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The design of optimal final-state controllers of quantum-mechanical systems that are insensitive
to errors in the molecular Hamiltonian or to errors in the initial state of the system is considered.
Control arises through the interaction of the system with an external field; the goal is optimal design
of these latter fields for various physical objectives in the presence of system uncertainty. Sensitivity
to modeling errors and other uncertainties in the molecular Hamiltonian is minimized by consider-
ing averaged costs for a family of Hamiltonian functions Hy(a) indexed by the random variable a
taking values on a compact set in Euclidean space. Similarly, sensitivity of the optimal control to
the initial state is minimized by viewing the initial condition as a Hilbert-space-valued random vari-
able and considering an optimization problem with a cost functional that is averaged over the class
of initial conditions. A precise formulation of the control problem is given, and its well-posedness is
established. Cost propagators are defined to display the dependence of the performance index on
the initial conditions explicitly, which allows analytic averaging of initial conditions, The con-
strained optimization problem is reduced to an unconstrained optimization problem by the intro-
duction of Lagrange-multiplier operators. Necessary conditions for the unconstrained problem pro-
vide the basis for a gradient search for an optimal solution. Finite-difference schemes are utilized to
provide a numerical approximation of the optimal control problem. Numerical examples are given
for final-state control of a diatomic molecule represented by a Morse potential illustrating design for
systems with initial-phase uncertainty and parametric uncertainty. The resultant insensitive con-
trollers execute different strategies depending on the design requirements. The controller designed
to be insensitive to errors in the initial phases adopts a strategy of phase imprinting during the ini-
tial stages of the control interval to compensate for a lack of knowledge of the initial phases. It is
also shown that it is not possible to coerce a system from a state with completely random initial
phases to a correlated state using the class of averaged controllers considered here. The controller
designed to be insensitive to parametric Hamiltonian errors adopts a strategy of amplitude restraint
to prevent the wave packet from taking significant excursions into the regions where the potential is
uncertain. The interesting structure exhibited by the controllers in response to the different design
requirements, and the superior performance of the insensitive controllers when compared with con-
trollers designed at nominal phases and parameters, illustrate the usefulness of the cost-averaging
technique for design in the presence of uncertainties.

I. INTRODUCTION

1 AUGUST 1990

The search for the appropriate excitation of
molecular-scale physica] systems to achieve prescribed
molecular motion has been an elusive objective over the
past 20 years. Recently' ™ the formulation of the prob-
lem in terms of optimal control theory has led to a hither-
to unexplored theoretical framework to design optical-
pumping strategies. Numerical field designs based on
this framework have been achieved for linear classical,’
semiclassical’ and quantum-mechanical molecular' mod-
els. One drawback of the optimal design approach used
in the work described above is that these controllers are
likely to be sensitive to uncertainties in the molecular
Hamiltonian and to uncertainties in the initial state of the
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system. This issue of sensitivity or robustness will have
to be addressed if field designs are to be implemented in
the laboratory.

In this paper we consider the design of optimal con-
trollers for quantum systems that are minimally sensitive
to errors in the molecular Hamiltonian or to the initial
state of the system. To allow for modeling errors and
other uncertainties in the molecular Hamiltonian we pro-
pose a family of Hamiltonian functions Hy(a) indexed by
the random variable a taking values on a compact set in
Euclidean space. Minimization with respect to the Ham-
iltonian uncertainty is achieved by considering a cost
functional that is averaged over the random variable with
respect to an appropriate measure. The dependence of
the optimal control on the initial state is minimized by
viewing the initial condition as a Hilbert-space-valued
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random variable, and considering an optimization prob-
lem with a cost functional which is averaged over the
class of initial conditions. We give a precise formulation
of the above control problem and prove that it is well
posed. We consider the numerical approximation of the
uncertain optimal control problem and provide some
one-dimensional examples. The performance of the resul-
tant insensitive controllers is contrasted with that of sen-
sitive controllers that are designed, at a nominal parame-
ter or initial condition, assuming there is no uncertainty
present. B B

In Sec. II we formulate the uncertain optimal control
problem and prove that it is well posed. In Sec. III we re-
formulate the problem by converting it to a final-value
optimization problem by introducing a System of opera-
tor equations that evaluate the performance index. This
procedure is analogous to adopting the Heisenberg pic-
ture of the quantum system. Its importance in this con-
text is that it allows the dependence of the performance
index on the initial condition to be displayed explicitly
and therefore removed by averaging. We introduce
Lagrange-multiplier operators which are used to establish
necessary conditions for an optimal solution. In Sec. IV
we discuss the numerical approximation of the uncertain
optimal control problem by means of the method of finite
differences. In Sec. V we illustrate the proposed theory
by providing the numerical solutions for the control of
the one-dimensional Schrodinger equation in which we
use the Morse potential to represent a diatomic molecule.
The examples chosen here are quite simple to illustrate
the methodology at the most basic level; the methodology
directly encompasses more general quantum-mechanical
systems but with a concomitant increase in computation-
al cost. Both types of uncertainty catered for by the
theory are considered separately in the illustrative exam-

ples to facilitate the interpretation of the results. The

first example considers optimal control when there is un-
certainty in the phases of the initial conditions. The
second example illustrates optimal control when there is
parametric uncertainty in the molecular Hamiltonian.
The performance of the insensitive controllers is contrast-
ed with those of controllers designed assuming no uncer-
tainty. In Sec. VI we summarize the results and suggest
future directions of research. In Appendix A we prove
the well posedness of the operator equations whose solu-
tion evaluates the performance index. In Appendix B we
demonstrate that the operator equations can be approxi-
mated.

II. UNCERTAIN OPTIMAL CONTROL PROBLEM

In this section we formulate the optimal control prob-
lem for an uncertain quantum system and prove that it is
well posed. We remark that the results of Secs. IT and III
are general in that they apply to an arbitrary multiparti-
cle quantum system.

'y
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Hilbert-space-valued random variable enables us to mini-
mize the dependence of the optimal control on the initial
conditions by formulating the following parameter op-
timization problem:

minJ (K)=E, ;, {$(T)—r,Q(HT)—r))X)

+BfOT(K,K)Hsds ,

subject to
YD - = o) = (a)pin) ()
P
and
Wt =0)=1f,

over all K €Xygs. Here the initial condition ¥,€X, and
the function r €X is a specified reference state to which
we desire to push the final state ¥(T) of the system under
the constraint of finite radiative fluence. By radiative
fluence we refer to the term [ J{K,K )ysds. The opera-
tors in (1) are defined as follows: A (a)=(—i/A)H (a),
H(a)=Hy(a)—B(a)K, and Hyla)=H,+Vy(a). Here
H, is the portion of the Hamiltonian that is independent
of the uncertain parameters (e.g., the kinetic-energy
operator), B(a) is the radiative coupling operator (e.g.,
the dipole moment), and K is the external field. We use
the notation E ypa LO represent the expectation with

respect to g, which will be defined more precisely
below. The inner product between any two elements of
Xus, say K and M, is given by*

(K,M>Hs=tf(K*M) ,

where * denotes Hermitian conjugation. Finally, Q is a
positive, self-adjoint, Hilbert-Schmidt operator.

The form chosen for J in one respect represents an ex-
treme limiting case; in particular, the cost functional at-
tempts to steer ¢¥(x,T) to be as close as possible to a tar-
get state r—including its overall phase. This objective is
a strong requirement and was chosen with the limiting
characteristic in mind. Less demanding and also physi-
cally acceptable cost functionals could be chosen (e.g., re-
quiring that the square of the projection of the final state
onto the target be a maximum) and the illustrative results
presented later in the paper would be expected to be even
better. This latter comment applies equally well to quan-
tum control problems without stochastic elements.’

_The parametric uncertainty consists of a random vari-
able a taking values in a closed and bounded set W in a
Euclidean space R™, according to a known probability

‘density u(da). For each a we have the following as-

sumptions on Hy(a) and B(a):

(1) Hy(e) is the infinitesimal generator of a C,-
semigroup S, (¢), for each a.

(2) The domain N D (Hy(a)) is dense in X.

Let QCR” be the spatial domain under ‘consideration

and [0, T] the finite time interval over which the problem
is posed. We define the following Hilbert Spaces:
X=L,(Q)), and Xyg=the Hilbert space of Hilbert-
Schmidt operators. Viewing the initial condition as a

(3) S,(t) is a continuous function of a for each ¢, and
uniformly continuous on bounded intervals of .

(4) The input coupling term B (a) is a bounded opera-
tor for each a which maps X into itself, and as a function
of a it is assumed to be continuous.
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The initial condition is a Gaussian random functional
on the dual space (X)*, defined by

Dol$*) =P, ¢* ) x -
The expectation of ¥, is defined by

E(o(¢*))= [ do(¢*N@)dP (@) ,

where (2,B,P) is an underlying probability space. Thus
E(35(¢*)) is a bounded linear operator on the dual space
X*, and the Reisz representation theorem can be used to
write

E((¢*N)={m,¢* )¢

for some m €X. o

The Hilbert-space-valued random variable 1, induces a
cylindrical measure on X given by the following finite-
dimensional densities:

d”qs;“...qs:‘: (2m)" 7 exp[ —3(y—m, ) A (Y—m,)]
Xdy,...dy, ,
where
{(m,¢t)

(A)y=({A¢F,¢7), and {4,] is an orthonormal basis for
X. Any bounded, positive and self-adjoint operator A in-
duces a cylindrical measure on X, but the only class of co-
variance operators which induce regular measures on X is
exactly the class of nuclear (trace-class) operators.” On
the basis of this it is reasonable to assume that the initial
condition has a nuclear operator for a covariance.

The assumptions 1-3 on the generator Hy(a) are
sufficient to insure a well-posed uncontrolled evolution
equation. As for the controlled system, we have, for each
a, a perturbation term B(a)K. With this bounded per-
turbation it can be shown, in a standard way,’ that the
controlled system remains well posed and its semigroup
satisfies SH0+BK(t)SMe“”+'|BK| % for some M,w. The

following theorem guarantees the existence of an optimal
solution to the parameter optimization problem (1) which
lies in the interior of Xyg.

Theorem I. Under the assumptions 1-3, there exists a
K* & Xyg that solves (1).

Proof. Since J(K) is bounded from below by zero,
we can take a sequence K,EXyg such that
lim,J (K, )=infxJ(K). The performance index satisfies
J(K)Z(K,K )ys, which implies that J(K,) diverges to
infinity if the norm (K,,K,)ys diverges to infinity.
Therefore we conclude that there exists a constant M >0
such that || K, ||ys <M for all n. X is a Hilbert space, so
using the fact that the closed unit ball in X g is weakly
compact, we can extract a subsequence K, of K, that
converges weakly to an element K*EXy,. The
remainder of the proof is devoted to showing that K* is
in fact a minimizer. Let ¥7(¢) denote the solution of the

evolution equation associated with the feedback K,.

lows
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From a previous argument we know that ||¢5()||x
<C(a)exp{[w(a)+]|B(a)K,||]t}. Since Hyla),B(a)
depend on « in a continuous manner (assumptions 3 and
4), it follows that ||¢%(¢)||x < C where C is a positive con-
stant independent of » and a. This implies the existence
of a positive constant R independent of a and n such that

T
Eqy, [ 105(5) s <K .

We denote by X' the space LX[0,T1X QX W;X). This
shows that ||¢%||x <R, so we can extract a subsequence
K9 so that 9% converges weakly in X'. Finally, using the
weak lower semicontinuity of the norm, we have

J(K*)<liminf,J(K%)=infgJ (K) .
This implies that J (K *)=inf,J (K).

III. COST PROPAGATORS
AND NECESSARY CONDITIONS FOR OPTIMALITY

We will reformulate the optimization problem by con-
verting it to a final value optimization problem involving
a system of operator equations that evaluate the cost
Ja,wo‘K)- The advantage of this approach is that the

dependence of J, 1/,O(K ) on the initial condition is display-

ed explicitly, and can thus be removed by averaging.
The quadratic term in the cost functional defined in (1)
can be expressed as follows:

I3 0 (K)= (T, QT ) ¢ (2a)
=), P(t,a)P(t)) x , (2b)

where P(t,a)=S§(a)(T—I)QSA(Q,(T—t) and SA(a) is
the C, semigroup generated by A (a). From (2a) it fol-
‘that J,,,(K) is independent of ¢ Thus
differentiating the term in (2b) with respect to ¢ and
equating the result to zéro we obtain the following equa-
tion governing the evolution of P(¢,a):

dP(t,a)
dat + A4

P(T,0)=0Q .

(a)*P(t,a)+P(t,a)Ala)=0,
(3a)

Similarly, the linear term in the cost functional defined in
(1) can be expressed as the evolution of a function
v(t,a)=S8% (T —1)Qr governed by

“dv(t,a)
dt

An alternative to solving (3a) and (3b) directly to deter-
mine P(¢,a) and v (¢,a) would be to determine the more
fundamental object S 4(,). This semigroup could then be
used to determine P(t,a) and v(t,a) from their
definitions. In terms of the evolution of the operator
P(t,a) and the function v (¢t,a), the performance index in
(1) can be expressed in the form

J(K)“_—E,po’a((Qbo,Pv(O:a)l,bo}X_ZRe(lpo,v(0)>X)

+<r,Qr>X+Bf0T<K,K)HSds . (42)

+ dla)*v(t,a)=0; v(T,a)=Qr . (3b)
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The new final value optimization problem is

minK EXHSJ (K) > (4b)

subject to equations (3a) and (3b).

In Appendix A we show directly without reference to
the optimization problem that there exists a unique posi-
tive Hilbert-Schmidt operator P(z,«) which satisfies (3a).
In the previous section we showed that there exists a
minimizer which lies in the interior of Xy¢. This justifies

]
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writing necessary conditions for the optimal solution.
We define the residual quantities M(a,K,P,v,t),
w (a,K,P, v,t) as follows-
" dP(t,a)
dt

dv (t,a)
dt +

M(a,K,P,v,t)=—""—"+ A(a)*P(t,a)+P(t,a)A{a) ,

w(a,K,P,u,t)= Ala)*v(t,a),

in terms of which we define the Lagrangian L by

L=J(K)+fo'dy(o;)dz[<N(t,a>,M(d,K,P,u,z)>Hs+<z(t,a),w(a,K,P,u,z))X] ,

where N (t,a) and z(¢,a) are the Lagrange multipliers that belong to the followmg spaces:

N(t,a)ELX[0, TIX W;Xys)* =~L*[0, TIX W; XHS)
2(t,a) ELX[0, TIX W; X)* ~LX[0, TIX W;X) .

From (3a) it follows that P is Hermitian (i.c., P =P*), thus to ensure that the term (N (t, ) M(a,K,P,v,t))ys in the
Lagrangian L is real it is sufficient to require that the Lagrange multiplier N is also Hermitian.

The first-order necessary conditions can be obtained by taking Frechet derivatives of L with respect to P, N, v, z, and
K, which yields (3a) and (3b) as necessary conditions, in addition to

deI; ,a) =A(a)N(t,a)+N(t,a)A(a)*%; N(O’a)_—"E%(%%) , o
=7 Cnal ) = e e
0= J {2k —Re; [ dutarnzn @) PN () Bl@)*o(s,ale(ha) ],5K>Hsdr. (50)

Equations (3) and (5) constitute a system of equations that

characterize an optimal solution for the uncertain optimi-
zation problem. We observe from (5b) that N will be
Hermitian, which ensures that L is always real.

IV. NUMERICAL APPROXIMATION
OF THE UNCERTAIN OPTIMAL CONTROL PROBLEM

In Appendix B the validity of approximating the
operator equations (3a) and (5a) is established. In this
section we discuss the numerical solution of the uncertain
optimal control problem using the method of finite
differences. Since the necessary conditions (3) and (5)
characterize the solution of the optimal control problem,
we discuss the finite difference approximation of these
equations. Although the above formulation applies for
multiparticle quantum systems, we restrict our discussion
in the remainder of the paper to a quantum system
governed by the one-dimensional Schrodinger equation.
In principle the procedure can be extended directly to
higher dimensions, but a substantial increase in computa-
tional complexity can be expected.

Given a trial controller K ‘¥’ we determine an approxi-
mate solution to (3) and (5) numerically using finite
differences. In the case of Egs. (3b) and (5b), which only
involve one spatial dimension, we divide the domain

i
0=[0,L] into M equal subintervals of length Ax =L /M
and denote the mesh points formed by the end points of
these subintervals by x,, =mAx. The numerical solution
at such a mesh point is denoted by viF=v*(t,x,,) and
similarly for z(¥.

Using a central difference approximation to A4, (3b)
reduces to the following system of ordinary differential
equations (ODE's):

dv, 1
_dt—'*'_:*;Hn(t)vn:O; 0 {TV= 3 Oy 5
m (6)
n,m=0,...,M’
where  H,(1)v,=6(v, _;+v, 1) +6,(t,, 6=—#/

2mAx?, and ¢,(t)=—20+(i /#)[V,, —B,K F(t)]. Here
we have assumed that B is a diagonal operator (i.e.,
B =$,,,B,), and that the operator X is spatially indepen-
dent [i.e., K, =K (2)8,,,]- Since the operator K, for the
purpose of the approximation, is finite dimensional and
therefore Hilbert-Schmidt, the theory developed in Sec.
IT applies to this case. Physically, the operator B
represents the dipole function, while K (¢) represents the
externally applied electric field. A central difference ap-
proximation to (5b) yields a similar system of ODE’s for
z, to those given in (6).
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In the case of the operator equations (3a) and (5a) we
divide the product domain [0,L]1X[0,L] into the mesh of
M? square cells that are formed by the Cartesian product
of the subintervals used in (6). Using a central difference
approximation to A4, (3a) reduces to the following system
of ODE’s: :

Pon s Ly (0P —H, (0P, =0
dt %4 ,m mn 2,n mn >

PIII"(T)=QIHM; m’” =07 ...

(7)
M,

where

Hl,m(t)Pmn=6(Pm—1n+Pm +1n)+¢m(t)Pm

n

HZ,n(t)Pmn =9(Pmn—l+Pmn+l)+¢n(t)Pmn ’

and 6 and ¢,(7) are defined in (6). A central difference
approximation to the operator equation (5a) yields a simi-
lar system of ODE’s for N,,, to those given in (7).

In order to solve the system of ODE’s (6) we use the
Crank-Nicholson (CN) procedure.” The time interval
[0,T1] is divided into R subintervals of length At =T /R.
The end points of these subintervals are denoted by
t, =sAt, and superscripts are used to denote the time step
at which a quantity is evaluated, e.g., v; =v(¢,,x,). The
CN procedure can be expressed in the form

A

_ At rys—1 FAL s
H 1+

IZﬁ"

v'(lk),s'——l: v'(lk),s . (8)

The numerical solution {v\*"*} can be found by a march-
ing process using (8), which involves an inversion of the
tridiagonal matrix on the left side of (8).

In order to solve the system of ODE’s (7), which resuit
from approximating the operator equation (3a), we use an
alternating direction implicit (ADI) scheme:’

PAL o irs =172 | pli,s —(1/72)
{I___Hl Py

Zﬁ m
At
= I+ HE PR, )
iAt — —
I_TH(kti's 1 P“;)’g 1

iAoy —(172)
I+ Hl’ms

> Pils=(/2) - (9b)

Assuming that P*>* is known, we invert the tridiagonal
matrix on the left side of (9a) to obtain P{k»s~(172) " The
right side of (9b) is now known and the tridiagonal matrix
on the left side can be inverted to yield P{%>*~!, This
backward marching procedure is used to determine the
approximate solution to (3a). .

We assumed above that K ¥’ was known, and calculat-
ed the corresponding propagators for the performance in-
dex P and v{¥ and the Lagrange multipliers N'*' and
z{K. All these quantities are then used to determine an
approximate gradient G\¥>* from (5c), which is used to

set up a conjugate direction search procedure.?
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The reason for choosing the implicit CN procedure to
solve (6) and the ADI scheme to solve (7) in preference to
an explicit scheme, such as the leapfrog method, is that,
for explicit schemes, the bound on the time step At to en-
sure stability depends on the unknown control K. For

such explicit schemes it would be impossible to determine

the magnitude of the time steps At without knowledge of
K. Both the CN scheme (8) and the ADI scheme (9) are
unconditionally stable and therefore do not require re-
strictions on the size of time step to ensure stability.

V. NUMERICAL RESULTS

In this section we consider two numerical examples in-
volving the optimal control of an uncertain quantum sys-
tem described by the one-dimensional Schrddinger equa-
tion :

i# = —?ﬁ;-—di:;-i-Vo(a)—B(a)K ¥, (10
Pt =0)=4,

in which we use the Morse potential
Vola,x)=d(1—e " 772 (11)

to represent a diatomic molecule. The issue of control in
molecular systems is reduced to its most basic level in
this example, but this simple case will serve to illustrate
the nature of sensitive and insensitive quantum controll-
ers in the presence of statistical uncertainty. At this time
more complex systems (e.g., a triatomic oscillator) can be
treated with the same formalism but at considerably in-
creased computational expense. We reduce (10) to a di-
mensionless form by rescaling the length according to
x =8X, where §=(#/mw)'"?, and m=y(2d/m)1/2 is the
frequency of the harmonic oscillator that approximates
(11) when X =X,,. In this case (10) and (11) reduce to

idy_

—p—12x—
p~1x o)
o dt

—BK (¢,

(12)

where D =2d /#iw, and — BK is the dimensionless applied
potential. As in Sec. IV, we assume that the operator B is
diagonal and represents a dipole function that has the fol-
lowing form: B(X)=(X —X,)e . The value of € is
chosen so that dipole function B(X) is approximately
linear on the interval [0,X,] and attenuates in the limit
X — 0. Throughout this section we assume that =1
and that control is sought over the interval [0,7] in
which T =8, which constitutes four periods of oscilla-
tion at the fundamental frequency.

In the first example we assume that the phases of the
initial conditions of the quantum system are uncertain,
while the remaining parameters of the system are as-
sumed to be known precisely. In the second example we
assume that there is a parametric uncertainty in the
molecular Hamiltonian, while the initial conditions are

assumed to be known.
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A. Uncertain initial phases timal control is trivially K =0. Thus for uniformly distri-

L . ) buted uncorrelated phases it is not possible to achieve

We assume that the initial condition ¢, in (10) is a SU- any tracking or equivalently any reduction of the perfor-

perposition of eigenstates {¢;] of the Morse P9t¢nt1a19,, _mance index. This extreme case is interesting, not only

with random phases: e because it establishes a theoretical limit on the control in

_ 18y an environment of uncertain initial phases, but also be-

ol X)= %ake ¢’€(X) ’ - 13 -cause it indicates that it is not possible to coerce this

v o T quantum system from a completely random initial state

where 3;la;[*=1, (¢1,4,, ) =8, and the §, in (13) are  to a correlated state as represented by the target function

assumed to be random variables having a given distribu- __r, However, this strong conclusion is a result of the

tion. The purpose of introducing the cost propagators P heavy demand of the cost functional in (1), which re-

and v is that it makes it possible to perform explicit  quires that the exact target state be achieved. Some ele-

averaging over the initial conditions in the cost function-  ment of control will still remain if we design to maximize
al defined in (1) by using the alternative expression of the  the square of the projection of ¥ onto the target r.

performance index (4). We consider two types of distri- As a second case we consider a Gaussian distribution
butions of the initial phases 8, for which it is possible to  of initial phases, which would be consistent with some
perform the averaging analytically. form of laboratory preparation of the initial states. In

First, we consider the initial phases §, to be uniformly  this case the averaging process involves evaluating in-
distributed and uncorrelated. In this case the expectation  tegrals of the form
in (4) is given by

' SO C o pstr | (88, )
Ey ({40, P(0)o) x —2 Re{ 5,0 (0)) ) , fg exp |~ +ib |db 2
T L0 _ is—otn
=3 la [} o, PO, . (14 T - 2 e T
k . o - f exp | ——— |ds
-7 20'k

In order to interpret (14) it is instructive to consider the
case in which the weight operator Q in the cost (1) is the
identity I. In this case it follows from (2) that P=I and
the right-hand side (rhs) of (14) is unity for all possible in-
itial conditions. The performance index (4) is thus re-
duced to J(K)=2+pB [ I{K,K )ysds, for which the op-

where

_etfl(—ioj +m)/V20,]—erf[(—iot —m)/V 20, ]
2erf(m/V20,) '

k

We note that if o, <<, then J, =1. In terms of these integrals the components of the expectation in (4) can be ex-
pressed in the following form: :

ri+o2,
ST m I, P(0), )+ 3 lay (4, P(0)g,) , (152)
1

Ey ({4, P(O)o) x)= 3 @ayexp |i(5, —8)— 3

I#m

. —if;—(a7/2)

E, ((,0(0)) )= ;a',e T {6,000y . (15b)
[
Similar expressions can be obtained for the averaged ini- (X —X, )
tial conditions of the Lagrange multiplier functions in (5). r(X)=g(X,X,1 Y= 1471 2exp ————if—-
We note that in the limit of uncorrelated uniform ) 21

phases 0 —» c0; and the first sum in (152) and the sum in

(15b) both vanish, so that (15) reduces to (14). The pa-

rameter o thus connects the case in which the initial _ _

hases are known precisely (o0 —0) with the case in = % 15y

Evhich the initial phal:s)es are completely random (o — o0 ). YolX)=aoe “go(X)Fare "4,(X) (16

We shall explore the intermediate values 0 <o < oo in the = where §,=0 and §,=7/4. The attenuation parameter €

numerical experiments described below. in the dipole function B(X) in this case was assumed to
In the numerical experiments that follow we assume a  have the value €=0.175. The value of 8 chosen imposes

spatial domain of length L =50, X;,=6.0, D=10.0, a weak-fluence constraint.

B=10"¢, Q;;=98,;, and the target state is taken to be a  We consider two distinct classes of controllers. The

Gaussian of width / =1 centered at X,=38.0: first class of controller is tailored to the nominal initial

We assume a nominal initial condition that is a superpo-
sition of the first two eigenstates:




conditions (i.e., o) —0; kK =0, 1), which we refer to as the
sensitive controller. The second class of controllers
comprise those that are designed to be insensitive to per-
turbations in the initial conditions by minimizing the
average cost (4). The phases are assumed to have a
Gaussian distribution so that the averaging can be per-
formed analytically as outlined in (15). For the insensitive
controllers we assume 0(=0.5, and consider the cases
with the following range of values of o;=1.2, 1.5, 2.0.
These uncertainty parameters correspond to situations in
which the phase of the ground state is known with more
certainty than that of the second eigenstate. If the phases
of both the eigenstates are known with equal confidence,
i.e., 0p=0; and Q;;=9d;;, then it can be seen from (15b)
that the cost functional will assign them equal weight. In
. —o7/2 .
this case the factor e /" that results from the averaging
process can be removed from the sum in (15b). The cost
for the insensitive controller can thus be obtained from
that of the sensitive controller by merely adjusting the
factor 8. Therefore averaging in this case will not yield a
controller that is any less sensitive to initial phases.

In Fig. 1(a) we plot the spatial distribution of the
difference |(X,T)—r(X)|* between the target state and
the final state using the sensitive controlier, and the same
error distribution for the insensitive controller (og,0,)
=(0.5,1.2). In both cases the nominal initial condition
(16) was used. The sensitive controller can be seen to per-
form noticeably better than the insensitive controller,
since it was tailored to the nominal initial condition.
Even though the error of the insensitive controller is in
this case substantially larger than that of the sensitive
controller, the insensitive controller does manage to
achieve an acceptable level of error and a close alignment
with the target state as can be seen in Fig. 1(b). In Fig.
1(b) we plot the probability distributions of the target
state and the final states using the same controllers as in
Fig. 1(a). Consistent with the error distribution plotted
in Fig. 1(a), the sensitive controller designed to the nomi-
nal initial condition achieves a final state that is impres-
sively close to the target state. The insensitive control,
though somewhat worse than the sensitive control due to
its design constraints, also achieves a close alignment
with the final target state. In Fig. 1(c) we plot the same
pointwise difference as in Fig. 1(a) but using an initial
state that has phase parameters 6;=0 and 8= the
second of which is far from its nominal phase value. In
this case the action of the insensitive controller produces
a final state that is much closer to the target state than
that of the sensitive controller, which only moves the
wave packet slightly away from the bottom of the well

Xo=4 toward the target. Comparing Figs. 1(a) and 1(c).

we observe a strong dependence of the performance index
on the phase of the initial conditions, which is reduced to
some extent by the use of the insensitive controllers.

In order to obtain a more complete picture of the per-
formance of the two types of controllers over a range of
values of the phase parameters, we define the following
error functional:

L= T =1, QW T) 1)), . (17)
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We note that this error functional is just the error com-
ponent which is averaged when the performance index in
(1) is calculated and represents the area under the curves
shown in Figs. 1(a) and 1(c). For a particular choice of
the phase parameters (8y,8,) we obtain for each controll-
er a unique final state. The error functional &{¢] can
thus be used to define an error function &(8,,8;) that
maps the parameter pair (§5,8,) onto the corresponding
error.

In Fig. 1(d) we plot the error functions 6(8y,8,) on the
region 8,=0; §; €[ — 3, {m] corresponding to the sensi-
tive controller (o, =0; k =0,1) along with the insensitive
controllers which share the same value of the ground-
state uncertainty parameter o,=0.5 but with different
values of the uncertainty parameter associated with the
first eigenstate: o;=1.2, 1.5; 2.0; 3.0. For all these con-
trollers the minimum error occurs at the nominal phase
value §,=m/4. All the controllers exhibit a similar sensi-
tivity when the phase parameter 8, is perturbed away
from its nominal value. In this case, however, the
effectiveness of the insensitive design approach can be
seen. In the immediate vicinity of the nominal phase
value the sensitive controller performs better than the in-
sensitive controllers. However, for large perturbations of
the phase parameter §,, the insensitive controllers per-
form substantially better than the sensitive controller. As
o, is increased, the performance of the insensitive con-
trollers is improved for large perturbations of §; away
from its nominal value; however, this improvement is ac-
companied by some reduction in performance in the vi-
cinity of the nominal value of §,. This demonstrates the
effect of the uncertainty parameter o, in the design pro-
cess. The insensitive controllers with larger values of o,
are designed to allow for wider distributions of initial
phases than the insensitive controllers with lower values
of o,. The flattening of the error curve as o; increases
indicates controllers can be designed that achieve a fairly
uniform performance over the entire range —7 =<8, <.
The compromise is the reduction in the best performance
of these controllers at the nominal initial condition.
However, depending on the design requirements these
characteristics may be exploited in the design process.

The error functions &(8y,8,) on the region
8oE[ —r,m]; 8,=m/4 corresponding to the sensitive con-
troller (o, =0; k =0,1) and the insensitive controllers
00=0.5 and 0;=1.2; L.5; 2.0; 3.0 exhibit a similar phase
sensitivity (not shown here) to that shown in Fig. 1(d)
when the parameter §, is perturbed away from its nomi-
nal value 8,=0. All the controllers exhibit a similar per-
formance characteristic because the uncertainty parame-
ter 0,=0.5 for the insensitive controllers is close to zero.
There is a slight degradation in the performance of the
insensitive controllers with respect to the first phase pa-
rameter 8, This is compensated for by an increased per-
formance with respect to the second phase parameter §,,
which can be seen clearly in Fig. 1(d).

In Fig. 1(e) the external electric fields K (¢) for the sen-
sitive controller and the insensitive controllers with
00=0.5and 0;=1.2; 1.5; 2.0; 3.0 are plotted for compar-

ison. All the controllers execute a control strategy that
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FIG. 1. (a) The spatial distribution of the difference [ X, T)—r(X)|? between the target state and the final state using the sensitive
controller, and the same error distribution for the insensitive controller (og,01)=(0.5,1.2). In both cases the nominal initial condi-
tion (16) was used. The sensitive controller can be seen to perform better than the insensitive controller since it was tailored to the
nominal initial condition. (b) The probablllty distributions of the target state, the final state using the sensitive controller, and the
final state using the insensitive controller with (og,01)=(0.5,1.2). In both cases the nominal initial condition (16) was used. The sen-
sitive controller, which is designed to the nommal initial condition, achieves a final state that is impressively close to the target state.
The insensitive control, though somewhat worse than the sensitive control due to its design constraints, also achieves a close align-
ment with the final target state. (c) The same error ¢ distributions as those plotted in (a), but using an initial state that has phase pa-
rameters 8,=0 and 8, =, the second of which is far from its nominal phase value. In this case the action of the insensitive controller
produces a final state that is much closer to the target state than that of the sensitive controller, which only moves the wave packet
slightly away from the bottom of the well X;=4 toward the target. (d), The error functions &(80,8,) on the region §,=
5, €[— —17, 24 corresponding to the sensitive controller (o, =0; k =0,1); and the insensitive controllers which share the same value
of the ground-state uncertainty parameter 0,=0.5 but with different values of the uncertainty parameter associated with the first
eigenstate: o;=1.2; 1.5; 2.0; 3.0. For all these controllers the minimum error occurs at the nominal phase value 8§, =m/4. All the
controllers exhibit sensitivity to perturbations of the phase parameter 8; away from its nominal value. The effectiveness of the insens-
itive design approach can be seen: in the immediate vicinity of the nominal phase value, the sensitive controller performs better than
the insensitive controllers; however, for large perturbations of the phase parameter §,, the insensitive controllers perform substantial-
ly better than the sensitive controller. The insensitive controllers with larger o, values are designed to allow for wider distributions
of initial phases and thus perform better when large perturbations from the nominal phase value are considered. As a compromise,
the insensitive controllers with larger o, values have a reduced performance in the immediate vicinity of the nominal value of §,. (e)
The external electric fields K (z) for the sensitive controller and the insensitive controllers with 04=0.5 and 0;=1.2; 1.5; 2.0; 3.0. All
the controllers execute a control strategy that can be divided into roughly three regions. In the first region there is a relatively large
amplitude pulse, which for the sensitive controller extends over the interval [0,7]. The duration of the initial pulse is longer for the
insensitive controllers, namely on the interval [0,2#], and the amplitude of this initial pulse for the insensitive controllers is notice-
ably larger than that for the sensitive controller. This initial pulse may possibly be interpreted as a “phase imprinting” stage. The in-
sensitive controllers expend relatively more energy on ensuring that the wave packets adopt the appropriate phases for more intense
pumping later on in the interval. These differences reflect the design requirement that the insensitive controllers be able to control
wave packets with unknown phases, whereas the sensitive controller is certain of the initial phase and therefore expends relatively
less energy on phase imprinting. On the second region, roughly [7,5%] for the sensitive controller and [2s,57] for the insensitive
controllers, all the controllers execute relatively small amplitude pulsing. The third region, roughly [57,87] when most of the work
is performed, is characterized by a large amplitude pulse having an approximately similar structure for all the controllers.
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FIG. 1. (Continued).

can be divided into roughly three regions. In the first re-
gion there is a relatively large amplitude pulse, which for
the sensitive controller extends over the interval [0,7].
The duration of the initial pulse is longer for the insensi-
tive controllers—namely on the interval [0,27], and the
amplitude of this initial pulse for the insensitive controll-
ers is noticeably larger than that for the sensitive con-
troller. This initial pulse may possibly be interpreted as a
“phase-imprinting™ stage. The insensitive controllers ex-
pend relatively more energy on ensuring that the wave
packets adopt the appropriate phases for the more in-
tense fields later on in the interval. On the second region,
roughly [m,57] for the sensitive controller and [27,57]
for the insensitive controllers, all the controllers execute
relatively small amplitude structure. The third region,
roughly [57,87], is characterized by a large amplitude
pulse having an approximately similar structure for all
the controllers.

Thus the major difference between the sensitive and in-
sensitive controllers is that the insensitive controllers im-
print phases on the wave packets relatively early in the
interval [0, 8] to achieve the desired phase at t =57 (the
beginning of the intense field region) and so compensate
as best as possible for the imprecise knowledge of the
phase at ¢t =0. The sensitive controller contains informa-
tion about how to go from a particular phase at t =0to a
desired phase at =357, These differences reflect the
design requirement that the insensitive controllers be able
to control wave packets with unknown phases, therefore
they expend a greater portion of the available energy
ensuring the phase is as correct as possible before the
large pulse is executed at the end of the interval. Furth-
ermore, the insensitive controller with large uncertainty
in the phase [i.e., larger o, in Fig. 1(e)] exhibits a more
intense phase imprinting field. In contrast, the sensitive
controller is certain of the initial phase and therefore ex-
pends relatively less energy on phase imprinting.

B. An uncertain parameter

Here we assume that the uncertain parameter a de-
scribed in the theoretical development in Sec. II is the pa-
rameter D in the molecular Hamiltonian of the dimen-
sionless Schrodinger equation (12). One may regard this
problem as one of controlling a single molecule with un-
certainty in D or an example of controlling a class of
similar molecules having a distribution of D values. We
are not able in this case to exploit an operator approach
to remove the dependence on D analytically, as we were
in the case of uncertain initial conditions. Therefore, our
approach is to use numerical integration to evaluate the
averaged cost functional and gradients.

We assume a spatial domain of length L =24.0,
X,=6.0, =107, Q;,=5,;, and that

1 ex _(D—ﬁ)z
Viwo P 202

du(D)= dD ,

where D =14 is the value of the nominal parameter, o =1
or 2, and the width of the parametric domain W for the
purposes of numerical integration was 3¢. The initial
condition in this case was taken to be yy(X)
=g(X,X;,=6,1), and the target state was taken to be
r=g(X,X;=8,1). The attenuation parameter € in the
dipole function B(X) in this case was assumed to have
the value €=0.

In Fig. 2(a) we plot the spatial distribution of the
difference |¢(X, T)—r(X)|? between the target state and
the final state using the sensitive controller, and the same
error distributions for the insensitive controllers with
o=1 and 2. In all cases the nominal parameter D =14
was used. The sensitive controller performs somewhat
better than the insensitive controllers, since it was
designed to be optimal for the nominal parameter. The

controller designed to allow for more uncertainty in D by
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FIG. 2. (a) The spatial distribution of the difference | (X, T)—r(X)|? between the target state and the final state using the sensitive
controller, and the same error distributions for the insensitive controllers with =1 and 2. In all cases the nominal Morse parameter
D =14 was used. The sensitive controller performs somewhat better than the insensitive controllers, since it was designed to be op-
timal for the nominal parameter. (b) The same set of error distributions as in (a) for a substantial perturbation of the parameter D
from the nominal value D =14 to the smaller value D =8. In this case the insensitive controllers with 0 =1 and 2 can be seen to per-
form noticeably better than the sensitive controller. (c) The same set of error distributions as in (a) and (b) for a substantial perturba-
tion of the parameter D from the nominal value D =14 to the larger value D =20. In this case the insensitive controllers still perform
better than the sensitive controller. (d) The error function &(D) defined in (17) corresponding to the sensitive controller (o =0) and
that corresponding to the insensitive controllers (c=1 and 2). The insensitive controllers achieve a substantial improvement in the
performance over the sensitive controller away from the nominal parameter value D =14. (e) The external electric field K (¢) for the
sensitive controller and the insensitive controllers with o =1 and 2. Except for a small difference around ¢ =4, the two controllers
have an almost identical phase structure. The insensitive controllers use subtle changes in amplitude to achieve a more robust design
by ensuring that the wave packet avoids taking significant excursions into the regions X [5,7] [see (f)], where the perturbations to D
have a large effect. This will prevent the wave packet from exploring uncertain regions of the potential, and therefore becoming un-
controllable. The sensitive controller does not exhibit this restraint, since it was not a design requirement that it cater to a large
range of values of D. The strategy of depositing the majority of the energy in the last part of the interval minimizes the exposure time
of the wave packet to the uncertain regions, and also the time over which the wave packet is able to respond. (f) The Morse potential
for values D =8, 14, 20 representing the most extreme perturbations to D shown in (d) as well as the nominal value. Perturbations to
the parameter D in the interval [8,20] leave the potential virtuaily unchanged in the region X €[5,7]. This property is exploited by
the insensitive controllers to avoid long excursions of the wave packet into regions of uncertainty in the potential.
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FIG. 2. (Continued).

increasing the parameter o from 1 to 2 performs worse at
the nominal parameter value. In Fig. 2(b) we plot the
same set of error distributions as in Fig. 2(a) for a sub-
stantial perturbation of the parameter D from the nomi-
nal value D =14 to the smaller value D =8. In this case
the insensitive controllers with =1 and 2 can be seen to
perform noticeably better than the sensitive controller.
In Fig. 2(c) we plot the same set of error distributions as
in Fig. 2(a) and 2(b) for a substantial perturbation of the
parameter D from the nominal value D = 14 to the larger
value D =20. In this case the insensitive controllers still
perform better than the sensitive controller.

In order to obtain a more complete picture of the per-
formance of the two types of controllers over a range of
values of the parameter D, we use the error functional
(17) to measure the performance of the two types of con-
trollers. For a particular choice of parameter D we ob-
tain for each controller a unique final state. We use the
error functional &[(¢)] to define an error function &(D)
that maps the parameter D onto the corresponding error.
In Fig. 2(d) we plot the error function (D) correspond-
ing to the sensitive controller (0 =0) and that corre-
sponding to the insensitive controllers with =1 and 2.
Thessensitive controller performs marginally better than
the insensitive controllers in the vicinity of the nominal
parameter value D =14. However, as D is perturbed
away from its nominal value, the insensitive controllers
perform noticeably better than the sensitive controller.
The performance of the insensitive controllers for large
perturbations of D is enhanced by increasing the uncer-
tainty design parameter ¢ from 1 to 2. All three controll-
ers exhibit an asymmetric response in performance to
perturbations in the parameter D about the nominal
value D =14. -

In Fig. 2(e) the external electric field K (¢) for the sensi-
tive controller and the insensitive controllers with o=1
and 2 are plotted for comparison. Except for a small

difference around ¢ =41, the controllers have an almost
identical phase structure. The insensitive controllers use
subtle changes in amplitude to achieve a more robust
design. This may be explained in terms of the effect that
the perturbations in the parameter D have on the poten-
tial. In Fig. 2(f) the Morse potential is plotted for values
D =38, 14, and 20 representing the most extreme pertur-
bations to D shown in Fig. 2(d) as well as the nominal
value. The insensitive controllers initially pulse with am-
plitudes that are just small enough to have the wave
packet avoid taking significant excursions into the re-
gions X &[5,7], where the perturbations to D have a
large effect. This will keep the wave packet from explor-
ing uncertain regions of the potential, and therefore
becoming uncontrollable. The sensitive controller does
not exhibit this restraint, since it was not a design re-
quirement that it cater for a large range of values of D.
On the interval [6#,87] the insensitive controllers choose
to increase the pulse amplitude above that of the sensitive
controller. The strategy of depositing the majority of the
energy in the last part of the interval minimizes the expo-
sure time of the wave packet to the uncertain regions and
also the time over which the wave packet is able to
respond.

The above example clearly demonstrates the
effectiveness of the parameter insensitive design pro-
cedure, particularly in regions where the sensitive con-
troller performs poorly. It also provides insight into how
the insensitive controllers exploit the known regions of
the potential to enhance controllability.

VI. CONCLUSIONS

We have proposed an optimal control methodology for
design in an environment of parametric uncertainties in
the molecular Hamiltonian and uncertainties in the initial
state of the system. The technique involves defining the
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optimal control problem involving averaged cost func-
tionals, which minimize dependence of the optimal con-
trol on the uncertain parameters and uncertain initial
conditions. We have given a precise formulation of the
optimal control problem and proved that it is well posed.
In order to be able to perform the averaging process ex-
plicitly in the case of uncertain initial conditions, we have
introduced a class of cost propagators. By defining a cor-
responding set of Lagrange multipliers, we have derived
necessary conditions for a minimum of the optimization
problem. These necessary conditions form the basis for a
gradient search procedure to search for a minimum. We
have discussed the numerical approximation of the un-
certain optimal control problem using central differences
in space with Crank-Nicholson time stepping for the
one-dimensional operators and ADI time stepping for the
two-dimensional cost propagators. ,

Two distinct numerical experiments were performed to
explore the performance of the proposed uncertain op-
timal controllers. The theory presented in this paper is
generally applicable to a wide class of quantum systems,
while the simplest example was chosen here to illustrate
the theory. The first example considered the case in
which the initial phases of the quantum system are uncer-
tain while the remaining parameters of the system are as-
sumed to be known precisely. We assumed various distri-
butions of initial phases.and performed the averaging
analytically. We demonstrated that for uniformly distri-
buted uncorrelated phases it is not possible to achieve
final-state control. The result in this extreme case is in-
teresting not only because it establishes a theoretical limit
on the control in an environment of uncertain initial
phases, but also because it indicates that it is not possible
to coerce a quantum system from a completely random
initial state to a correlated state, as represented by the
target final state. However, as mentioned earlier, less
demanding objectives will still leave an element of control
even with fully random phases. For initial phases having
a Gaussian distribution, it is possible to design controllers
that are insensitive to perturbations in the nominal initial
phases. The insensitive controllers were found to adopt a
significantly different pulsing strategy when compared to
controllers designed at the nominal initial phases. The
insensitive controller expends a greater portion of the
available energy, apparently ensuring the phase is correct
before applying a large amplitude pulse toward the end of
the control interval to achieve the final target state. This
process we have named phase imprinting. In contrast,
the sensitive controller is certain of the initial phase and
therefore expends relatively less energy on phase adjust-
ment.

In the second example we assumed that there was para-
metric uncertainty in the molecular  Hamiltonian, while
the initial conditions are assumed to be known. In this
case we used numerical averaging over a range of param-
eter values having a Gaussian distribution, The
parameter-sensitive controller was found to  perform
significantly worse when the parameter was perturbed
away from the nominal value. The insensitive design
technique considered in this paper yields controllers that
perform much better in the regions of poor performance
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of the parameter-sensitive controller and whose perfor-
mance is only marginally worse than that of the sensitive
controller in the vicinity of the nominal parameter value.
The insensitive controllers exploit the known regions of
the potential to enhance controllability by pulsing with a
delicate structure that prevents the wave packet from
taking significant excursions into the regions where the
potential is uncertain.

The system considered in this study exhibited a greater
sensitivity to uncertainties in the phase of the initial con-
dition than to uncertainties in the Morse parameter. The
insensitive design technique using averaged costs proved
to be effective in reducing the effects of these system un-
certainties. Each system and type of uncertainty is ex-
pected to exhibit its own special characteristics, which
the insensitive controllers will exploit to minimize the
effect of uncertainties.
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APPENDIX A: ANALYSIS
OF THE OPERATOR EQUATIONS

In this appendix we will study the operator equation

E%ﬂ:A(a)*P(t,aH—P(t,a)A(a) ,
(A1)
P(T,a)=Q,

where A4 (a) and Q are defined in (1). The goal is to show
that (A1) leads to a well-posed evolution equation in the
space of Hilbert-Schmidt operators. Let {¢;} be an
orthonormal basis in X, and define the tensor product
$;®¢; as the bilinear form which acts on X XX by
(6,86, b1, ¥2)=(91,6,) (4,6, Given a Hilbert-
Schmidt operator P, it can be expanded in terms of ¢,®¢;
as follows:

P=3a,;6,0¢;,
b

where

2 (a,] )Z <o,

i
As usual,m the tensor product of X with itself X®X is
defined as the completion of the linear combinations
Stja;¢;®¢; with respect to the norm [Fl(a; )5
From these definitions it follows that X@ X ~Xys. We
denote by U the isometric isomorphism between X5 and
X®X. We will use this idea to write (A1) as an evolution

equation in X® X. To this end, define the tensor product
A®B:X®X —-X®X of the operators 4,B:X —X as

(A®BXv®v,)= 4v;®Bv,
fo; all v,®v,ED(A®B)CX&X. Thus we can write Eq.
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(A1) as

ALY _ 35(ta); BT,a)=0
dt
where A=I® A(a)*+ A(a)*®I, and P and O are the
images of P and Q under the isomorphism U. The well
posedness of (A2) follows from the following theorem.

(A2)

Theorem 2. A generates a C, semigroup on the space

XeX.

Proof. The proof is a consequence of the following
three lemmas and the fact that if 4 is a closed, densely
defined operator on X®X (Ref. 6) then A generates a C,-
semigroup T'(¢) such that [|T(2)|| <Ce" for all ¢, if and
only if

Re{ 4 *2,z) yox v ||zllkex forallzED(A *),
and

Re{ Az,2) 3o x X7 zlkex forallzED(A) .

Lemma 1. The domain of 4,D(A4) ={PEX
®X:APEX®X} is dense in X® X.

Proof. This is an immediate consequence of the fact
that D(A(a))isdensein X.

Lemma 2. A is a closed operator.

Proof. Since A generates a C, semigroup, 4 is a closed
operator.® The fact that A is closed follows from its
definition and the fact that A4 is closed.

Lemma 3. There exists a ¥ 20 such that

Re{ 4 *2,2) yox <7|izllxex forallz€D(A4*)
and
Re{ A2,z ) yox X7||zllxox forallzeD(A).

Proof. Assumption (1) implies that there exists a f3

such that
Re{ A(a)z,z )y ZBljz||% for all zED(A(a)), A3)
Re{ A(a)*z,z) y <B|jz||}¥ for all zED(A(a)*).

For the sake of brevity we will present the remainder of
the calculations assuming that we are dealing with real
Hilbert spaces. Let R €D( A4 *); this can be written as

R= 3 a;6;99;

0J

and

(A*R,R)ygx=tr{A*RR*)= (¢, A*RR*¢; ) x ,
k -

where {¢;} is an orthonormal basis in X. From the
definitions we have

A*R=T3 a;[4(a)$;®¢;+¢;® 4(a)¢;]
i,j

and

‘Z*RR*(]SI{: E aijasr<¢j)¢r><¢§7¢k>A(a)¢i

Lis,r

+aijasr( 4 (a)¢'j’¢r ) <¢s7¢k >¢1 .
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Therefore we have

tr(ARR*)=3 [(ga,-j-ﬁ(a)¢i7 gasjﬁbs) ]

3 [3ason3un))

At this point we can use the fact that 4 (a) itself gen-
erates a C, semigroup and thus satisfies (A3). This im-
plies

tr( ARR*)< ? [/3“ ; a;é:|\% ]
-+ ) [Bn; %l

<283 (a; )2=2B“R “§(®X .
ij
Set y=2f. Then
(A*R,R)3ex <7|IR|}%ex forall RED(A),

and similarly we can show that

(AR,R ) xox <7|R|%ex forall RED(A).

Therefore we can conclude that there exists a unique
solution P(t,a)ELz([O, T];Xys) for the operator equa-
tion. Note that the new state equation (3a) differs from
the equation studied‘“here in that its generator is 4 plus a
bounded operator. The extension of the results of this
appendix to this case follows by a perturbation argu-
ment.!!

APPENDIX B: APPROXIMATION

From a practical point of view, the question of whether
the operator equations can be approximated is of extreme
importance. In this appendix we will resolve this ques-
tion by exhibiting conditions for the existence of a
discrete semigroup approximating T ;(¢). The main de-
vice used here for this purpose is the Kato-Trotter
theorem. We will restrict ourselves to the case where the
generator A is self adjoint. The general case can be treat-
ed in the same way if 4 and its adjoint each satisfy the
requirements of the Kato-Trotter theorem.®

Theorem (Kato-Trotter):  Let Ay EG(M,w),
AE€G(M,w) and assume (a) As N—> o0, 4yx— Ax for
every x €D ( A), where D is a dense subset of X; (b) There
exists a Ay with ReAy> w for which (A;] — A)D is dense in
X. If Ty(t) and T(t) are the C, semigroups generated by
Ay and A, respectively, then

Nlim Tyt x=T(t)x forallt>0, xEX ,

and the limit is uniform in ¢ for bounded intervals. The
notation 4 €G(M,w) means that A4 generates a Cy-
semigroup 7 (¢) which satisfies || T(z)|| < Me™".

We want to show that if the generator of the state
equation admits an approximation, then the operator
equation which is used to replace the state equation ad-
mits a similar approximation. For this purpose we will
assume the following.
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(1) There exists a continuous projection Py such that The Kato-Trotter theorem and the following three
lemmas demonstrate that the discrete semigroup corre-

PyX—Xy . , sponding to 4 converges to T ;(¢).

where Xy=span{é,...,dy}, $;EX, and Ay:X—Xy, - Lemma 4. Ejy is a continuous projection onto X .
AyEG(M,w), N=1,2,... . Proof. vEX®X:

(2) Ayz— Azforallz&€D( A4).

(3) There exists a Ay with Re(Ay)>w such that Ey(w)=Ey [E V9 ®¢; l zvij¢i®¢j >
(A —XoI)D is dense in X. o _ i

We define the following. e , e 2 < < -

(@D Xy=span{¢;8d;4,j=1,... N}; o ”EN‘”)” E 2‘”" =23

(d2) Ey:XoX—>Xy, deﬁned by EN(v)——EN(vl®vz)
=Pyv,®Pyv, forallveXex; ﬁ__,ﬁ\,;___,_ﬁlﬁgfg)_ﬂglv5””,,”Xex .

Ay XX —X,, defir dby . - . .
@ Ay:XoX—Xy efined by —Lemma 5. Ayv— AvforallveD(4).

Ay0)= Ay (v,80,)=(Ty® dy + Ay®Iy)v;®05) . Proof. We define the following:

D(4d)= |REXX: AR €X®X, and R= Zr,sjqﬁ,@(bl
.

£ s I g -

is dense m XeX smce D(A) IS dense, and therfuncglgns;prq can be approx1mated by products v; v . Let

N
v)= 2":3 (IN® AN+ AN®IN (¢,®¢,

(Ay—A)v)= }_‘,r,s1¢,®(AN—A)¢j+zr,sj(AN - A)p@p,— 2(¢,®A¢I+A¢,®¢1)r,-sj
ij 11>N

=T(H)+T2)+T(3).

Now look at each of the terms separately. For the first term we have

1T xex=

N o
Z’isj[d’i@(AN_A)qf'j]
Lj . Sl

X&x
By defining S =4y — 4, v, =3, 4;, and v2'=2§vsj¢j, we get
01850, [5ox= 3 €01, )12 [{S02,, ) 2= o, 350,13 -
i’j . . .

—
From assumption (2), it follows that which implies that
IT(Mlxex—0 as N—w . . [TO)gex—0 as N—w ,
Similarly, we can show that since v’,v""ED( A4).
: o -~ -Lemma 6. There exists a Ay with Re(Aq)>2w such
IT2)xex—0 as N—oo . - " that (\gT— A)D is dense in X®X.
The third term gives , - Proof. By assumption A E€G(M,w) and for any u>w,
- . _ R I (yI ‘A)D(A) is dense in X. Now consider the equa-
ITlxex=|| = rseodg, 0 tons
hI>N (koI A)(¢x®¢2)—(¢1®¢2
+A¢,.®¢,.>I xox  Ahi@d (819 A+ A6,196,)=118 9, ,
We define v’ =37, yr;¢; and 0" =T 2, ys;¢;: ' A » Ay
1T 3| xex=2[t'® 40" || xox ’E‘I A |$8h 4@ _I_A 6=91®¢; .

=20lo'llellAv"Nx > ~This leads to thefollowmg two equations:



42 OPTIMAL CONTROL OF UNCERTAIN QUANTUM SYSTEMS 1079
Ao (Pl (Ro/2)I — A]¢ .p $ED(A)] is dense in X, it fol-
"{'I"A ¢1=v1, (B1)  lows that (\,;J— 4)D( A)isdense EX®X. B

With the use of lemmas 4), (5), and (6) we see that 4

Ao satisfies the conditions of the Kato-Trotter theorem.
7[ —A|¢,=1, . (B2)  Therefore, if TN(t) and T(t) are the semigroups generat-

ed by Ay and 4, respectlvely, we have Ty(th—T(th

From (B1) and (B2) and the fact that forallvEX®X.
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