
Lecture notes on Variational and Approximate Methods in Applied Mathematics - A Peirce UBC 1

Topic: Introduction to Green’s functions

(Compiled 20 September 2012)

In this lecture we provide a brief introduction to Green’s Functions.

Key Concepts: Green’s Functions, Linear Self-Adjoint Differential Operators,.

9 Introduction/Overview

9.1 Green’s Function Example: A Loaded String

Figure 1. Model of a loaded string

Consider the forced boundary value problem

Lu = u′′(x) = φ(x) u(0) = 0 = u(1)

Physical Interpretation: u(x) is the static deflection of a string stretched under unit tension between fixed endpoints

and subject to a force distribution φ(x) Newtons per unit length shown in figure 1.

Question: Since this is a linear equation can we invert the differential operator L = d2

dx2 to obtain an expression for

the solution in the form:

u(x) = T (x) · φ
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9.1.1 Method 1: Variation of Parameters

Homogeneous eqn: u′′ = 0 has solution u(x) = c1x + c2.

Part Solution:

u(x) = xv1(x) + v2(x)

u′ = v1(x) + {xv′1 + v′2}
u′′ = v′1 + { }′

Therefore Lu = v′1 = φ(x).

Require { } = 0 since we need another constraint to determine v1 > v2 uniquely.
[

x 1
1 0

] [
v′1
v′2

]
=

[
0

φ(x)

]

v′1 = −φ(x)/(−1)

v1 =
x∫
0

φ(s)ds

v′2 = xφ(x)(−1)

v2 = −
x∫
0

sφ(s)ds

Therefore up(x) =




x∫

0

φ(s)ds


x−

x∫

0

sφ(s)ds.

uc = c1x + c2 +




x∫

0

φds


x−

x∫

0

sφ(s)ds

u(0) = 0 ⇒ c2 = 0, u(1) = 0 ⇒ c1 +

1∫

0

φds · 1−
1∫

0

sφ(s)ds = 0

u(x) =


−

1∫

0

φds +

1∫

0

sφds


x +




x∫

0

φds


x−

x∫

0

sφ(s)ds

=

1∫

0

x(s− 1)φ(s)ds +

x∫

0

s(x− 1)φ(s)ds

Therefore u(x) =
1∫
0

G(s, x)φ(s)ds where G(s, x) =
{

s(x− 1) s < x

x(s− 1) s > x
.
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Physical Interpretation: G(s, x) is the deflection at s due to a unit point load at x.

Figure 2. Displacement of a string due to a point loading

G(s, x) =
{

s(x− 1) s < x

x(s− 1) s > x

Physical Interpretation of reciprocity: G(s, x) = G(x, s) Therefore deflection at s due to a unit point load at x =

deflection at x due to a unit point load at s.

Figure 3. Physical interpretation of reciprocity
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9.1.2 Method 2: The Adjoint Operator

Lu = u′′ = φ u(0) = 0 = u(1)
1∫

0

vLuds =

1∫

0

vu′′ds

= vu′]10 −
1∫

0

v′u′ds

= vu′]10 − v′u]10 +

1∫

0

uv′′ds

= [vu′ − uv′]10 +

1∫

0

uL∗vds

Note: Since L∗ = L, we say that L is formerly self-adjoint.
1∫

0

vφds = v(1)u′(1)− v(0)u′(0)− u(1)↗ v′(1) + u(0)↗ v′(0)

+

1∫

0

u
d2

ds2
vds (9.1)

= v(1)u′(1)− v(0)u′(0) +

1∫

0

u
d2

ds2
vds (9.2)

Up till now other than being sufficiently differentiable, v has been arbitrary. How can we choose v so that we obtain

an expression of the form:

u(x) =

1∫

0

v(s, x)φ(s)ds (9.3)

If v satisfies the following boundary value problem

L∗v = d2

ds2 v(s, x) = δ(s− x)

v(0) = 0 = v(1)





(9.4)

then (9.2) reduces to (9.3). How do we solve (9.4)?

Method A: direct integration

vss = δ(s− x) Recall H ′(x) = s(x)
vs = H(s− x) + A

v(s, x) =
∫

H(s− x)ds + As s− x = χ

=
∫

H(χ)dχ + As

= χH(χ) + As + B

= (s− x)H(s− x) + As + B
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0 = v(0, x) = B

0 = v(1, x) = (1− x)H(1− x) + A

Therefore A = (x− 1)H(1− x) = (x− 1)

Therefore v(s, x) = (s− x)H(s− x) + s(x− 1)

=
{

s(x− 1) s < x

(s− x) + sx− s = x(s− 1) s > x

Method B: Stitching in the region s < x and s > x vss = 0 thus:

v(s, x) =
{

A−s + B− = v− s < x

A+s + B+ = v+ s > x

We have 4 constants and only two boundary conditions so we need some additional conditions to determine v.

Continuity at x

v(x−, x) = v(x+, x)

A−x + B− = A+? + B+ (9.5)

Jump Condition at x

vss = δ(s− x)
x+ε∫

x−ε

vssds =

x+ε∫

x−ε

δ(s− x)dx = 1

[vs]
x+ε
x−ε = 1

Therefore

A+ −A− = 1 (9.6)

0 = v(0, x) = B− (9.7)

0 = v(1, x) = A+ + B+ (9.8)

Therefore [
x (1− x)

−1 1

] [
A−
A+

]
=

[
0
1

]

A− = −(1− x)/1 = (x− 1), A+ = x

Therefore

v(s, x) =
{

s(x− 1) s < x

x(s− 1) s > x
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9.2 Summary

Given a linear differential operator lu = f + BC we will be looking for a Green’s Function satisfying

L∗G = δ(ε− x) + appropriate BC

such that we can express the inverse operator for L in the form:

u(x) =
∫

Ω

G(ε, x)f(ε)ds.

9.3 Applications

(1) Boundary integral methods – Heat Transfer, Fluid Flow, Elasticity, Electram?

(2) Tomography

Note: What is the analogue of the Green’s Function in a discrete problem? Consider a linear operator A : RN → RN

e.g. the matrix problem Au = f .



au . . . a1n

...
...

an1 . . . ann







u1

...
un







f1

...
fn




Suppose we solve each of the problems

AT vk = ek = [0 . . . 1k . . . 0]T

Now define the matrix V whose columns comprise the vk so that

V =




...
... · · · ...

v1 v2 · · · vn

...
... · · · ...




vT
k Au = uT AT vk = uT ek = uk since AT vk = ek

uk = vT
k Au = vT

k f since Au = f

u =




· · · v1 · · ·
· · · v2 · · ·
...

...
...

· · · vn · · ·


 f = V T f = A−1f.


