Rtb = − 2

f
cosech(kd)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2009; 33:285–308
DOI: 10.1002/nag



UNIFORM ASYMPTOTIC GREEN’S FUNCTIONS 303

APPENDIX B: UAS COEFFICIENTS

The uniform asymptotic spectral coefficients Al,Ps�
j (k) that are calculated by substituting the

expressions for Al,PsU
j (k), Al,PsL

j (k), and Al,Ps∞
j (k) into (14) are given as follows:

A3,Ps�
1 = gPL

1 (k)−gPU
3 (k), A3,Ps�

2 =gPL
2 (k)+gPU

4 (k)

A2,Ps�
1 = gPL

1 (k)−c3, A2,Ps�
2 =gPL

2 (k)+c4

A2,Ps�
3 = −gPU

1 (k), A2,Ps�
4 =gPU

2 (k)

A1,Ps�
1 = gPL

1 (k), A1,Ps�
2 =gPL

2 (k)

A1,Ps�
3 = −gPU

1 (k)+c3, A1,Ps�
4 =gPU

2 (k)+c4

A0,Ps�
3 = −gPU

1 (k)+gPL
3 (k), A0,Ps�

4 =gPU
2 (k)+gPL

4 (k)

(B1)

Note that only the non-zero coefficients are listed. In addition, the g functions are defined as
follows:

gPL
1 (k) = gP

1 (k;�L ,�L ,�L ,
,hL), gPU
1 (k)=gP

1 (k;�U ,�U ,�U ,
,hU )

gPL
2 (k) = gP

2 (k;�L ,�L ,�L ,
,hL), gPU
2 (k)=gP

2 (k;�U ,�U ,�U ,
,hU )

gPL
3 (k) = gP

3 (k;�L ,�L ,�L ,
,hL)), gPU
3 (k)=gP

3 (k;�U ,�U ,�U ,
,hU )

gPL
4 (k) = gP

4 (k;�L ,�L ,�L ,
,hL), gPU
4 (k)=gP

4 (k;�U ,�U ,�U ,
,hU )

where the functions gP
j (k;�,�,�,
,h) are defined as follows:

gP
1 (k;�,�,�,
,h) = �11k+�12hk

2+�13h
2k3+�[�̄10+ �̄11(hk)+ �̄12(hk)

2]
k+	�

e−2kh

gP
2 (k;�,�,�,
,h) = �21k+�22hk

2+�[�̄20+ �̄21(hk)]
k+	�

e−2kh

gP
3 (k;�,�,�,
,h) = �31k+�32hk

2+�33h
2k3+�[�̄30+ �̄31(hk)]

k+	�

gP
4 (k;�,�,�,
,h) = �41k+�42hk

2+��̄40
k+	�

(B2)

and the constants �ij and c j are defined as follows:

�13 = 2ε(1+
)2(2ε+
�)/�1

�12 = −2ε(1+
)[(1+ε)�
2+(ε2+2ε+2ε�)
+2ε2]/�1

�11 = −ε[�(1−ε)
3+(5�+2ε−2ε�+ε2)
2+(10ε+4�−2ε2)
+8ε]/�1

�̄12 = (1+
)2(1−ε)[ε2+3ε+
ε�+
�]/�1

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2009; 33:285–308
DOI: 10.1002/nag



304 A. P. PEIRCE, H. GU AND E. SIEBRITS

�̄11 = −
(1+
)(1−ε)[ε2+3ε+
ε�+
�]/�1

�̄10 = 1
2 [�(ε2−1)
3+(ε3+3ε2�+4ε2−3ε−5�)
2

+(3ε3+16ε2−15ε−4�)
+12ε(ε−1)]/�1

�22 = 2ε(1+
)2(2ε+
�)/�1

�21 = −ε(1+
)[�(ε+3)
2+(ε2+2ε�+3�+6ε)
+2ε(ε+3)]/�1

�̄21 = (1+
)2(1−ε)[ε2+3ε+
ε�+
�]/�1

�̄20 = − 3
2 (1−ε)(1+
)2[ε2+3ε+
ε�+
�]/�1

�33 = −2ε(1+
)(ε+
�)/�0

�32 = 2ε(1+
)(3ε+2
�)/�0

�31 = −2ε[�
2+(2ε+�)
+2ε]/�0 (B3)

�̄31 = 2ε[(1−�)
+(1−ε)]/�0

�̄30 = −[�(1+ε)
2+(3ε+�)
+3ε(1−ε)]/�0

�42 = −2ε(1+
)(ε+
�)/�0

�41 = 2ε(1+
)(ε+
�)/�0

�̄40 = −(1+3ε+(1+ε)
)(ε+
�)/�0

	 = (ε2+3ε+(1+ε)
�)(1+3ε+(1+ε)
)/�0

�1 = 2(2+
)ε[�(1+ε)
2+(�+2ε�+2ε+ε2)
+2ε(1+ε)]
�0 = �1/(2+
)

c3 = − 


2(2+
)

c4 = − 1+


2(2+
)

The constants �L ,�L ,�L ,�U ,�U ,�U , and 
 are defined as follows:

�L = G1

G2
, �L = �1

�2
, �L = S1

G2
, �U = G3

G2
, �U = �3

�2
, �U = S2

G2
and 
= �2

G2
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The uniform asymptotic spectral coefficients Al,As�
j (k) that are calculated by substituting

Al,AsU
j (k), Al,AsL

j (k), and Al,As∞
j (k) into (14) are given as follows:

A3,As�
1 = gAL

1 (k)−gAU
3 (k), A3,As�

2 =gAL
2 (k)+gAU

4 (k)

A2,As�
1 = gAL

1 (k), A2,As�
2 =gAL

2 (k)−c4

A2,As�
3 = −gAU

1 (k), A2,As�
4 =gAU

2 (k)

A1,As�
1 = gAL

1 (k), A1,As�
2 =gAL

2 (k)

A1,As�
3 = −gAU

1 (k), A1,As�
4 =gAU

2 (k)−c4

A0,As�
3 = −gAU

1 (k)+gAL
3 (k), A0,As�

4 =gAU
2 (k)+gAL

4 (k)

(B4)

where

gAL
1 (k) = gA

1 (k;�L ,�L ,�L ,
,hL), gAU
1 (k)=gA

1 (k;�U ,�U ,�U ,
,hU )

gAL
2 (k) = gA

2 (k;�L ,�L ,�L ,
,hL), gAU
2 (k)=gA

2 (k;�U ,�U ,�U ,
,hU )

gAL
3 (k) = gA

3 (k;�L ,�L ,�L ,
,hL)), gAU
3 (k)=gA

3 (k;�U ,�U ,�U ,
,hU )

gAL
4 (k) = gA

4 (k;�L ,�L ,�L ,
,hL), gAU
4 (k)=gA

4 (k;�U ,�U ,�U ,
,hU )

and where the functions gA
j (k;�,�,�,
,h) are defined as follows:

gA
1 (k;�,�,�,
,h) = 	11k+	12hk

2+	13h
2k3+�[	̄10+ 	̄

1
2(hk)

2]
k+	�

e−2kh

gA
2 (k;�,�,�,
,h) = 	21k+	22hk

2+�[	̄20+ 	̄
2
1(hk)]

k+	�
e−2kh

gA
3 (k;�,�,�,
,h) = 	31k+	32hk

2+	33h
2k3+�[	̄30+ 	̄

3
1(hk)]

k+	�

gA
4 (k;�,�,�,
,h) = 	41k+	42hk

2+�	̄
4
0

k+	�

(B5)

Here the constants c4 and 	ij are defined as follows:

	13 = −2ε(1+
)2(2ε+
�)/�1

	12 = 2ε2(1+
)(2+
)(ε+
�)/�1

	11 = 2ε(2+
)(2ε+
�)/�1

	̄
1
2 = (1+
)2(ε−1)(ε2+3ε+
ε�+
�)/�1

	̄
1
0 = −(2+
)(3ε2−3ε−
�+ε2
)/�1
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	22 = −2ε(1+
)2(2ε+
�)/�1

	21 = ε(1+
)[�(ε+1)
2+(ε2+2ε�+3�+2ε)
+2ε(ε+3)]/�1

	̄
2
1 = (ε−1)(1+
)2(ε2+3ε+
ε�+
�)/�1

	̄
2
0 = − 1

2 (ε−1)(1+
)(3+
)(ε2+3ε+
ε�+
�)/�1

	33 = 2ε(1+
)(ε+
�)/�0

	32 = −2ε(3ε+2
�+2
ε+�
2)/�0 (B6)

	31 = 2ε(�
+2ε)/�0

	̄
3
1 = 2ε(ε+�
−
−1)/�0

	̄
3
0 = −(3ε2−3ε−
�+ε2
)/�0

	42 = 2ε(1+
)(ε+
�)/�0

	41 = −2ε(ε+
�)/�0

	̄
4
0 = (ε+
�)(1+3ε+
(1+ε))/�0

	 = (ε2+3ε+(1+ε)
�)(1+3ε+(1+ε)
)/�0

�1 = 2(2+
)ε[�(1+ε)
2+(�+2ε�+2ε+ε2)
+2ε(1+ε)]
�0 = �1/(2+
)

c4 = − 1+


2(2+
)

The uniform asymptotic spectral coefficients Al,At�
j (k) that are calculated by substituting

Al,AtU
j (k), Al,AtL

j (k), and Al,At∞
j (k) into (14) are given as follows:

A3,At�
5 =gT L

1 (k)+gTU2 (k)

A2,At�
5 =1+gT L

1 (k), A2,At�
6 =gTU1 (k)

A1,At�
5 =gT L

1 (k), A1,At�
6 =1+gTU1 (k)

A0,At�
6 =gTU1 (k)+gT L

2 (k)

(B7)

where

gT L
1 (k) = gT1 (k;�L ,�L ,hL), gTU1 (k)=gT1 (k;�U ,�U ,hU )

gT L
2 (k) = gT2 (k;�L ,�L ,hL), gTU2 (k)=gT2 (k;�U ,�U ,hU )
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and

gT1 (k;�,�,h) = k+��̄10
k+	T�

e−2kh

gT2 (k;�,�,h) = ��̄20
k+	T�

where �̄10=(1−�)/�, �̄20=2/�, and 	T =(1−�)/� and �̄pLq and �̄pUq are obtained by using the values
of �L and �U , respectively.

If we consider the limit � j →∞ for all three types of coefficients Ps, As, and At we recover
the coefficients [6] that were obtained for the fully bonded interfaces. This is to be expected since
the limit � j = S j/G2→∞ corresponds to infinitely stiff interface springs so that the interfaces
become fully bonded in the limit.

APPENDIX C: INTEGRALS FOR THE REMAINDER TERM

In this section we list the integrals required to determine the integrated kernels for the UAS
associated with a constant DD. We introduce the notation

K−1n =
∫

es E1(s)s
n ds

for which the explicit expressions for n=0,1,2 are

K−10 = es E1(s)+ lns

K−11 = (s−1)es E1(s)+s− lns

K−12 = (s2−2s+2)es E1(s)+ s2

2
−2s+2lns
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