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Abstract
Hydraulic fracturing involves the propagation of a fracture in brittle rock
by the intrusion of a high pressure viscous fluid. There is considerable
interest in identifying characteristics of these evolving underground fractures
via the passive monitoring of remote elastostatic deformations. In this
paper, we present a far-field multipole expansion procedure to identify the
harmonic moments of the fracture. The harmonic moments are related to
fundamental quantities such as fracture volume and fracture asymmetries.
We illustrate the efficacy of the multipole moment expansion technique by
inverting synthetic displacement data from a hydraulic fracture simulator in
order to identify the harmonic moments up to second order. These results
are compared to those obtained by identifying the parameters of a dislocation
model with a prescribed geometry—a procedure which is commonly used for
such problems. The multipole moment expansion technique has the following
features: it provides significantly more accurate fracture volume information;
it provides accurate estimates of first-order moments that can be used to
identify asymmetric fractures; it is possible to adapt the truncation process
to optimize the information content of a given set of measurements; it can,
in some cases, provide estimates of the higher order moments which can be
used to determine geometric attributes of the fracture. Given this last feature,
we explore the possibility of using up to second-order harmonic moments to
identify the dimensions of a simple polygonal model of the fracture footprint.
This procedure is tested by attempting to identify fracture footprints from
synthesized hydraulic fracture data.
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1. Introduction

Fluid-driven fractures are a class of tensile fractures that propagate in a brittle material as a
result of the internal pressurization of the fracture by the injection of a viscous fluid. The
material is typically subjected to pre-existing confining stresses—so that the fracture develops
in the plane of least resistance normal to the minimum principal stress direction. Although such
fractures occur naturally through magma-driven flows in the upper Earth’s crust, hydraulic
fracturing is frequently used to increase oil and gas reservoir permeability in order to enhance
production [14].

In such hydraulic fracturing treatments, other than the measurement of the volume and
pressure of the injected fluid, very little information about the extent of the evolving fracture
surface is readily available. Such information is very important to enable engineers to avoid
fracture breakout into environmentally sensitive regions or the loss of hydrocarbons. In order
to improve the design of these fractures, considerable effort has been devoted to modelling the
forward problem. This effort has ranged from analytic solutions [11] for simple geometries to
sophisticated numerical models [1, 9, 33, 34] that solve the system of nonlinear integro-partial
differential equations defined on domains with moving boundaries. The governing equations
involve an integral equation expressing the force equilibrium between the fluid pressure and
the elastic response of the rock represented by the crack width, the nonlinear lubrication
equation that governs the fluid flow within the fracture cavity by enforcing the conservation of
fluid volume, and a fracture propagation condition in which the fracture perimeter is located so
that the stress intensity equals the local rock fracture toughness. Recent asymptotic analysis
[11, 12, 20, 21, 31] has demonstrated that these coupled equations have a complex multi-scale
structure in which competing physical processes manifest at different length and time scales.
Simplifying assumptions, such as a state of plane strain, required to derive these asymptotic
solutions makes inversion using these asymptotic solutions too restrictive to yield useful
information, while the formidable computational task of inversion using complex forward
numerical models precludes real-time prediction of the fracture evolution.

In order to gain feedback about the evolving fracture there is, therefore, considerable
interest in the passive monitoring of remote elastostatic deformations in order to identify
characteristics of evolving fractures [16]. Such inverse problems are related to those that
occur in non-destructive evaluation (NDE) [5, 6] in which quasi-static boundary loads are
applied to an elastic body and the corresponding displacements are measured to detect cracks.
For the passive monitoring problem the boundary loading on the crack is not known, while
the small number of measurements that can feasibly be taken precludes the use of methods
recently proposed for the NDE problem, such as the reciprocity gap functional [2, 3] or the
method of topological derivatives [18].

The inverse problem is related to the elastic integral equation of the hydraulic fracturing
problem, in which the fluid pressure is in force equilibrium with the crack width. The
inverse problem aims to determine the crack width and geometry from remote displacement
measurements elsewhere in the elastic medium. Consistent with St Venant’s principle, the
elasticity operator rapidly smoothes the details of the crack width and geometry with distance.
Indeed, in [28] it is demonstrated that only the fracture volume and orientation can be identified
if �/r < 2/3, where � is the characteristic length of the fracture and r is the mean measurement
distance to the centre of the fracture. As an illustration of the loss of geometric information, we
observe that the deformation induced at remote points by a finite fracture is indistinguishable
from that produced by an infinitesimal displacement discontinuity (DD) whose density equals
the fracture volume. This severe non-uniqueness when using far-field observations has
also been mentioned, although not fully explained, in the case of fracture detection from
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boundary measurements [17, 25, 26]. The solution of a similar linear inverse problem has
also been considered by Hori [24] using a truncated spectral decomposition of the underlying
Green’s function with specially constructed eigenfunctions for measurement points that lie on
a surface. The truncation in Hori’s technique is based on the spectral content of the signal,
while the technique we propose involves a truncation of unresolved moments in the far-field
deformations. The spectral technique, which is computationally intensive, is not appropriate
in the petroleum context in which real-time inversion is the ultimate objective and for which
the combination of surface and interior measurements need to be synthesized.

The harmonic moment decomposition provides a class of far-field approximations in
which arbitrary fracture geometries and boundary conditions can be represented. Moreover,
the increasing hierarchy of moments corresponds to a sequence of multipoles of increasing
order, in which deformation field due to the higher order multipoles decay more rapidly with
distance. Thus the multipole expansion provides a natural separation of the contributions of
each of the harmonic moments according to their radius of influence. Therefore, for a given
set of measurements with a known signal-to-noise ratio, it is possible to determine the order
of moments that can feasibly be identified. The advantage of this separation of moments is
illustrated in the numerical experiments in which significantly more accurate fracture volume
estimates are obtained compared to other inversion techniques that lump all the moment
contributions. Multipole expansions [29, 35, 43] have also been used to great effect to yield
fast ways to evaluate the crack boundary integral operator. Although the fast multipole method
can be used to substantially accelerate the computations of our moment expansion method,
we restrict our discussion to the accuracy of the moment expansion technique and not its most
efficient implementation.

In section 2, we describe the inverse problem, introduce the moment expansion and
use a simple example to illustrate the effect of truncating the expansion at different �/r

ratios. In section 3, we use deformation time-series data obtained from a hydraulic fracture
simulator for complex fracture geometries to explore the efficacy of the moment expansion
method. Finally in section 4, we investigate the possibility of reconstructing the fracture
shape from the knowledge of some of its harmonic moments. A simplified polygonal model
for the fracture geometry with a constant opening is tested in order to simplify the problem.
The examples considered are taken from situations typically encountered in the mapping of
hydraulic fractures in the oil and gas industry.

2. The forward and inverse problems

2.1. The inverse problem

The hydraulic fractures we consider propagate primarily as mode I fractures corresponding
to normal opening, while the elastic deformation measurements are sufficiently remote from
the fracture for a homogenous elastic medium with an effective elastic modulus to be defined.
We therefore consider deformations due to the opening of a planar fracture in a semi-infinite,
homogeneous, isotropic, linear elastic medium. Since the location of the source of the fracture
is known to be at the well-bore perforation, we assume that we know the location of the
centre of the fracture. Hydraulic fractures typically take the line of least resistance and
propagate in a plane that is perpendicular to the direction of the minimum principal in situ
compressive stress. We therefore assume that the orientation of the fracture plane is known.
We assume that displacements induced by the hydraulic fracture are monitored at points off
the fracture surface [16]. Typical deformation data from tiltmeter measurements are located
in monitoring wells adjacent to the fracture (see figure 1) or on the Earth’s surface. In fact,
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Figure 1. Typical location of downhole measurements in a monitoring well (dots) with respect to
the fracture plane.

tiltmeters measure the horizontal components of the curl of the relative displacement vector
that is induced by the presence of the fracture.

For ease of presentation we assume that the measurements comprise the displacements
ui(x) induced by a planar fracture S having a width distribution w. Such displacements are
relative to the initial uncracked configuration. The governing integral equation is [23, 32]

ui(x) =
∫

S

Ki(x, x′)w(x′) dx′ (1)

where Ki(x, x′) denotes the fundamental displacement field at x due to a unit displacement
discontinuity located at x′ within the planar region S. As stated above we have assumed that
we know the orientation of the minimum principle stress so that the orientation of the fracture
plane is known and that the measurement points x are located outside the fracture domain S
so that the integrand in (1) is regular.

The inverse problem is described by the Fredholm integral equation of the first kind
(1) defined on an unknown planar region S—a typically ill-posed problem. As mentioned
in the introduction, the ellipticity of the 3D elasticity operator results in a rapid smoothing
of fine-scale features of the fracture with distance. Indeed, if �/r < 2/3 only the fracture
volume and orientation can be reliably inverted, while for �/r � 1 the displacement field
due to an infinitesimal displacement discontinuity having a density equal to the fracture
volume, is indistinguishable from that of the fracture itself. The loss of uniqueness for
remote measurements is thus apparent. Our main objective is to devise a robust procedure
to determine fundamental characteristics of the fracture geometry S and to investigate the
effect of the location of the measurements relative to the fracture on the resolution of these
characteristics.

Several approaches have been used to solve such an inverse problem. The fracture plane is
often discretized to reduce equation (1) to a system of linear equations of the form u = A · w
subject to bound constraints (w � 0) [7, 8, 13, 25, 39, 41]. When the measurements are
sampled far from the crack, severe non-uniqueness is characterized by a singular matrix—
sometimes having only one non-vanishing eigenvalue. This approach combined with a proper
regularization scheme provides robust results only when the measurements are close to the
fracture. In an alternative approach, the crack shape is parametrized and the inverse problem
is solved as a nonlinear optimization problem: either using the shape sensitivity of the crack
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[4] or assuming a simple a priori fracture loading and geometry (e.g., circular, rectangular,
elliptical, etc) and the parameters of the chosen model are identified [40]. The inversion
of the displacements using a priori chosen fracture models has the advantage of simplicity.
However, the chosen model may enforce an inappropriate boundary condition or the incorrect
geometry, while still partially fitting the measured data, which can lead to aphysical results
(see [27] for a discussion).

2.2. Moment decomposition

In practice, the location of the measurements is typically remote from the fracture which results
in a loss of information. We therefore consider the possibility of solving an approximate
version of the inverse problem in which we exploit the far-field asymptotic expansion of
Green’s function in the integral equation (1) in order to yield a series expansion in the
harmonic moments of the problem. This far-field asymptotic expansion is appropriate for
remote measurements and allows considerable flexibility in that it is possible to truncate the
series in order to extract most of the available information from the data measured at a given
location.

In order to derive the far-field moment expansion, let x0 be a reference point located in
the fracture plane (i.e., z0 = 0) and rewrite the kernel Ki(x′ − x) in (1) as Ki(x′ − x0 +
x0 − x). Using a Taylor expansion of the kernel function (assuming ‖x0 − x‖ � ‖x0 − x′‖ or
equivalently r � �) we obtain

ui(x) =
∞∑

k=0

k∑
m=0

1

(k − m)!m!

∂kKi(x0 − x)

∂xk−m∂ym

∫
S

(x ′ − x0)
k−m(y ′ − y0)

mw(x ′, y ′) dx ′ dy ′. (2)

For simplicity, these displacements are expressed in an orthonormal system of coordinates
(ex, ey, ez) with the basis vectors (ex, ey) located in the fracture plane (see figure 1). The
expansion (2) can be truncated at order k to furnish a simple forward model. The unknowns
are then the weights of the far-field series (2) also known as the harmonic moments of the
fracture denoted by Mxk−mym and defined as

Mxk−mym =
∫

S

(x ′ − x0)
k−m(y ′ − y0)

mw(x ′, y ′) dx ′ dy ′ (3)

while the kernel derivatives ∂kKi(x0 − x)/∂xk−m∂ym represent the ith displacement
components due to the kth-order multipoles. The zeroth-order moment M0 = ∫

S
w(x′) dx′

corresponds to the fracture volume. The higher order moments are related to more and more
complex characteristics of the fracture shape (asymmetry, larger extension along one axis etc).
It is important to note that all the odd-order moments (m, k − m = 1, 3, 5, . . .) vanish for
a symmetric fracture (in both S and w) if the reference point x0 corresponds to the fracture
centre xc.

The expansion (2) requires only the knowledge of the derivatives of the fundamental
kernel Ki . In the case of full and half-space isotropic elastic media, these expressions can
be obtained in analytical form. Inverting displacements using such a truncated expansion
has several advantages: (i) the unknowns of the inverse problem are the harmonic moments
of the fracture which provide fundamental characteristics of its shape and loading; (ii) it is
flexible in the sense that more terms can be added if the measurements become closer to the
fracture, enabling the resolution of more harmonic moments of the fracture; (iii) there is no
a priori postulate on either the shape of the fracture or its loading. We only assume that the
measurements are performed at points that are remote from the fracture.
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Figure 2. Forward example configuration, a rectangular displacement discontinuity with constant
opening in an infinite medium.

Far and near field. We now derive a bound for the relative error in terms of the dimensionless
ratio �/r . Firstly consider the remainder term in the Taylor expansion given as follows

Ek = 1

(k + 1)!

k+1∑
m=0

(∏k+1
j=k+2−m j

m!

)
∂k+1K

∂xk+1−m∂ym

∫
S

(x ′ − x0)
k+1−m(y ′ − y0)

mw(x ′, y ′) dx ′ dy ′

We introduce the fracture length scale � which is such that |x ′ − x0| < � and |y ′ − y0| < � for
all (x ′, y ′) ∈ S. In addition, since the displacement kernel decays like 1

r2 [30], we introduce

the following notation
∑k+1

m=0

(∏k+1
j=k+2−m j

m!

)
∂k+1K

∂xk+1−m∂ym < Ck

rk+1+2 to obtain the following estimate
for Ek

Ek <
Ck+1

(k + 1)!

(
�

r

)k+1
M0

r2
.

Now if we specify a relative error tolerance of εk with respect to the zeroth order

Ek

M0
r2

<
Ck

(k + 1)!

(
�

r

)k+1

< εk,

we obtain the following restriction on the dimensionless ratio �/r for a given truncation
order k:

�

r
<

(
εk(k + 1)!

Ck

) 1
k+1

= αk. (4)

This monotonically increasing sequence {αk}, for which αk → ∞ as k → ∞, defines
the domain of validity of each successive order of the moment expansion. For example, it has
been established [28] that for a prescribed maximum relative error of approximately 4–5%
the validity bound for the zeroth-order approximation is α0 ≈ 0.8 [28]. When the observation
point is located closer to the fracture, the effect of the shape and loading becomes a significant
component in the displacement field, and more terms in the series (2) are needed to reproduce
the recorded displacement correctly.

We illustrate the effect of truncating the expansion (2) at different orders by a simple
example. As our model crack, we assume a constant rectangular displacement discontinuity
(or equivalently a rectangular crack with a constant opening) in an infinite elastic medium
[36]. The configuration is sketched in figure 2. For different ratios �/r , we compare the
z displacement component induced by this displacement discontinuity (DD) to those of the
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Figure 3. Evolution of the z component of the displacement with the dimensionless distance �/r

(left); and relative error of the moment approximations compared to the correct solution comprising
a unit rectangular displacement discontinuity (right).

zeroth-, second- and fourth-order moment expansions. In figure 3 (left), we compare the
exact DD displacements to the displacements calculated using the zeroth-order, the second-
order (k = 4) and the fourth-order moment expansions (k = 8). In figure 3 (right), we
plot the corresponding relative errors. It can be seen that the higher order expansions have
stronger singularities that dominate closer to the fracture �/r � 1. Below the far-field limit
�/r < 0.8 = α0, the zeroth-order expansion reproduces the displacement with an error of
less than 4%. For the same tolerance of 4%, the second-order expansion is still valid for
�/r ≈ 1.75 = α2 while the fourth-order expansion is valid for �/r ≈ 2.2 = α4.

3. Synthetic examples

In this section, we investigate the inversion of displacements induced by a pressurized fracture
of known orientation using the moment decomposition presented in the previous section.
The displacement data for a sequence of complex fracture geometries are generated using
the numerical hydraulic fracturing (HF) simulator described in [34, 37]. Since the synthetic
displacements are obtained numerically, some inherent noise is introduced due to truncation
and round-off errors; however, no additional noise is added. The effect of noisy data has been
studied [27] for the same class of problem but restricted to a first-order moment decomposition.
Since the effect of noise on the method presented here does not produce significantly different
results from those presented in [27], we do not consider the influence of noise in the discussion
that follows. The ‘measurements’ are sampled along a vertical array of sensors (see figure 1),
and we assume that only the y component of the displacement field is recorded. The
displacement data are simulated at different stages of the growth of the hydraulic fracture,
which therefore produces both far-field and near-field conditions as the ratio �/r increases
with the growth of the fracture.

Different orders of expansion (2) and assumptions are investigated as forward models:
(i) a zeroth-order expansion; (ii) a second-order expansion with zero first-order moments
Mx ; (iii) a complete second-order expansion; (iv) and a fourth-order decomposition with zero
first- and third-order moments. The injection point is always taken as the reference point
x0. The different hypotheses on the value of the first-order moment Mx (zero or not) directly
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Figure 4. Symmetric height growth: fracture footprint (opening profile).

corresponds to different assumptions on the symmetry of the fracture. Since finite dislocations
of a prescribed shape and density variation are frequently used in practice as inversion models
[40, 42], we also consider the identification of the parameters for a finite rectangular constant
displacement discontinuity (DD) for comparison.

The unknowns of the inverse problem are the harmonic moments M of the decomposition
used. The solution of the inverse problem consists in minimizing the functional

J (M) = 1
2‖ud − u(M)‖2

2

with Mxnym � 0, for n and m odds
(5)

J (M) is the �2 distance between the measurements ud and the predictions u(M). The
predictions are obtained by the truncation of the moment decomposition (2) at a given order.
Due to the linearity of the decomposition (2) with respect to the moments, the problem is
in fact a simple linear least-square fit with bound constraints. The positive constraints on
the odd-order moments (M0,Mxx,Mxxyy etc) are related to the requirement of a positive
fracture aperture w (i.e., no inter-penetration of the crack surfaces is permitted). The moment
decomposition model uses analytic expressions for the different partial derivatives of the half-
space point force solution [30, 32] obtained via Mathematica. Such a forward model is
completely independent of the numerical HF simulator used to generate the examples data.
We have also deliberately omitted any regularization terms in the minimization of (5) in order
to focus the following discussion on the accuracy of the moment decomposition.

3.1. A hydraulic fracture with symmetric height growth

The first synthetic example investigates the case of a hydraulic fracture growing primarily
within a horizontal layer bounded above and below by layers subjected to slightly higher
confining stresses. As the fracture progresses it is not restricted to the middle layer with the



Moment decomposition for imaging hydraulic fractures 1649

0.5 1.0 1.5 2.0 2.5 3.0

10

30

50

70

90
True

Rect. DD
4th order
2nd order
0 order

Mo

l/r

0

10

20

30

40

50

60

0.5 1.0 1.5 2.0 2.5 3.0

Rect. DD
4th order
2nd order
0 order

R
el

at
iv

e
er

ro
r

on
M

o
(i

n
%

)

l/r

Figure 5. Symmetric height growth: fracture volume (zeroth-order moment M0) of a symmetric
PKN fracture with height growth estimated for different values of the distance ratio �/r using
a finite rectangular displacement discontinuity model, and moment decompositions of different
orders (estimated volume on the left, relative error on the right).

lower confining stress, but, due to the moderate stress contrast, the fracture is able to penetrate
the upper and lower neighbouring layers symmetrically (see figure 4). The height of the low
confinement layer is 15 m while the maximum fracture height at the well-bore is approximately
65 m. The fracture half-length (dimension along the x axis) reaches a maximum of 550 m.

In figure 5, we plot the estimated fracture volumes (i.e., the zeroth-order moment M0)
obtained using the different orders of moments. The results are all displayed for different
values of the mean ratio �/r which is calculated by averaging over the spatially distributed
measurement points that remain fixed in space throughout the simulation. The variation in
�/r is due to the increase in the characteristic dimension of the fracture as the fracture evolves.
In this case, we take the characteristic length � to be equal to (�x + �y)/2, where �x and �y

are the horizontal and vertical fracture dimensions. The zeroth-, second- and fourth-order
expansions correctly estimate (within 10%) the fracture volume up to their corresponding
limit of validity (α0 ≈ 0.8, α2 ≈ 1.75 and α4 ≈ 2, respectively).

From figure 5, it can be seen that the fracture volume obtained using a finite rectangular
DD is essentially equivalent to the result obtained using the zeroth-order moment expansion
and is also valid for �/r � 1. We observe that this finite displacement discontinuity model
is equivalent to an infinite series of moments in which the higher order terms are different
from those of the actual hydraulic fracture in that the width is assumed to be constant as
opposed to variable and the fracture footprint is assumed to be rectangular as opposed to
arbitrarily shaped. The volume estimates for the constant displacement discontinuity model
are inaccurate for higher �/r ratios because there is a mismatch in the higher order terms
of the constant displacement discontinuity moment expansion and the moment expansion for
the actual fracture. As �/r is increased, this discrepancy in the higher order terms starts
to dominate the zeroth-order term. This clearly illustrates the limitation of such geometric
models since they can only hope to capture the zeroth-order moment of the true solution.

An inversion model based on estimating the terms of the moment expansion (2) does not
suffer from this limitation, since the addition of higher order terms can be used to remedy the
problem of slow convergence associated with higher �/r ratios. Indeed, the improvement of
the estimate for M0 seen in figure 5, when the second- and then fourth-order moments are



1650 B Lecampion and A Peirce

0

20

40

60

80

100
Mo

Mxx
Myy

R
el

at
iv

e
E

rr
or

in
%

0.5 1.0 2.01.5 2.5 3.0

Complete 2nd order Decomposition

l /r

0

R
el

at
iv

e
E

rr
or

in
%

20

40

60

80

100

Mxx
Myy
Mo

0.5 1.0 1.5 2.0 2.5 3.0

2nd order Decomposition (Mx=0)

l/r

Myy

60

80

100

40

20

0
0.5 1.0 1.5 2.0 2.5 3.0

R
el

at
iv

e
E

rr
or

in
%

Mxx

Mo

Mxxxx

4th order Decomposition 

l/r

Figure 6. Symmetric height growth: evolution of the relative error on nonzero moments with the
distance ratio �/r for different orders of decomposition.

included, clearly demonstrates the benefit of correctly identifying the higher order moments
so that their contribution is not spuriously added to the zeroth-order moment. We also note
from figure 5 that the second-order approximations with different assumptions on the first-
order moments yield essentially the same estimate of the zeroth-order moment. Thus, in the
estimation of the zeroth-order moment, the important issue is to separate the contributions of
the zeroth-order moment from the higher order ones, rather than to identify the detailed split
of the remaining contribution between the higher order terms.

In figure 6, the estimates of the nonzero second-order moments obtained from the different
expansions are compared to the correct values computed from the synthetic data. More
precisely, we plot the relative errors of the estimated moments, while table 1 contains actual
numerical values for the second-order moments Mxx and Myy . The second-order moment
estimates deteriorate rapidly as �/r increases, particularly for values above �/r ≈ 1.5
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Table 1. Symmetric height growth: comparisons of the estimated second-order moments Mxx and
Myy obtained using the second- and fourth-order decompositions for different ratios �y/�x .

Mxx Myy

�/r �y/�x True Second (Mx = 0) Fourth True Second (Mx = 0) Fourth

0.557 0.182 3.65 × 103 3.47 × 103 3.72 × 103 6.04 × 101 7.182 × 101 6.42 × 101

0.720 0.130 1.22 × 104 1.06 × 104 1.20 × 104 1.04 × 102 1.467 × 102 8.38 × 101

0.882 0.101 3.23 × 104 2.59 × 104 3.12 × 104 1.66 × 102 2.786 × 102 5.44 × 101

1.07 0.101 7.05 × 104 5.15 × 104 6.73 × 104 2.597 × 102 4.310 × 102 7.302 × 10−3

1.32 0.0799 1.41 × 105 9.06 × 104 1.31 × 105 3.73 × 102 4.46 × 102 6.51 × 10−3

1.48 0.0700 2.54 × 105 1.43 × 105 2.32 × 105 5.14 × 102 1.87 × 102 7.48 × 10−3

1.68 0.0735 3.95 × 105 1.88 × 105 3.27 × 105 6.84 × 102 5.23 × 10−8 7.053 × 10−3

1.84 0.0661 5.73 × 105 2.19 × 105 3.89 × 105 8.77 × 102 3.91 × 10−8 6.844 × 10−3

(see figure 6). When the complete second-order approximation is used (without any
a priori assumption on the first-order moments), it does not recover the second-order moments
accurately even for low values �/r . The first-order moments are not zero (whereas they should
be for this symmetric case) which affects the accuracy of the estimated second-order moments.
When the first moment Mx is forced to be zero the estimate improves—at least for low values
of �/r . The results are even better when the fourth-order approximation is used, again only
for �/r � 1.5.

It is also clear that, independent of the order of the decomposition, Mxx is estimated more
accurately than Myy (at least for values of �/r � 1), which is related to a better resolution of
the fracture length than the fracture height. This is consistent with a fracture extending largely
in the x direction (for a maximum of 1100 m for the total fracture length) but remaining narrow
in the y direction (see figure 4). From table 1, we see that as soon as the ratio �y/�x falls
below 0.1, the estimates of Myy become very poor. The resolution of second-order moments
is also closely linked to the aspect ratio of the fracture �y/�x . For a fracture with such an
extreme aspect ratio the x second-order moment Mxx is two orders of magnitude larger than
Myy . Although, the absolute error in the estimation of these disparate moments may be the
same, the relative errors render the estimation of the smaller moment to be meaningless.

Repetitive inversion. It is interesting to note that the fit of the displacement data obtained
with the different models for a near-field case (�/r = 2.46) all have the same minimum
residual errors. For such large values of �/r , all volume estimates obtained are inaccurate (see
figure 5), while the predicted displacements are nearly indistinguishable from the measured
data. This clearly illustrates the non-uniqueness that is typical of such ill-conditioned inverse
problems. Moreover, in practical situations, we do not know the fracture length-scale � so
that it is impossible to know if a particular approximation is valid or not. The use of several
moment decompositions to invert the data can overcome this problem. Indeed, for a given
data set, the analysis can be performed repetitively using the zeroth-, second-, etc, up to
kth-order expansions. The estimates of the harmonic moments obtained from these different
approximations can then be compared in order to obtain an estimate of �/r . For example, if the
zeroth-order moment obtained via the second- and fourth-order expansions are similar to, but
different from, the estimate obtained using the zeroth-order approximation, it indicates that the
zeroth-order approximation is no longer valid: i.e., �/r � 1. This procedure can be repeated
for the higher order moments (Mx,My,Mxx, . . .) using the higher order approximations in
order to refine the bound on �/r .
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Figure 7. Asymmetric height growth: estimates of My with respect to �/r .

3.2. A hydraulic fracture with asymmetric height growth

We now consider a more complex asymmetric fracture geometry. The hydraulic fracture is
assumed to grow primarily within a horizontal layer bounded above by a layer with a slightly
higher confining stress and below by a layer with a significantly higher confining stress. As
the fracture progresses it breaks into the upper layer while it is restricted from breaking into
the lower layer by the high confinement. Similar to the previous case, the fracture volume is
estimated correctly using the different orders of moment decomposition up to their limit of
validity. The conclusions regarding the zeroth-order and second-order moment estimates are
similar to those for the symmetric case. It is interesting to compare the estimated first-order
moment My with the correct value (see figure 7). The development of the vertical asymmetry
of the fracture is reflected in the deviation of the fracture centre from the injection point, so that
the value of My increases for higher �/r or equivalently for larger fractures. The first-order
moment My is identified accurately even for higher values of �/r (see figure 7), independent
of the assumptions made on the other first-order moment Mx . The fourth-order approximation
gives even better results. The accurate estimation of My is a significant result as it indicates
that asymmetry can be quantitatively detected from field measurements.

4. Inversion of shape from moments

It is possible to formulate a second class of inverse problem which involves determining the
shape of the fracture from the values of a number of the harmonic moments. This classic
inverse problem has received a lot of attention (see for example [22] and references therein).
In our case, only a small number of moments can be determined, which makes it hard to apply
some of the available algorithms. As a result we adopt an approach which makes it possible
to use a lot of a priori information about the fracture geometry, which serves to constrain the
problem and limit the number of degrees of freedom.

4.1. Polygonal shape

Hydraulic fractures typically found in oil and gas applications are mainly contained in one
sedimentary layer (the target layer) but with possible ‘break-out regions’ into one or both
of the neighbouring layers above and below the target layer (see figure 4). We therefore
propose a simple polygonal shape as a geometric model for the fracture footprint and assume
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Figure 8. A polygonal geometric model of a fracture footprint with break-out typically encountered
in the oil and gas industry.

a constant width for the fracture opening—although this latter approximation may appear
somewhat extreme. The middle part of our proposed model of the fracture footprint comprises
a rectangle of height Hl , which corresponds to the target layer. We allow for the possibility of
asymmetric fracture growth in the horizontal and the vertical directions. The top and bottom
parts of the fracture footprint model are approximated by triangles (see figure 8). Assuming
a constant fracture opening w̄, analytical expressions for the zeroth-, first-, and second-order
moments of such polygonal models can be obtained in terms of the geometric parameters:
Hl, L+, L−,H+,H− and w̄. For example, M

p

0 = w̄
∫
S

dx ′ dy ′ = w̄
2 (L+ + L−)(H+ + H− +

2Hl), etc. Naturally, other parametrizations of the geometry and the functional variation are
possible, e.g., we might assume a fracture opening in the form of a bubble function with a
square root tip behaviour. However, asymptotic analysis [11, 12, 20, 21, 31] has shown that
the tip behaviour is multi-scale, in which a different power laws might be active along different
parts of the periphery of the fracture. This will be difficult to parametrize with a few degrees
of freedom. In addition, imposing an incorrect power law, which is more singular at the tip,
might lead to more errors than the constant fracture opening assumption which will identify
the average width level.

Using this approximate fracture shape and having some estimate of the harmonic moments,
we are able to formulate a nonlinear regression problem in which the dimensions of the
polygonal fracture model are the unknowns. We minimize the error between the harmonic
moments of the fracture used to generate the synthetic data M and those of the polygonal
model Mp. More specifically, a Bayesian inversion procedure is used. Weak priors (i.e.,
flat prior probability density functions) are prescribed in order to reflect our ignorance of the
fracture dimensions. An analysis of the curvature of the posterior probability density function
makes it possible to estimate the posterior covariance matrix and therefore the correlation
coefficients between the different parameters estimated (see [10] for details of this classical
approximation in Bayesian inversion). Bound constraints are also prescribed on the mean
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opening: 0 < w̄ < 10 mm. The minimization is performed using the so-called differential
evolution algorithm, a particular genetic algorithm described in [38].

It is also possible to reformulate the inversion problem to obtain the assumed shape
parameters directly from the displacement data, rather than our two-step approach in which the
moments are determined first and then the shape parameters are identified from these moments.
This alternative approach, should yield an equivalent sequence of moments, since the moments
are intrinsic quantities which should not depend on the parametrization used. However, we
have chosen to identify the moments directly since they are fundamental quantities which
contain important practical information. For example, comparing the identified fracture
volume, which is given directly by the zeroth-order moment, to the amount of fluid pumped
into the fracture enables the field engineer to determine the so-called leak-off associated with
the fracture. In addition, first moment provides useful information about the initiation of
asymmetry—which could be used in field treatments to identify possible break-out.

4.2. Results

We investigate the hydraulic fracture with asymmetric height growth considered in the synthetic
example of section 3.2. Firstly, in an attempt to test the method, we assume that we have
accurate harmonic moments up to second order. Secondly, the effect of noisy data is also
investigated by adding a Gaussian noise component to the accurate moments with a variance
equal to 5% of the actual value. Finally, the same inversion procedure is repeated using
the moments identified by inverting the displacement data as discussed in section 3. This
procedure is repeated for different �/r ratios for the asymmetric height growth situation.
For the results that we present, the ratio �/r is used to characterize the effect of truncating
the moment expansion when determining the moments from the inversion of the synthetic
displacement data. This ratio is not relevant for moments calculated directly (or those with 5%
noise) from the ‘true’ fracture footprint and width used to generate the synthetic displacement
data since there are no measurement distances r for these cases.

Figure 9 displays, for different �/r ratios, the ‘true’ fracture footprint used to generate the
synthetic data and the different estimated polygons. The ‘true’ fracture footprint is represented
by coding the computational nodes having a positive opening with a black dot. The shape
obtained with the perfect moments or the moments with synthetic noise are consistent with the
actual footprint, although they do not fully capture the height growth as the fracture propagates.
This can be partly explained by the fact that the top of the ‘true’ fracture footprint is not really
a triangular shape: the part of the fracture on the top layer is more localized close to the well,
while the chosen polygonal shape tends to spread the area of the upper part over the entire
fracture length (see figure 4). The fracture symmetry with respect to the y axis is, on the
other hand, well captured by the polygon shape and the estimates of the fracture half-length
are relatively good. As can be expected, the results obtained from the moments inverted from
displacement data using the different orders of decomposition are less accurate, especially as
the ratio �/r increases. The asymmetric height growth is not well identified and the half-length
is underestimated. It is not surprising that for a ratio �/r above 1.5 the results are poor as this
corresponds to the point where the harmonic moments are not well resolved by the inversion
of displacement data.

Figure 10 compares the average aperture for the synthetic fracture with the different
estimates of the constant aperture w̄. The aperture estimated from the inverted moments has
a tendency to lock on to the upper bound constraint early in the evolution of the fracture (see
figure 10) whereas the corresponding fracture half-length is under-estimated (see figure 9). It
is extremely important to point out that some values of the polygonal dimensions estimated
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Figure 9. Asymmetric height growth: fracture foot-print and corresponding estimated polygon
shape obtained from the perfect moment data, data with 5% noise and using the harmonic moments
estimated from displacement data using different orders of decomposition.

from the harmonic moments are highly correlated. In particular, both the fracture half-length
and height are highly correlated to the fracture opening, especially for the case of the inverted
moments. As a result, the over-estimation of the fracture opening is counter-balanced by an
under-estimation of the polygonal dimensions (lower fracture half-length and height). Such
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Figure 10. Asymmetric height growth: different estimates of fracture width of the polygon model
as well as the true width at the well-bore (maximum) and the true mean value across the fracture.

non-uniqueness in the problem can be ameliorated: by exploiting the moment expansion to
achieve a more judicious placement of the sensing array in order to obtain more accurate
harmonic moments; or by including a priori information (e.g. the target layer height Hl can be
estimated from well logs or an ansatz for the functional form of the aperture distribution in the
y direction can be made assuming a state of plane strain prevails for vertical cross-sections).

5. Conclusions

The loss of resolution with distance, that is intrinsic to the elliptic elasticity PDE, renders
the use of parametrized crack models difficult: either the data are sampled too far to contain
any information on the crack shape besides the volume, while, if the data are sampled too
close to the fracture, an incorrect model can infer unrealistic results while still fitting the
data. The multipole harmonic moment decomposition presented in this paper provides more
flexibility: no ad hoc assumptions on the loading and geometry are made and the order of
the decomposition can be adapted depending on the measurement location. Because the
multipole expansion approach is able to separate the contributions of each of the harmonic
moments according to their radius of influence, it provides significantly improved estimation
of the fracture volume from measured data over a far larger range of �/r ratios than any finite
fracture model. Moreover, accurate estimates of the first-order moments can be used to detect
fracture height or fracture length asymmetry—an important feature in oil and gas applications
where asymmetry is symptomatic of breakout of the fracture into another sedimentary layer.

Repetitive inversion with different orders of decomposition can provide an indirect way
to estimate the fracture length-scale if the results for the harmonic moments differ. Different
assumptions on the fracture symmetries can be also incorporated in the decomposition by
assuming that some of the odd-order moments are zero. Ideally, a model selection procedure
can also be applied in order to test these different assumptions and to detect the most probable
decomposition for a particular configuration.

The inversion of shape from moments is an active field of research. In this paper, we have
considerably simplified the problem to the identification of the dimensions of a polygonal
model. Our approach can easily be enriched by including a priori information and by using
more sophisticated algorithms. However, this ‘second phase’ of the analysis will only give
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accurate results if more precise values of the higher harmonic moments can be obtained from
the measured deformation data. The more flexible harmonic moment expansion may be used
to obtain more accurate moment estimates via optimal placement of the sensing array. This
might, however, be difficult to achieve in practice.

The framework developed here for the mapping of cracks is closely related to the theory
of eigenstrain [15, 32]. It is directly applicable to the mapping of a-seismic faults, and can
easily be extended to the detection of eigenstrain inclusions in a homogeneous medium—a
problem of particular interest in the identification of residual stresses [19]. Applications to
other problems involving elliptic operators is also possible.
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