Lecture notes on Variational and Approximate Methods in Applied Mathematics - A Peirce UBC 1

Topic: Introduction to Green’s functions

(Compiled 20 September 2012)

In this lecture we provide a brief introduction to Green’s Functions.

Key Concepts: Green’s Functions, Linear Self-Adjoint Differential Operators,.

9 Introduction/Overview

9.1 Green’s Function Example: A Loaded String
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FI1GURE 1. Model of a loaded string

Consider the forced boundary value problem
Lu=u"(z)=¢(x) u(0)=0=u(l)

Physical Interpretation: u(x) is the static deflection of a string stretched under unit tension between fixed endpoints
and subject to a force distribution ¢(x) Newtons per unit length shown in figure 1.
Question: Since this is a linear equation can we invert the differential operator L = % to obtain an expression for

the solution in the form:
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9.1.1 Method 1: Variation of Parameters

Homogeneous eqn: u” = 0 has solution u(z) = c12 + co.

Part Solution:

u(z) = zvi(x) + va(x)
u = vy (x) + {zv] + vh}
v =vi+{}
Therefore Lu = v} = ¢(x).

Require { } = 0 since we need another constraint to determine v; > vy uniquely.

ol L] = Lao]

§o= @) = ae)-)
vy = Of¢>(s)ds vy = —gs¢( )ds

Therefore u,(x (/d) ) /sgb(s)ds.
0 0

U, = 1T + o + dds | © — | sp(s)ds
(/)]

0

1
u(0) =0=c2 =0, u(l):O:>cl—|—/qbds 1- /sqS

0
1 1 T T
u(z) = (—O/¢ds+0/s¢ds)x+ (/(bds)x—o/s¢

/xs—l ds+/ (@ — 1)o(s)ds

0 0

Therefore u(z) = | G(s,z)p(s)ds where G(s,z) = { .
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Physical Interpretation: G(s,x) is the deflection at s due to a unit point load at x.
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FIGURE 2. Displacement of a string due to a point loading

Physical Interpretation of reciprocity: G(s,z) = G(z,s) Therefore deflection at s due to a unit point load at x =

deflection at  due to a unit point load at s.

] C.

G-(50)= G (%,5)
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Fi1cURE 3. Physical interpretation of reciprocity
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9.1.2 Method 2: The Adjoint Operator

1 1
/vLuds = /vu”ds
0 0

Lu=v"=¢  u(0)=0=u(l)

Note: Since L* = L, we say that L is formerly self-adjoint.
1

/wds — w(1)/ (1) — v(0)'(0) — (M v'(1) + w(0] v'(0)

0

d2
+/u@vds (9.1)
0

P
=v(1)u' (1) — v(0)u'(0) + /u%vds (9.2)
0

Up till now other than being sufficiently differentiable, v has been arbitrary. How can we choose v so that we obtain

an expression of the form:

1
u(z) = / o(s, 2)6(s)ds (9.3)
0
If v satisfies the following boundary value problem
L*v = %v(s,x) =d(s—x)
(9.4)
v(0) = 0=wv(l)

then (9.2) reduces to (9.3). How do we solve (9.4)?
Method A: direct integration

vss = O(s—x) Recall H'(z) = s(x)
vs = H(s—x)+ A

v(s,x)z/H(s—m)ds—FAs s—x =%

:/H(X)dx+As
=xH(x)+As+ B
=(s—z)H(s—xz)+As+ B



Green’s Functions for two-point Boundary Value Problems 5

0=v(0,z) =B
0O=v(l,z)=(1—-2)H(l—2)+ A

Therefore A= (x — 1)H(1—2) = (z—1)
Therefore v(s,z) = (s —x)H(s — ) + s(x — 1)
_ { s(x —1) s<x

(s—x)+sx—s=xz(s—1) s>z
Method B: Stitching in the region s < z and s > z vss = 0 thus:

o(s, 7) = A_s+B_=v_ s<uzx
’ o A+S+B+:’U+ s>x

We have 4 constants and only two boundary conditions so we need some additional conditions to determine v.

Continuity at x

v(z_,x) =v(xy, )

A_SU+B_ :A+7+B+ (95)
Jump Condition at x

Vgs = 0(s — )

r+e x+e
Vssds = / (s —z)dx =1
[vs};i—z =1
Therefore
A —A_=1 9.6
0=v(0,2) = B_ (9.7)
OZU(1,$)2A++B+ (98)
Therefore
x (1-—=x) A_ B 0
-1 1 Ay 1
A_=—-1-2)/1=(x—-1), Ay==x
Therefore



9.2 Summary
Given a linear differential operator lu = f 4+ BC we will be looking for a Green’s Function satisfying
L*G = 6(e — x) + appropriate BC
such that we can express the inverse operator for L in the form:

u(x) = /G(s,x)f(s)ds.
Q

9.3 Applications

(1) Boundary integral methods — Heat Transfer, Fluid Flow, Elasticity, Electram?

(2) Tomography
Note: What is the analogue of the Green’s Function in a discrete problem? Consider a linear operator A : RY — RV
e.g. the matrix problem Au = f.

Ay ... Q1p Uy f

apl  --- Gpp U, fn

Suppose we solve each of the problems
AT’Uk = € = [OlkO]T

Now define the matrix V' whose columns comprise the v, so that

v,{Au =uTATv, =uTer = up since ATwvp = e
up = vi Au= v} f since Au=f

U1

ey e
u=| . .. f=VTf=A"1f



