Lecture 31: Sturm-Liouville Boundary Value Problems

(Compiled 23 March 2012)

In this lecture we abstract the eigenvalue problems that we have found so useful thus far for solving the PDEs to a general class of boundary value problems that share a common set of properties. The so-called $Sturm-Liouville\ Problems$ define a class of eigenvalue problems which include many of the previous problems as special cases. The S-L Problem helps to identify those assumptions that are needed to define an eigenvalue problems with the properties that we require.

Key Concepts: Eigenvalue Problems, Sturm-Liouville Boundary Value Problems; Robin Boundary conditions.

Reference Section: Boyce and Di Prima Section 11.1 and 11.2

31 Solving the heat equation with Robin BC

31.1 Expansion in Robin Eigenfunctions

Assume that we can expand f(x) in terms of $\phi_n(x)$:

$$f(x) = \sum_{n=1}^{\infty} c_n \phi_n(x)$$
(31.1)

$$\int_{0}^{1} f(x)\sin(\mu_{n}x) dx = c_{n} \int_{0}^{1} \left[\phi_{n}(x)\right]^{2} dx$$
(31.2)

$$= c_n \frac{1}{\cdot 2} \left[1 + \cos^2 \mu_n \right] \tag{31.3}$$

Therefore

$$c_n = \frac{2}{[1 + \cos^2 \mu_n]} \int_0^1 f(x) \sin(\mu_n x) dx.$$
 (31.4)

If f(x) = x then

$$\int_{0}^{1} x \sin(\mu_{n} x) dx = -\frac{\cos(\mu_{n} x)}{\mu_{n}} - x \Big|_{0}^{1} + \frac{1}{\mu_{n}} \int_{0}^{1} \cos \mu_{n} x dx$$

$$= -\frac{\cos(\mu_{n})}{\mu_{n}} + \frac{\sin \mu_{n} x}{\mu_{n}^{2}} \Big|_{0}^{1}$$
(31.5)

but $-\mu_n \cos \mu_n = \sin \mu_n$

$$= \frac{\sin \mu_n - \mu_n \cos \mu_n}{\mu_n^2} = 2 \frac{\sin \mu_n}{\mu_n^2}.$$

Therefore

$$c_n = \frac{4\sin\mu_n}{\mu_n^2 [1 + \cos^2\mu_n]} \tag{31.6}$$

$$f(x) = 4\sum_{n=1}^{\infty} \frac{\sin \mu_n \sin(\mu_n x)}{\mu_n^2 [1 + \cos^2 \mu_n]}$$
 (31.7)

31.2 Solving the Heat Equation with Robin BC

$$u_t = \alpha^2 u_{xx} \quad 0 < x < 1 \tag{31.8}$$

$$u(0,t) = 1$$
 $u_x(1,t) + u(1,t) = 0$ (31.9)

$$u(x,0) = f(x). (31.10)$$

Look for a steady state solution v(x)

$$\begin{cases}
 v''(x) = 0 \\
 v(0) = 1 \quad v'(1) + v(1) = 0
 \end{cases}$$
(31.11)

$$v = Ax + B$$
 $v(0) = B = 1$ $v'(x) = A$ $v'(1) + v(1) = A + (A + 1) = 0$ (31.12)

Therefore

$$v(x) = 1 - x/2. (31.13)$$

Now let u(x,t) = v(x) + w(x,t)

$$u_t = w_t = \alpha^2 (v'' + w_{xx}) \Rightarrow w_t = \alpha^2 w_{xx}$$
$$1 = u(0, t) = v(0) + w(0, t) = 1 + w(0, t) \Rightarrow w(0, t) = 0$$

Let

$$w(x,t) = X(x)T(t) \tag{31.14}$$

$$\frac{\dot{T}(t)}{\alpha^2 T(t)} = \frac{X''}{X} = -\mu^2 \tag{31.15}$$

$$T(t) = c\rho^{-\alpha^2\mu^2t} \tag{31.16}$$

$$X'' + \mu^2 X = 0 X(0) = 0 \quad X'(1) + X(1) = 0$$
 The μ_n are solutions of the transcendental equation: $\tan \mu_n = -\mu_n$. (31.17)

$$X_n(x) = \sin(\mu_n x) \tag{31.18}$$

$$w(x,t) = \sum_{n=1}^{\infty} c_n \rho^{-\alpha^2 \mu_n^2 t} \sin(\mu_n x)$$
 (31.19)

where

$$f(x) - v(x) = w(x, 0) = \sum_{n=1}^{\infty} c_n \sin(\mu_n x)$$
(31.20)

$$\Rightarrow c_n = \frac{2}{[1 + \cos^2 \mu_n]} \int_0^1 [f(x) - v(x)] \sin(\mu_n x) dx$$
 (31.21)

$$u(x,t) = 1 - \frac{n?}{2} + \sum_{n=1}^{\infty} c_n \rho^{-\alpha^2 \mu_n^2 t} \sin(\mu_n x).$$
 (31.22)