Topic: Introduction to Green's functions

(Compiled 20 September 2012)

In this lecture we provide a brief introduction to Green's Functions.
Key Concepts: Green's Functions, Linear Self-Adjoint Differential Operators,.

9 Introduction/Overview

9.1 Green's Function Example: A Loaded String

Figure 1. Model of a loaded string

Consider the forced boundary value problem

$$
L u=u^{\prime \prime}(x)=\phi(x) \quad u(0)=0=u(1)
$$

Physical Interpretation: $u(x)$ is the static deflection of a string stretched under unit tension between fixed endpoints and subject to a force distribution $\phi(x)$ Newtons per unit length shown in figure 1.
Question: Since this is a linear equation can we invert the differential operator $L=\frac{d^{2}}{d x^{2}}$ to obtain an expression for the solution in the form:

$$
u(x)=T(x) \cdot \phi
$$

9.1.1 Method 1: Variation of Parameters

Homogeneous eqn: $u^{\prime \prime}=0$ has solution $u(x)=c_{1} x+c_{2}$.
Part Solution:

$$
\begin{aligned}
u(x) & =x v_{1}(x)+v_{2}(x) \\
u^{\prime} & =v_{1}(x)+\left\{x v_{1}^{\prime}+v_{2}^{\prime}\right\} \\
u^{\prime \prime} & =v_{1}^{\prime}+\{ \}^{\prime}
\end{aligned}
$$

Therefore $L u=v_{1}^{\prime}=\phi(x)$.
Require $\left\}=0\right.$ since we need another constraint to determine $v_{1}>v_{2}$ uniquely.

$$
\begin{gathered}
{\left[\begin{array}{ll}
x & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1}^{\prime} \\
v_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\phi(x)
\end{array}\right]} \\
v_{1}^{\prime}=-\phi(x) /(-1) \quad v_{2}^{\prime}=x \phi(x)(-1) \\
v_{1}=\int_{0}^{x} \phi(s) d s \quad v_{2}=-\int_{0}^{x} s \phi(s) d s \\
\text { Therefore } u_{p}(x)=\left(\int_{0}^{x} \phi(s) d s\right) x-\int_{0}^{x} s \phi(s) d s \\
u_{c}=c_{1} x+c_{2}+\left(\int_{0}^{x} \phi d s\right) x-\int_{0}^{x} s \phi(s) d s \\
u(0)=0 \Rightarrow c_{2}=0, \quad u(1)=0 \Rightarrow c_{1}+\int_{0}^{1} \phi d s \cdot 1-\int_{0}^{1} s \phi(s) d s=0 \\
u(x)= \\
\left(-\int_{0}^{1} \phi d s+\int_{0}^{1} s \phi d s\right) x+\left(\int_{0}^{x} \phi d s\right) x-\int_{0}^{x} s \phi(s) d s \\
=\int_{0}^{1} x(s-1) \phi(s) d s+\int_{0}^{x} s(x-1) \phi(s) d s
\end{gathered}
$$

Therefore $u(x)=\int_{0}^{1} G(s, x) \phi(s) d s$ where $G(s, x)=\left\{\begin{array}{ll}s(x-1) & s<x \\ x(s-1) & s>x\end{array}\right.$.

Physical Interpretation: $G(s, x)$ is the deflection at s due to a unit point load at x.

Figure 2. Displacement of a string due to a point loading

$$
G(s, x)= \begin{cases}s(x-1) & s<x \\ x(s-1) & s>x\end{cases}
$$

Physical Interpretation of reciprocity: $G(s, x)=G(x, s)$ Therefore deflection at s due to a unit point load at $x=$ deflection at x due to a unit point load at s.

Figure 3. Physical interpretation of reciprocity

9.1.2 Method 2: The Adjoint Operator

$L u=u^{\prime \prime}=\phi \quad u(0)=0=u(1)$

$$
\begin{aligned}
\int_{0}^{1} v L u d s & =\int_{0}^{1} v u^{\prime \prime} d s \\
& \left.=v u^{\prime}\right]_{0}^{1}-\int_{0}^{1} v^{\prime} u^{\prime} d s \\
& \left.\left.=v u^{\prime}\right]_{0}^{1}-v^{\prime} u\right]_{0}^{1}+\int_{0}^{1} u v^{\prime \prime} d s \\
& =\left[v u^{\prime}-u v^{\prime}\right]_{0}^{1}+\int_{0}^{1} u L^{*} v d s
\end{aligned}
$$

Note: Since $L^{*}=L$, we say that L is formerly self-adjoint.

$$
\left.\begin{array}{rl}
\int_{0}^{1} v \phi d s= & v(1) u^{\prime}(1)-v(0) u^{\prime}(0)-u(\not)^{\top} v^{\prime}(1)
\end{array}\right)+u\left(\text { (Я' } v^{\prime}(0) ~ 子 \int_{0}^{1} u \frac{d^{2}}{d s^{2}} v d s\right.
$$

Up till now other than being sufficiently differentiable, v has been arbitrary. How can we choose v so that we obtain an expression of the form:

$$
\begin{equation*}
u(x)=\int_{0}^{1} v(s, x) \phi(s) d s \tag{9.3}
\end{equation*}
$$

If v satisfies the following boundary value problem

$$
\left.\begin{array}{rl}
L^{*} v & =\frac{d^{2}}{d s^{2}} v(s, x)=\delta(s-x) \tag{9.4}\\
v(0) & =0=v(1)
\end{array}\right\}
$$

then (9.2) reduces to (9.3). How do we solve (9.4)?

Method A: direct integration

$$
\begin{aligned}
& \begin{aligned}
v_{s s} & = \\
v_{s} & =H(s-x) \quad \text { Recall } H^{\prime}(x)=s(x) \\
v(s, x) & =\int H(s-x) d s+A s \quad s-x=\chi \\
& =\int H(\chi) d \chi+A s \\
& =\chi H(\chi)+A s+B \\
& =(s-x) H(s-x)+A s+B
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& 0=v(0, x)=B \\
& 0=v(1, x)=(1-x) H(1-x)+A
\end{aligned}
$$

$$
\begin{aligned}
\text { Therefore } A & =(x-1) H(1-x)=(x-1) \\
\text { Therefore } v(s, x) & =(s-x) H(s-x)+s(x-1) \\
& = \begin{cases}s(x-1) & s<x \\
(s-x)+s x-s=x(s-1) & s>x\end{cases}
\end{aligned}
$$

Method B: Stitching in the region $s<x$ and $s>x v_{s s}=0$ thus:

$$
v(s, x)= \begin{cases}A_{-} s+B_{-}=v_{-} & s<x \\ A_{+} s+B_{+}=v_{+} & s>x\end{cases}
$$

We have 4 constants and only two boundary conditions so we need some additional conditions to determine v. Continuity at x

$$
\begin{gather*}
v\left(x_{-}, x\right)=v\left(x_{+}, x\right) \\
A_{-} x+B_{-}=A_{+} ?+B_{+} \tag{9.5}
\end{gather*}
$$

Jump Condition at x

$$
\begin{aligned}
v_{s s} & =\delta(s-x) \\
\int_{x-\varepsilon}^{x+\varepsilon} v_{s s} d s & =\int_{x-\varepsilon}^{x+\varepsilon} \delta(s-x) d x=1 \\
{\left[v_{s}\right]_{x-\varepsilon}^{x+\varepsilon} } & =1
\end{aligned}
$$

Therefore

$$
\begin{align*}
A_{+}-A_{-} & =1 \tag{9.6}\\
0=v(0, x) & =B_{-} \tag{9.7}\\
0=v(1, x) & =A_{+}+B_{+} \tag{9.8}
\end{align*}
$$

Therefore

$$
\begin{aligned}
& {\left[\begin{array}{rc}
x & (1-x) \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
A_{-} \\
A_{+}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& A_{-}=-(1-x) / 1=(x-1), \quad A_{+}=x
\end{aligned}
$$

Therefore

$$
v(s, x)= \begin{cases}s(x-1) & s<x \\ x(s-1) & s>x\end{cases}
$$

9.2 Summary

Given a linear differential operator $l u=f+B C$ we will be looking for a Green's Function satisfying

$$
L^{*} G=\delta(\varepsilon-x)+\text { appropriate } B C
$$

such that we can express the inverse operator for L in the form:

$$
u(x)=\int_{\Omega} G(\varepsilon, x) f(\varepsilon) d s
$$

9.3 Applications

(1) Boundary integral methods - Heat Transfer, Fluid Flow, Elasticity, Electram?
(2) Tomography

Note: What is the analogue of the Green's Function in a discrete problem? Consider a linear operator $A: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ e.g. the matrix problem $A u=f$.

$$
\left[\begin{array}{ccc}
a_{u} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]
$$

Suppose we solve each of the problems

$$
A^{T} v_{k}=e_{k}=\left[0 \ldots 1_{k} \ldots 0\right]^{T}
$$

Now define the matrix V whose columns comprise the v_{k} so that

$$
\begin{gathered}
V=\left[\begin{array}{cccc}
\vdots & \vdots & \cdots & \vdots \\
v_{1} & v_{2} & \cdots & v_{n} \\
\vdots & \vdots & \cdots & \vdots
\end{array}\right] \\
v_{k}^{T} A u=u^{T} A^{T} v_{k}=u^{T} e_{k}=u_{k} \quad \text { since } A^{T} v_{k}=e_{k} \\
u_{k}=v_{k}^{T} A u=v_{k}^{T} f \\
\text { since } A u=f \\
u=\left[\begin{array}{ccc}
\cdots & v_{1} & \cdots \\
\cdots & v_{2} & \cdots \\
\vdots & \vdots & \vdots \\
\cdots & v_{n} & \cdots
\end{array}\right] f=V^{T} f=A^{-1} f .
\end{gathered}
$$

