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Localized Jacobian ILU preconditioners for hydraulic fractures

A. P. Peirce∗,†

Department of Mathematics, University of British Columbia, Vancouver, BC, Canada V6T 1Z2

SUMMARY

We discuss the properties of a class of sparse localized approximations to the Jacobian operator that
arises in modelling the evolution of a hydraulically driven fracture in a multi-layered elastic medium.
The governing equations involve a highly non-linear coupled system of integro-partial differential
equations along with the fracture front free boundary problem. We demonstrate that an incomplete
LU factorization of these localized Jacobians yields an efficient preconditioner for the fully populated,
stiff, non-symmetric system of algebraic equations that need to be solved multiple times for every
growth increment of the fracture. The performance characteristics of this class of preconditioners is
explored via spectral analysis and numerical experiment. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Hydraulic fracturing is a process by which a fracture is propagated in brittle rock by injecting
a viscous fluid into a perforated section of a bore-hole under a sufficiently high pressure
to overcome the tensile strength of the rock and the far-field minimum principal geological
stresses. As a result, a fracture surface, which is often assumed to be planar, develops in a
direction perpendicular to this minimum principal stress. Hydraulic fracturing is frequently used
in the oil and gas recovery industry to induce fractures in reservoirs in order to substantially
enhance the flow of hydrocarbons. The process has also been used in the mining industry to
introduce large fractures in the rock surrounding mining excavations in order to enlarge these
excavations without having to use explosive charges. Environmental engineers have also used
hydraulic fracturing to isolate toxic substances by injecting impermeable materials into fractures.
In all these processes, it is desirable to be able to predict the evolution of the fracture surface
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under known stress and geological conditions. Thus robust, efficient, and accurate numerical
modelling of hydraulically driven fractures is of considerable interest.

The governing equations that describe the evolution of a hydraulic fracture involve: the two-
dimensional (2D) Reynold’s lubrication equation expressing the conservation of fluid volume
within the planar fracture; the three-dimensional (3D) equilibrium and elastic stress–strain partial
differential equations that in this case can be reduced to a (2D) boundary integral equation
expressing the balance of forces between the fluid pressure, the geological stresses, and the
elastic response of the rockmass; and a propagation criterion which determines the extent of
the fracture footprint. Previous papers (see for example References [1–4] have described the
governing equations and the appropriate discretization procedures for the efficient numerical
modelling of hydraulic fractures. In this paper, we are concerned with the efficient solution
of the stiff system of non-linear equations that need to be solved at each time step in order
to determine the fracture width and fluid pressure fields within the fracture. Application of
Newton’s method reduces this problem to the solution of a large system of fully populated
non-symmetric linear algebraic equations. In a previous paper [5] we described a dual mesh
multigrid preconditioner for the efficient solution of these equations. In that paper a localized
approximation to the Jacobian, when combined with Gauss–Seidel iteration, was found to
provide a very efficient smoother of the high-frequency modes of the fully populated Jacobian
matrix. In this paper we explore the efficacy of preconditioners based on incomplete LU
factorizations of a class of localized Jacobians that are an extension of the one introduced
as a smoother in Reference [5]. In particular, we investigate some of the spectral properties
of the localized Jacobians for a one-dimensional (1D) model problem. This analysis indicates
that these localized Jacobian operators provide efficient preconditioners for the fully populated
Jacobians. For 2D problems we demonstrate that zero fill incomplete LU factorizations of the
localized Jacobian operators yield efficient preconditioners for the fully populated system.

In Section 2, we describe the continuous and discrete coupled integro-partial differential
equations that govern the evolution of a fluid-driven fracture. In Section 3, we describe the
class of localized Jacobian operators, present an analysis of their spectral properties for a 1D
model problem, and discuss the spectral properties of the localized Jacobians for 2D problems
as well as the spectra of the ILU factorizations of the localized Jacobians. In Section 4, we
present results on the performance of preconditioners based on the ILU factorizations of the
localized Jacobians in a numerical example. In Section 5 we make some concluding remarks.

2. GOVERNING EQUATIONS AND DISCRETIZATION

In a three-dimensional (3D) layered elastic medium the integral equation governing the width
profile for a planar crack can be written in the form

Cw =
∫

�(t)

C(x, y; �, �)w(�, �, t) d� d� = p(x, y, t) − �c(x, y) (1)

where the fracture is subjected to a fluid pressure p(x, y, t) that works against the far-field
minimum principal stress field �c(x, y) (also known as the confining stress) within the elastic
medium. For example, in the case of an elastic material with zero toughness, if p is sufficiently
large to overcome �c so that the net pressure p(x, y, t)−�c(x, y) is positive, then the fracture
opens by an amount w(�, �, t) > 0. Due to the non-locality of the operator C it is possible
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for w to be positive at points where the net pressure is negative. However, if the net pressure
is sufficiently negative at some point then w < 0, which would imply that the sides of the
fracture surface inter-penetrate. At these so-called ‘pinch-points’ it is necessary to impose some
form of minimum width constraint w�wc. The Green’s function C(x, y; �, �) contains all the
information about the compliance of the layered elastic medium. The fracture at time t is
assumed to occupy the region denoted by �(t), which has a boundary that we denote by ��.
A procedure for constructing the Green’s functions for layered elastic materials both in plane
strain and in three dimensions is described in Reference [3].

In the case of a planar fracture that grows in a 3D elastic medium, the fluid flow equations
are well approximated by the 2D Reynold’s lubrication equation:

�w

�t
= �Q(D(w, |∇p|)�p) + �(x, y)Q (2)

where Q = Q(x, y, t) is the volume of fluid pumped into the fracture at the well bore. For
simplicity, we have assumed that the surrounding rockmass is impermeable so that there is
no leakoff of the fluid within the fracture into the surrounding elastic medium. If the fluid
is Newtonian D(w) = w3/12�, where � is the fluid viscosity, while for a non-Newtonian
power-law fluid D(w) is replaced by D(w, |∇p|) in which the dependence of D on w is larger
than a cubic power while D has a power-law dependence on |∇p| in which the exponent is
positive.

We assume that the fracture region �(t) evolves in a window that has been divided into
rectangular elements. For the discretization of the elastic integral equation (1) we assume that
the width is piece-wise constant over each element and collocate at the element centres. In
this case the discrete elasticity equations assume the form

Cw = p − �c (3)

In the case of an inhomogeneous elastic medium the discretized collocation operator C is not
symmetric.

By integrating both sides of (2) over a control element �x�y (see Reference [5]) and
assuming that w and p are piecewise constant over each cell, the resulting set of difference
equations can be expressed in the form

�w

�t
= A(w)p + F (4)

Substituting the pressure from (3) into (4) we obtain a non-linear evolution equation for w:

�w

�t
= A(w)Cw + F (5)

By linearizing a 1D version of this evolution equation and applying Fourier analysis, it can be
shown (see (10) and (11) below) that the eigenvalues of the system matrix AC are given by

̂[AC]k = −2E′D̄
�x3

sin3
( |k|�x

2

)
(6)

Therefore an explicit time stepping scheme will be subject to a time step restriction in which
�t < K�x3. Because the operator C is fully populated, this small time step restriction renders

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1935–1946



1938 A. P. PEIRCE

explicit time stepping impracticable. Due to the stiffness of this evolution equation we will
assume in the remainder of this paper that the backward Euler scheme is used to march the
solution forward in time.

Our objective is to investigate efficient algorithms to solve the large system of non-linear
algebraic equations that need to be solved at each time step. We use Newton’s method to solve
for the width w within the crack surface at the end of each time step, which can be expressed
in the form

J (AC)�wk = −rk (7)

where rk = �wk −�tA(wk)Cwk −�tF is the kth residual. Since C is not a symmetric matrix,
the Jacobian J (AC) is also not symmetric. Pinch points, at which width constraints are active,
typically have an adverse effect on the conditioning of these equations. For this reason the
numerical example we have chosen to illustrate the performance of the preconditioners has a
significant number of pinch point elements.

3. LOCALIZED JACOBIANS AND SPECTRAL PROPERTIES

3.1. Localized Jacobian operators

In order to improve the conditioning of the linear system (7), we consider a class (which
we refer to as class I) of sparse approximations to the Jacobian, which are constructed by
exploiting the sparseness of the fluid flow operator A(w) and the rapid O(1/r3) spatial decay
of the elements of the elasticity operator C. The construction of the localized Jacobians is
depicted in Figure 1(a). Consider the receiving point (i, j) at the centre of a 5×5 patch of
elements. The crucial component in this process is the approximation of the matrix product
AC. We observe that, due to the local support of the matrix A, the receiving point (i, j) is
only influenced by the pressures at the neighbouring points (i, j + 1), (i, j − 1), (i − 1, j),
(i + 1, j) as well the pressure at the point (i, j). These pressure points are indicated by the
solid circles (•) in Figure 1(a). Since C is fully populated, the pressures at each of these
neighbouring points depends on the widths throughout the current fracture surface. However,
because the coefficients of the C matrix decay at a rate of O(1/r3) as the distance r from the
sending element increases, we adopt an approximation that only includes the elastic influences
due to the widths in each of the nearest neighbours to the pressure points (•). In Figure 1(a)
we depict by grey shading the set of 3 × 3 nearest neighbour width elements that are used to
approximate the pressure at the point (i, j +1), while the C matrix influences due to the widths
at all remaining elements within the fracture are ignored. Similar patches of 3×3 elements are
constructed around each of the five elements of the difference stencil for A that are denoted
by the solid circles. The matrix vector product can be expressed in the form

(AC)mn = ∑
k∈N5

M

AmkCkn ≈

⎧⎪⎨
⎪⎩

∑
k∈N5

m

AmkCkn when n ∈ N9
k

0 when n /∈N9
k

(8)

Here we have used the indices k, m, and n to denote a global scheme to number the elements
as opposed to the co-ordinate based scheme depicted in Figure 1(a). The receiving element
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Figure 1. (a) Geometric view of the procedure used to construct the elements of the localized
Jacobian associated with node (i, j); and (b) the sparsity pattern for the localized Jacobian

obtained by discarding all but the nearest-neighbour elasticity influences.

(i, j) in this scheme corresponds to the element number m. Here N5
m represents the five

elements associated with the difference stencil of A centred at element m, while N9
k refers

to the kth stencil element as well as its eight neighbours—such as those shaded elements that
are associated with the stencil element (i, j + 1). Following the procedure described above,
the fully populated Jacobian is approximated by a sparse localized Jacobian that has at most
21 non-zero elements in each row, which implies that the number of non-zero elements in the
localized Jacobian is a factor of 21/N smaller than that of the full Jacobian—we will refer to
this ratio as the fill factor. In Figure 1(b) the non-zero elements in the localized Jacobian are
plotted. In what follows we will denote this localized Jacobian by J3×3, because of the 3 × 3
patch comprising the nearest neighbours and the receiving pressure point itself. Because J3×3
only includes the nearest neighbour influences of C, we can expect that it will approximate
the high-frequency components of the spectrum of J relatively accurately while it will yield a
poor approximation of the low frequency components that are associated with the long range
influences in C that were discarded.

There are a number of extensions to this procedure for constructing the localized Jacobian
described above. For example, we could construct J5×5 by incorporating the next-to-nearest-
neighbour influences as well as the nearest-neighbour influences. In this case N9

k in (8) is
replaced by N25

k comprising the 5 × 5 patch of neighbours around each pressure point. We
can expect that J5×5 captures more of the low-frequency spectrum than J3×3 but has more
non-zero elements (the fill factor is increased from 21/N to 45/N ), which is more expensive
to store and involves more CPU time to implement the ILU factorization. Since J5×5 is a
direct extension of J3×3 to next-nearest-neighbours it is also regarded as a member of class I.
In order to incorporate more of the influence coefficients from the C operator while preserving
the same sparsity structure for the localized Jacobian, we consider another class (class II)
of localized Jacobians. To construct these, we include, in the approximate evaluation of the
pressures at the five pressure points (•), all the elastic influences from the 21 elements of the
5 × 5 patch of elements (excluding the influences of only the corner elements (i ± 2, j ± 2)
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of the 5 × 5 patch). In this way we obtain a localized Jacobian that has precisely the same
number of non-zero elements as J3×3, but which includes more of the elements of C in its
construction.

3.2. Spectral analysis of the localized Jacobians for a model problem

In order to analyse the efficacy of the localized Jacobian as a preconditioner, we consider a
simple 1D model problem comprising a symmetric fracture propagating in a situation of plane
strain. In this case the governing integral equation is given by

Cw = −E′

4�

∫ l(t)

−l(t)

w(s, t)

(s − x)2
ds = p(x, t) − �c(x) (9)

where l(t) is the half-length of the fracture and E′ = E/(1 − �2). Assuming piecewise constant
basis functions and collocation at element centres, we obtain the following discrete form of
the integral equation:

N∑
n=1

Cmnwn = pm − (�c)m, Cmn = − E′

4��x

[
1

(m − n)2 − 1
4

]
(10)

The applicable Reynold’s equation in the absence of leakoff is given by

�w

�t
= �

�x

(
D(w)

�p
�x

)
+ �(x)Q = Ap + �(x)Q

For the purposes of this analysis, we assume that the width is slowly varying and frozen to
some nominal value w̄, that D̄ : = D(w̄), and that the discrete form of the A operator is

Apn = D̄

�x2 (pn+1 − 2pn + pn−1) (11)

Because of the Toeplitz form of these discrete equations, the discrete Fourier transform of the
kernel function yields the eigenvalues of the combined discrete operator AC which are given
by (6).

Combining (10) and (11) the elements of the discrete matrix product AC can be expressed
in the form:

[AC]n−j,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− D̄E′

4��x3

3 · 25

(2j − 3)(2j − 1)(2j + 1)(2j + 3)
if j � 2

D̄E′

4��x3

25 · 3

5 · 3
if j = 1

− D̄E′

4��x3

25 · 3

3 · 3
if j = 0

The class I localized operators that are formed by truncating Cmn beyond L neighbours is
represented by J2L+1 = J (AC2L+1). By taking the Fourier transform of AC2L+1 we obtain
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Figure 2. (a) The clustering of the eigenvalues of the model problem due to preconditioning by the
localized Jacobians can be seen by comparing the spectra of JD−1, JJ−1

3 , and JJ−1
5 ; and (b) the spectra

of JD−1 and JJ−1
II,3 demonstrate that the class II localized Jacobains introduce significant clustering,

but are unsuitable as preconditioners as the conditioned problem is indefinite.

the following expression for the eigenvalues of the localized discrete operator:

̂

[
AC2L+1

]
k
= −25 · 3

D̄E′

4��x3

{
1

32
− 2

5 · 3
cos k�x + 2

L∑
l=2

cos kl�x

(2l − 3)(2l − 1)(2l + 1)(2l + 3)

}

= −4D̄E′

��x3
sin2

( |k|�x

2

) {
1 − 2

L∑
l=1

cos kl�x

4l2 − 1

}
(12)

For the class II operators we only present the case of the nearest-neighbour localized Jacobian.
By performing an analogous calculation to that above, the eigenvalues of the localized operator
ACII,3 of the class II localized Jacobian JII,3 can be shown to be

̂ACII,3 = −8D̄E′

��x3

{
1

3
− 2

5
cos k�x + 2

35
cos 2k�x

}

By taking the quotient of the spectra for the full Jacobian (6) and that of the localized Jacobians
J3 and J5 (12), we obtain the spectra of the preconditioned Jacobian, which are plotted in
Figure 2(a). In this figure the clustering of the eigenvalues of JJ−1

3 , and JJ−1
5 compared to

those of JD−1 can be clearly observed. In Figure 2(b) the spectra of JD−1 and JJ−1
II,3 are

compared. From this figure it is evident that preconditioning by this localized Jacobian J−1
II,3

can be expected to introduce significant clustering of the system eigenvalues, but it is unsuitable
as a preconditioner since the conditioned problem is indefinite. For this reason the class II
preconditioners are not investigated further in this paper.
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3.3. Spectral properties of the localized Jacobian for planar fractures

Based on the results of the model problem analysis, there is reason to expect that the class
I localized Jacobians Jn×n should provide efficient preconditioners. In this section we investi-
gate the spectral properties of these preconditioners for a planar hydraulic fracture comprising
N = 325 elements involving a confining stress jump situation as described in the example pre-
sented in Section 4. In Figure 3(a) and (b) we provide the results for localized Jacobians J3×3
and J5×5, respectively. In these two figures the • symbols represent log10 |eig(JJ−1

n×n−I )|, the �
symbols represent log10 |eig(J (L0U0)

−1
n×n − I )|, and the � symbols represent log10 |eig(JD−1 −

I )|. Here J−1
n×n is the inverse matrix of the localized Jacobian and represents the limit of

the advantage to be gained from some form of incomplete factorization, while D−1 is the
inverse of the diagonal matrix of J, which represents some minimal form of preconditioning.
Here (L0U0)n×n ≈ Jn×n represents the ILU(0) factorization (see References [6, 7]) with zero
fill, which has been chosen above more complete factorizations, ILU(k) with k > 0, in order
to minimize the additional memory resources required for implementation. We observe that
preconditioning by J−1

n×n achieves a substantial clustering of the eigenvalues of JJ−1
n×n around

1. Indeed, for the 3×3 case all but a few modes can be damped by a factor of 10−1 in
each iteration, while for the 5 × 5 case this is even more pronounced. For both (L0U0)

−1
3×3

and (L0U0)
−1
5×5 the ILU(0) factorizations manage to achieve substantial clustering too. For

(L0U0)
−1
3×3 only 8 modes are more than a distance 10−1 from 1, while for (L0U0)

−1
5×5 only two

modes are more than a distance of 10−1 from 1. In order to observe how this clustering trans-
lates into improved performance, in the legend of Figure 3 we have provided the iteration counts

1

0

-1

-2

-3

-4

-5

-6

1

0

-1

-2

-3

-4

-5

-6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mode number/Number of elements Mode number/Number of elements(a) (b)

Figure 3. (a) A semi-log10 plot of the absolute values of the eigenvalues of JD−1 − I,

J (L0U0)
−1
3×3 − I, and JJ−1

3×3 − I. These give a measure of the extent to which the modes can be
damped in each iterate. The legend gives iterative performance of the preconditioner combined
with a BiCGSTAB solver; and (b) a semi-log10 plot of the absolute values of the eigenvalues
of JD−1 − I, J (L0U0)

−1
5×5 − I, and JJ−1

5×5 − I. The legend gives iterative performance of the
preconditioner combined with a BiCGSTAB solver.
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when these preconditioners are used in conjunction with the BiCGSTAB algorithm (see Refer-
ences [8, 9]). The preconditioners based on Jn×n achieve a substantial reduction (by an order of
magnitude or better) in the number of iterations. As can be expected J5×5 performs better than
J3×3, but will take more memory resources and computational time to implement. There is not
a substantial loss in speedup when the incomplete ILU(0) factorizations are used instead of
the full inverse J−1

n×n. Therefore, in view of the additional memory resources (due to the filling
of the sparse Jacobian) and CPU time that would be involved, more complete factorizations
ILU(k), k > 0, are not considered necessary.

4. NUMERICAL RESULTS

In this section we demonstrate the performance of the ILU(0)-Jn×n preconditioners for one of
the test problems considered in Reference [5], in which a hydraulic fracture passes through a
confining stress jump (refer to that paper for a complete description of the material properties
and simulation parameters). This confining stress jump problem was chosen as it involves a
substantial pinched region within which all the elements are subject to a width constraint, which
is known to adversely affect the conditioning of the system. All the CPU times provided in this
section were measured on a 2 GHz Pentium IV computer under Windows 2000 Professional
using the Compaq Visual Fortran compiler version 6.1.

In Figure 4(a) we plot the cumulative CPU times spent by the BiCGSTAB algorithm with
diagonal preconditioning compared to that of the BiCGSTABILU 3 × 3 and 5 × 5 algorithms
versus the number of active elements N in the fracture. The variation in the number of active
elements is obtained by considering the solution times associated with the increasing fracture
footprints measured over the evolution the fracture. For any particular N, the data represent
the cumulative CPU time of many consecutive solutions of the linear equations (7) associated
with the implementation of Newton’s method. We observe that the preconditioning based on
the ILU(0) factorization of Jn×n leads to considerably shorter solution times in spite of the fact
that there is a significant region within which there are active width constraints. In Figure 4(b)
we plot the cumulative speedup ratio for the ILU(0)-Jn×n preconditioners. We observe that
the current algorithm delivers more than a 10-fold speedup for the relatively moderate number
of active elements N = 1600 and compares very favorably with the MG preconditioners (see
Reference [5]), which achieved a cumulative speedup of about 6. It is important to note
that the Jn×n yield dividends almost immediately (N�100), which is in contrast to the MG
preconditioners which only start to be more efficient beyond N ≈ 400 active elements.

In Table I we provide a sample of iteration counts and CPU solution times for this confining
stress jump problem. We observe that the iteration counts for the BiCGSTAB algorithm with
diagonal preconditioning exhibit a power law increase in the number of iterations (∝ N2/3),
the MG preconditioner has a relatively constant iteration count, and the Jn×n precondition-
ers exhibit a small increase in the number of iterations. Though the MG preconditioners
achieve a constant iteration count, the cost per iteration is almost double that of the localized
Jacobian preconditioners considered here. The MG preconditioners achieve a speedup ratio
of approximately 6, while the localized Jacobian preconditioners achieve speedup ratios of
close to 12.

For other cases that have been simulated, (for which the results are not presented here since
the trends are the same) the speedup factors due to the ILU(0)-Jn×n preconditioners grow
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(a) (b)

Figure 4. (a) Cumulative CPU times spent on the solution process by the BiCGSTAB (�) and the
BiCGSTABILU algorithms (� for J3×3) and (◦ for J5×5); and (b) the cumulative speedup ratio (� for

J3×3) and (◦ for J5×5) as measured by TBiCGSTAB/TBiCGSTABILU.

Table I. Comparative average iteration counts and CPU times for Jacobian inversion for a fluid driven
fracture in a medium with a 6.6–0 MPa confining stress jump using BiCGSTAB with Diagonal,

MG V (0, 2), and ILU(0)-Jn×n preconditioning.

Diagonal V (0, 2) MG (see Reference [5]) ILU(0)-J3×3 ILU(0)-J5×5

Iterations CPU (s) Iterations CPU (s) Iterations CPU (s) Iterations CPU (s)

104 34 0.02 8 0.07 7 0.01 5 <0.01
257 57 0.05 8 0.08 8 0.01 6 0.01
500 81 0.24 8 0.10 8 0.03 6 0.03
749 94 0.41 7 0.11 9 0.05 6 0.05

1001 120 1.05 8 0.16 10 0.10 7 0.09
1252 130 1.30 7 0.20 10 0.13 7 0.11
1595 148 1.92 8 0.25 11 0.16 7 0.14

steadily with the number of elements, reaching values of close to 20 when N ≈ 5000. The
number of required preconditioned iterations increases as a power law (approximately ∝ N1/3)

whereas the number of iterations for the standard BiCGSTAB algorithm increases as a power
law ∝ N2/3. Asymptotically (for N > 1000) the cost of performing a single BiCGSTAB iteration
with J3×3 preconditioning is approximately 1.15 times that of performing a standard BiCGSTAB
iteration, while the cost of performing a single BiCGSTAB iteration with J5×5 preconditioning
is approximately 1.4 times that of a standard BiCGSTAB iteration. Thus although J5×5 manages
to achieve a greater reduction in the number of iterations compared to J3×3, this gain is lost
somewhat due to the additional CPU costs per iteration.
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5. CONCLUSIONS

In this paper, we have described a class of sparse localized approximations to the Jacobian
of the coupled system of integro-partial differential equations that model the evolution of a
fluid driven fracture. Exploiting the rapid O(1/r3) decay of the Green’s function kernel of
the integral operator makes it possible to truncate the fully populated influence operator to
yield a localized approximation to the Jacobian. Such localized Jacobians proved beneficial
[5] in the MG context in which they were used to yield very effective iterative smoothers
for damping the high-frequency components of the problem. Because the approximation to the
Jacobian is localized, it is to be expected that the high-frequency modes of the full Jacobian
are well captured. However, because of the rapid decay of the kernel, we see that the localized
Jacobians also yield a great deal of information about the non-local properties of the Jacobian.

In this paper, we have investigated the spectral properties of these localized Jacobians both
analytically using Fourier Transforms for a linearized 1D model problem and directly for a
realistic hydraulic fracture problem. The model problem analysis enabled us to establish the
potential of the class I localized Jacobians as efficient preconditioners, while it was possible
to rule out the use of class II localized Jacobians. The direct numerical spectral analysis
of the planar hydraulic fracture problem enabled us to demonstrate that the basic ILU(0)

factorizations yield a sufficiently good preconditioner compared to the exact inverse that more
complete factorizations ILU(k), k > 0, with concomitant fill, are unnecessary. The concept of
using ILU factorizations of localized approximations of fully populated operators could be
used in other contexts, for example preconditioners constructed from local approximations of
singular integral operators with rapidly decaying kernels could achieve similar reductions in
computational effort.

In a numerical example involving a fracture propagating through a confining stress jump,
we have demonstrated that ILU(0) factorizations of these localized Jacobians Jn×n yield an
efficient class of preconditioners that can substantially reduce the number of iterations that
are required to solve the Jacobian system. Indeed, the break-even point for the beneficial use
of these preconditioners occurs very rapidly as N is increased—for as little as 100 elements.
The preconditioners yield 10-fold speedup of the solution process for problems with N ≈ 1500
elements, which increases to factors as high as 20 for problems with N ≈ 5000. The J5×5
preconditioners achieve lower iteration counts than the J3×3 preconditioners, but this gain is
offset by the additional cost per iteration. Unlike MG preconditioners, for which the iteration
counts remain essentially constant as the number of elements grows, the iteration counts for
the ILU(0)-Jn×n preconditioners grow as a power law ∝ N1/3 with the number of elements.
However, the cost per iteration of implementing the ILU(0)-Jn×n preconditioners is substantially
less than that of MG, which is at best a factor of 2.
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