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A continuum approach is used to analyze the effect of defect structures on chemically active sur-
faces. The model comprises a linear diffusion equation with adsorption and desorption in which the
defect structures are represented by nonlinear localized-reaction terms. The issue of multiple steady
states and stability is treated, and a novel procedure is outlined that uses conformal mapping to
derive stability criteria for these localized-reaction diffusion equations. This conformal mapping
procedure also provides insight into how the various physical processes affect the stability of the
system. A class of reactive-trapping models is considered in which defects are assumed to act as
sinks of material that ultimately desorbs as a chemical product. Other features included in the mod-
el are nonlinear enhanced reactivity with concentration, and saturation effects. The continuum as-
sumption is tested by direct comparison with a discrete reactive-trapping model and found to be a
remarkably good approximation, even when the number of interdefect sites is as low as 20. We in-
vestigate the effect of relative defect locations on the balance between the desorptive processes that
take place on the surface. The effect of defect locations on desorption is analyzed by considering
symmetry-breaking perturbations to the defects in a periodic lattice. Two regimes of desorption are
identified depending on the level of adsorption on the surface and the defect spacing. (i} Competi-
tive: Defects that are moved closer by the perturbation compete for material, which reduces the
trapping efficiency of the defect lattice and increases the bulk desorption rate; by considering the
bulk desorption rate to be a function of the defect locations, we conclude that the situation of equal-
ly spaced defects is a local minimum of this function. (ii) Cooperative: Defects that are moved
closer by perturbation in this regime act cooperatively to reduce the saturation level locally, which
enhances the trapping efficiency of the defect lattice and reduces the bulk desorption rate. In this
complex environment of competing physical effects it would be difficult to determine the dominant
process without the analysis presented here. In order to determine whether these phenomena per-
sist when the defects undergo finite random perturbations, we solve the continuum equations nu-’
merically using the boundary-element technique. The phenomena identified by the small perturba-
tion case do persist when finite defect variations are considered.

I. INTRODUCTION

There is considerable fundamental and practical in-
terest in the role of chemically active surface defect struc-
tures. Practical catalytic reactors are likely to contain
active surfaces with high coverages of defect structures
due to faulting or foreign substances. Theoretical and ex-
perimental investigations on the atomic scale are just be-
ginning. Another fruitful approach is to use continuum
modeling to analyze these phenomena on a more macro-
scopic scale. This approach provides access to the
powerful analytic and numerical tools that have been
developed to solve continuum phenomena. This paper is
concerned with the continuum approach to defect struc-
tures on catalytic surfaces.

Recently some analytic models of diffusion, adsorption
and/or desorption on surfaces, and reaction at defects
have been considered. On the atomic level, Serri et al.!
used a stepped surface model to analyze the desorption
kinetics of NO from Pt(111). Examples of continuum
models are as follows: the effect of a single defect site has
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been analyzed by means of a linear boundary-condition-
type reaction model;? an effective-medium approach has
been used to consider the reaction between a single
species and a set of randomly distributed reaction sites;’
the steady states of a system involving diffusion, reaction,
and multiple species have been determined by means of
the multigrid method and by using elongated Gaussian
representations of defect structures;* the latter model has
been extended to include time-dependent effects, and the
influence of a poisoning effect by the product species on
the diffusion and reaction processes has been considered.’
Continuum diffusion-localized-reaction models have
also been considered in other contexts: far from equilib-
rium phenomena at local sites have been investigated for
a single active site in an infinite medium,® the number
and stability of steady states for a two-site problem exhib-
iting activation and inhibition have been considered,’
cooperative instability phenomena have been investigated
for arrays of catalytic sites,® and the reactive effect of
membrane bound enzymes’~!! and enzyme particles in
stirred reacting fluids'? have also been investigated.
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In the present work we use the continuum diffusion-
localized-reaction model to investigate the effect of reac-

tive trapping by defects on a catalytic surface. We con- .

sider issues of multiple steady states and linear stability
and we outline a novel procedure that uses conformal
mapping to determine sufficient conditions for linear sta-
bility. This technique provides useful insight into the
way in which various physical processes influence stabili-
ty by altering the shape and extent of the stability region.
Stability criteria are derived using this technique, and are
applied later in the paper when the reactive-trapping
models are considered.

The continuum assumption is assessed by direct com-
parison with a discrete system in which a process of reac-
tive trapping takes place at defect sites. The continuum
model is seen to be remarkably good even when the num-
ber of atomic sites between defect sites is as low as 20.

A study is made of the effect of the relative locations of
the defects upon the descrption processes on the surface.
We consider the effect of small symmetry-breaking per-
turbations to the defect locations in a periodic array on
the balance between the desorption associated with the
bulk of the surface and the desorptive effect of the reac-
tive defects.

A number of interesting phenomena are observed, in-
cluding (i) a regime of competitive behavior between the
defects; and (ii) a regime of cooperative behavior between
the defects. It is important to obtain a detailed quantita-
tive account of all the competing physical effects that
contribute to the desorptive processes. Reliance on phys-
ical intuition alone will often be unsatisfactory owing to
the fact that the dominance of various competing effects
cannot be assessed. The analysis performed in this paper
uses a novel perturbation approach. This perturbation
procedure is quite general in that it applies for a wide
class of reactive-trapping models and can also be used to
analyze situations in which different physical processes
take place at the defects.

We explore numerically the effect of finite random per-
turbations to defect locations on the bulk desorption rate
using the boundary-element technique.!*»* We demon-
strate that the effect of finite random perturbations to a
uniform lattice in the competitive regime increases the
bulk desorption rate. Statistical evidence is presented for
the claim that the bulk desorption rate considered as a
function of the defect locations has a global minimum
when the defects are equally spaced. A similar
verification of the small perturbation findings in the
cooperative regime is also performed by consuierlng finite
random perturbations to defect locations. e

In this study we consider only competitive or coopera
tive defect phenomena for one-dimensional surfaces.
These phenomena have been explored on two-
dimensional surfaces in another study.!®

The paper is organized as follows. Section II iniro-
duces the governing equations of the continuum defect
model. In Sec. III we consider the issue of multiple
steady states and stability, and outline a procedure tc
derive stability criteria using conformal mapping. In Sec.
IV we analyze the continuum model of reactive trapping

by defects. The validity of the continuum assumption i€
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investigated by comparing the continuum reactive-
trapping model to a discrete system in which reactive
trapping occurs at defects. Having validated the continu-
um assumption, the continuum model is used to analyze
the effect of the location of defects on the balance be-
tween the desorption processes on the surface. A period-
ic array of defects is considered and the effect of small
symmetry-breaking perturbations on the desorption pro-
cesses is examined. Conditions are established for com-
petitive and cooperative behavior due to perturbations.
In Sec. V the effect of finite random perturbations to de-
fects is investigated using the boundary-element tech-
nique. In Sec. VI we discuss the results of the analysis.
Finally, in order to provide continuity, the end of each
major section will provide a summary and relevant com-
ments.

II. GOVERNING EQUATIONS

A. Initial boundary-value problem for linear diffusion
and localized nonlinear reaction

The equations governing the diffusion, adsorptlon-
desorption, and localized reaction are taken to be®
du d%u

aF 1_); Qu+l§1R1(u)8(x—x,)+f

for x,x; E(xg,xy) . (2.1

Here u(x,t)ER*S is a vector with positive-valued com-
ponents representing the concentrations of the S different
species, D is a matrix of diffusion coefficients, Q is a ma-
trix representing desorption or linear bulk reaction, R, is
the rate term due to reactions taking place at the active
site x;, and f(x,?) is the incident flux. In this paper we
assume that the bulk is homogeneous so that D and § are
constant and that the bulk processes are decoupled so
that D and Q are diagonal. .
In order to be able to determine the solution u of (2.1)
we prescribe an initial condition

u(x,0)=u%x) , (2.2a)

and appropriate boundary conditions of the general form:

g,%+l§, u(x,,t)=g,(t) for r=0and N . (2.2b)

Here g, is a specified function. As was the case with the
bulk, we assume that the boundary conditions are decou-
pled so that @, and B, are diagonal. Hence the only cou-
pling in the equations governing the various species
occurs through the generally nonlinear reaction term R,.
Physically, these equations represent localized reac-
tions that occur on a number of parallel chemically active
“lines” or steps on a two-dimensional surface in which
linear diffusion and adsorption-desorption are taking
place. In Sec. IVA we will demonstrate that (2.1) and
(2.2) form a continuum model of defect sites on a catalyt-
ic surface. Equations (2.1) and (2.2) also provide a one-
dimensional model for a more general problem compris-
ing a surface on which adsorption-desorption and linear
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diffusion are taking place, while generally nonlinear reac-
tion processes may occur at localized defects in the form
of curves on the surface. Similarly, in three dimensions
an array of active curved surface planes can be en-
visioned. Models of localized reactions occurring in a
bulk medium have also been considered in the context of

“membrane bound enzymes,”’~!! cooperative instability
phenomena in arrays of catalytic sites,® and enzyme par-
ticles and other heterogenecities in stirred reacting
fluids.'?

B. Alternative “jump-condition” form

It is possible to rewrite (2.1) in an alternative form if
we assume that u, fECO(xO,xN). We integrate (2.1) over
each of the intervals (x;—e,x;+¢€),/=1,2,...,L in turn
letting e—07 in each case. An application of the mean-
value theorem for integrals yields the following condi-
tions:

du
% =_R = .- o o . .
b X |x=x 1(“)|x=x,’ =12, » L (2.3)
Here
a_u BT _@E _QE
ax X=XI'_E£I(I)I+ ax(xl_*_s’t)"—‘ ax(xl—s,t) .

The initial boundary-value problem (2.1) and (2.2) can
now be replaced by the linear partial differential equation
(PDE) obtained by setting R; =0 in (2.1) and by requiring
that the solution should satisfy not only (2.2) but also the
additional jump conditions (2.3).” This alternative form
emphasizes the fact that we have a linear differential
equation, the solution of which is subject to nonlinear an-
cillary conditions. These ancillary conditions reduce to
boundary conditions in some special cases. For example,
we could assume that the solution u is constant
throughout (xg,xy) except for a single subinterval
- [%,%;1). In this case the jump conditions that apply at
x; and x;  ; reduce to derivative boundary conditions.

III. MULTIPLE STEADY-STATE
SOLUTIONS AND STABILITY

The existence of multiple steady-state solutions for
diﬁ'usion-localizgd-reaction systems and their stability

sinh[o L — |x |)]  f;
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) sinhfew;(L — | x | )]+sinh(w; |x |)

properties have been investigated by a number of authors.
For example, Bimpong-Bota et al.® investigated the num-
ber and stability of steady states for the Prigogine-
Lefever mechanism at a single active site in an infinite
medium. Shymko and Glass’ investigated the number
and stability of steady states of a two-site problem in
which nonlinear activation and inhibition is described by
the so-called Hill function. Bimpong-Bota et al.® extend-
ed their earlier work to include periodic lattices of active
sites.

In this section we describe a novel procedure that uses
conformal mapping to determine sufficient conditions for
linear stability of a steady state. In situations in which
the technique can be applied, the complex problem of
determining conditions under which the roots of a tran-
scendental equation lie in the region Re(s) <0 reduces to
determining conditions under which a polynomial equa-
tion has roots in a transformed stability region. In addi-
tion to being able to derive stability criteria for given sit-
vations, the technique provides useful insight into the
way in which the various physical processes influence sta-
bility by altering the shape and extent of the transformed
stability region.

We introduce the procedure by way of some simple ex-
amples and discuss the manifestation of the various phys-
ical processes in the deformation of the stability regions.

A, Steady-state solutions

The equations governing the steady-state solutions of
the diffusion-localized-reaction system (2.1) are obtained
by setting du/d¢t =0. In the examples that follow, we
consider a single active site at x =0 in a domain [ —L,L]
so that (2.1) reduces to the system

D,—ui —Q,-ui +-fl =0

with i =1,2,...,S for x€(—L,L), (3.1a)

—D;[u!], _o=R,(u;(0)) . (3.1b)

A further assumption we make in what follows is that
fi{x)=const and g;, =const in (2.2b).

We now consider a variety of boundary conditions.

(i) Homogeneous Dirichlet boundary conditions
(2, =0, B,5<0, g,=0; r =0,N). In this case, the solution
to (3.1) is given by

u,‘(X)=u,-(0) sinh(a),-L) +(_)"“

where w; =(Q; /D;)'/? and u,(0) is the solution of the sys-
tem of nonlinear equations

2D,;0; coth(w,;L)[4;(0)+F;]=R;(4;(0)) , (3.2b)

arising from (3.1b) and where
fi | 1—cosh(w;L)

Fi=q, | snn w;L)

i

sinh(e,;L) . (3.22)

I

(ii) Homogeneous Neumann boundary conditions
(2,70, B,=0, g,=0; r=0,N). In this case, the solution
to (3.1) is given by

coshfw, (L — | x | )]

u(x)=u;(0) cosh(w;L)
fi cosh[w;(L — | x |)]
+ Q; - cosh(w;L) ’ (3.3a)




where u;(0) is the solution of the system of nonlinear
equations

2D;w; tanh(w;L) |u,(0)— {; |=R(u;(0)) . (3.3b)
i
In the limit L — o both (3.2) and (3.3) reduce to
u,-(x)=u,~(0)e_w" ,Ix ! o+ £(1 —oplx ), '(3‘.2.1afl,
Q; ‘
where now u;(0) is the solution of the system of nonlinear
equations -
2D;0,(u;(0)—f; /Q;)=R;(u;(0)) . (3.4b)

It is interesting to comtrast the nature of the steady-
state solutions to the diffusion-localized-reaction equa-
tions with those of the system of ordinary differential
equations having the same reaction term, i.e.,

l.li =Ri(uj) .

In this case, the steady states are given by the solutions tc
the system of nonlinear ecuations

0=R‘(uj) . (3.5?,"
Comparing (3.5b) with (3.2b), (3.3b), and (3.4b), we notice

that the diffusing bulk only introduces at most linear _ _

terms to (3.5b). In fact, if we restrict ourselves to bi-
molecular mechanisms such as those considered by Tyson
and Light,'® then it can be seen from the detailed signs of
the linear terms introduced by the diffusing bulk that just
as wide a variety of steady states are admitted by both
systems. For a given reaction term R;(u;) the presence
of the diffusing-desorbing bulk can change the regime of
a reaction from a single steady state in the ordinary
differential equation (ODE) case to multiple steady states
in the active site case. In fact, as the parameters D;, Q;,
and L are varied, the number of steady states can change
This has been demonstrated by Shymko and Glass and
Bimpong-Bota et al.%?

B. Linear stability analysis

Let u;*(x) be a steady solution of (2.1). We consider &
small perturbation V2(x) to the steady state u;*(x) and let
V;(x,t) be the subsequent evolution of this initial pertur-
bation. The equation governing the evolution of Vi(x,?)
can be obtained by perturbation of {2.1):

ov; %V, . L
? , FD) Q V:+ ‘21 121 J~j(uk (JC]))KIS(X —-_3_?1__)_y

i=L2,...,8 (3.6a)

where Jj;(u;)=0R;/du;(u;). The perturbed boundary
condltlons are obtained from (2.2b):

”aa +B,, |Vi(x,,0=0, r=0,N . (3.6b1

We use Laplace transforms to analyze the growth or de-
cay of the perturbation V;(x,t). Taking the Laplace
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transform of (3.6) and using the jump conditions (2.3), we
obtain

_ 2%
Vi(x,5)—oHs)V(x,s)=— ’(x), i=1,2,...,8
. Di
(3.7a)
T=DVi(x,8)], o = 2 A uEx)Vix,s),  (3.70)
2B, | P, 0=
ir ax iLr i xr’s = (370)

where @;(s)=[(s +Q;)/D;1"? and the prime denotes
d/0x. In order to simplify the analysis we return to the

“problem of a single active site at x =0 in a domain

[—L,L], which was introduced in Sec. III A, and assume
that the initial perturbation V2(x) is constant.
The solution ¥;(x,s) of (3.7) is then given by (3.2a),
(3.32), and (3.4a) in which u;(x) is replaced by V.(x,s), »;
by @,(s), Q; by (s +Q,), and fi by VP. The solutlons
7.0, s) at the active site in each of the three cases are ob-
tained by solving the following equations:

S
2 [1/1,'(S)8ij ~—

j=1

Ty (u}(O)]7(0,5)=F(s) ,

where we have the following for the various cases.
(i) Homogeneous Dirichlet boundary conditions:

1;(s)=2D;w;(s) coth[w,;(s)L] , (3.8a)
' cosh{w;(s)L]—1
F.(s)=2V? !
=2V smblay(9)L] (3-80)
(ii) Homogeneous Neumann boundary conditions:
Y;(s)=2D;0,(s)tanh{w,(s)L] , (3.92) *
tanh i( )L
F,.(s)=2lf,.°$i-—] : (3.9v)
Cl),'(s)
(iii) L — oo with either boundary condition:
‘U (s)=2D;w;(s) , (3.10a)
VO
Fi(s)= (3.10b)

(s)

We apply the Laplace transform inversion theorem!® to
Vi(x,s). Firstly we note that the singularities of V;(x,s)
that are due to the localized reaction are given by the

condition

det[¢;(5)8;; —J;;1=0 . (3.11)

Next we observe that F;(s) in (3.8) and (3.9) has remov-
able singularities at s = —Q;; F;(s) in (3.10) has a branch
point singularity at s = —.Q,, Wthh gives rise to a contri-
bution that decays ase /t3/ % as t— o0; and the only
other remaining singularity of ¥;(x,s) is a 31mple pole at
s =—{);. Therefore, we conclude that the contributions
of the singularities due to the linear bulk all decay as
t— o provided Q;>0. This is to be expected as we are
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considering a stable linear bulk. Thus the only instabili-
ties that can arise are those from the roots of the deter-
minantal condition (3.11).

It should be noted that ;(s) in (3.10a) is the stability
function used by Bimpong-Bota et al.® to analyze the sta-
bility of a single active site in an infinite domain. More-
over, the function ;(s) in (3.8a) is that used by
Bimpong-Bota et al.® to analyze the stability of a period-
ic lattice. We shall refer to these stability functions ;(s)
as “domain functions” as they represent the geometry
and material properties of the linear bulk\.

C. Ceonformal mapping of the stability region
Re(s) <0 by the domain functions 3;(s)

First, for simplicity, we assume some linear relation-
ship between the ,(s). For example, o,(s)=
-+ =1hg(s)=1(s), which applies in the case of equal
diffusion and desorption. In this case, (3.11) reduces to
determining the roots of an Sth-degree polynomial
Pg(4*)=0 which is determined by the reaction process
taking place at the defects. We now consider the image
of the stability region Re(s) <0 under the map w =(s).
This interpretation of (3.11) essentially decouples the
bulk diffusion-desorption processes from the defect reac-
tion processes. The mapped stability regions associated
with (3.8a), (3.9a), and (3.10a) are plotted in Figs. 1(a),
1(b), and 1(c), respectively. In all the plots presented in
Fig. | we assume D =1.0.

In Fig. 1(a) the stability regions for the homogeneous
Dirichlet boundary-condition problem (3.8) are plotted
for various interval lengths- L =1,2,4 with desorption
(Q=2) and without desorption (i.e., & =0). The curves
plotted are the images of the imaginary s axis: x =ia
where a €ER. These curves C(L,Q) form the rightmost
boundary of the stability region. Thus a root #* of the
polynomial equation Pg(4*)=0 is stable, provided it lies
to the left of the applicable curve C(L,Q). It is interest-
ing to note, by comparing the curves C(L,0) with those
of C(L,2), that desorption increases the extent of the sta-
bility region. This is consistent with physical intuition.
As an example of the way in which the stability regions
can be used to derive stability criteria, assume that the
roots * of the polynomial equation Pg(*)=0 are all
real and let ¢}, denote the maximum root. Then since
the intercept of the axis Im(w)=0 and the stability
curves in this case are given by

2D 172 Q 172
w=—L“‘ [ B L |coth [ {*5 L
——>2—LD‘ as Q—0,

we immediately obtain the stability criterion

172
* 2D

D

coth

172
L] . (3.12a)

It is interesting to note that in the absence of desorption
the stability criterion reduces to
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2D
max < AR (3.12b)

This reflects the stabilizing effect of the Dirichlet bound-
ary conditions that allow material to escape at the boun-
daries. The criterion (3.12b) is a statement of the fact
that the characteristic diffusion velocity for the interval
should be larger than the maximum velocity of material
produced by the localized reaction at x =0. From Fig.
1(a) it can be seen that the stability introduced by escape
of material at the boundaries decreases as the length L of
the interval increases. In addition, when desorption is
present, the stabilizing effect of the escape of material at
the boundaries is subdominant to that of desorption.

In Fig. 1(b) the stability regions are provided for the
case of Neumann boundary conditions (3.9) with the
same range of values of interval length L and desorption
Q as in Fig. 1(a). Again the stabilizing effect of desorp-
tion can be seen clearly by comparing C(L,0) with
C(L,2). In this figure it can be seen that the effect of the
Neumann boundary condition is quite different from that
of the Dirichlet boundary condition shown in Fig. 1(a).
Since no material can escape at the boundaries, we see
that any positive real roots ¥* of Pg(1/*)=0 are unstable
in the absence of desorption. As the interval length L is
decreased, the stability region is seen to shrink in each
case. Since these boundary conditions effectively embed
the defect in a periodic lattice of defects with spacing 2L,
we see that decreasing the interdefect spacing 2L has a
cooperative destabilizing effect. If we assume (as was
done with the previous case) that Pg(y) has only real
roots, we obtain the stability criterion

172
L

172

2D I

Q
wr’\;ax < T Y

tanh (3.13)

2
D

This criterion will be used in Sec. IV to analyze reactive
trapping by defects on a catalytic surface.

In Fig. 1(c) the stability regions are provided for the
infinite domain limit L — o of the above two cases for
various values of desorption . The increase of the ex-
tent of the stability regions with desorption can be clearly
observed. The stability boundary in the case =2 and
L — 0 shown in Fig. 1(c) agrees well with that of Figs.
1{a) and 1(b) with =2 and only modestly large values of
L =2,4. It is interesting to note that the infinite domain,
in spite of its capacity to accept material, will not be
stable without desorption if Pg(1) has any positive real
roots. If we again assume Pg(3) has only real roots, then
we obtain the stability criterion

¢;mxS2V DO . (3.14)
This is a statement of the fact that the characteristic
desorption velocity should be larger than the maximum
velocity of material produced by the localized reaction at
x =0. From (3.14) it can be seen that the stabilizing
effect of the desorption relies on the diffusion process to
spread the material before it can be desorbed.



38 EFFECT OF DEFECT STRUCTURES ON CHEMICALLY ACTIVE SURFACES. .. 1739

7.00 . . . T T T - 7.00 . . T T T
NO DESORPTION ({1=0.0) : SQLID NO DESORPTION (Q=0.0) : SOLID
WITH DESORPTION (Q=2.0) : DOTTED / ' WITH DESORPTION (0=2.0) : DOTTED ]
6.00 | : J 00 |
INTERVAL LENGTH SYMBOL -~ 6.00 INTERVAL LENGTH SYMBOL .,-/ T
L=1.0 - L=1.0
5.00 |- L=2.0 s E 5.00 |- L=2.0 i
L=4.0 . L=4.0
4.00 | - 4.00 [ 4
E z
E g
3.00 |1 [ = 3.00) -
2.00 . e 2.00 | .
100 Lo 100 §
(a)
0.00 —e - 0.00 1 1 - b ! '
0.00 1.00 2.00. 3.00 4.00 5.00 6.00 7.00 _ 0.00 1.00 2.00 3,00 4.00 5.00 6.00 7.00
Re(w) Re(w)

7.00 i . - : i :
NO DESORPTION (2=0.0) : SOLID ,
WITH DESORPTION : DOTTED
6.001 DESORPTION RATE  SYMBOL o
0=2.0 . L
s00] 0=4.0 S - g
0=80  ° .
400 L. . Fare A
£ S0l Ea v A
- K §
200L i
. i d
1.00 | ' 4 H N
[ ‘ ¢ (c)
0.00 . . i S , P
0.00 100 200 300 400 500 600  7.00
Re(w)

FIG. 1. (a) The mapped stability region associated with the homogeneous Dirichlet boundary-condition problem (3.2) with the
domain function defined in (3.8). The curves C(L,Q) shown for the different parameter values represent the right-most boundary of
the stability region so that the stability region lies to the left of these curves in each case. In these cases it can be seen that as L, the
length of the interval, decreases the stability region grows. This is due to the stabilizing effect of the homogeneous Dirichlet bound-
ary conditions which allow material to escape from the boundaries. The stabilizing effect of desorption can be seen by comparing the
solid curves C(L,0) with the corresponding dotted curves C (L,2). When Q=40 the stabilizing effect of the escape of material from
the boundaries is subdominant to the stability provided by desorption, as can be seen by comparing C(2,2) with C(4,2). In order to
establish a stability criterion in a given situation, we need only ensure that the roots of the polynomial equation Ps(4*)=0 lie to the
left of the applicable curve. (b) The mapped stability regions associated with the homogeneous Neumann boundary-condition prob-
lem (3.3) with the domain function defined in (3.9). The stabilizing effect of desorption can be seen clearly by comparing C(L,0) with
C(L,2). The role of L, however, is quite different in this situation. A decrease in L in this case has the effect of reducing the extent
of the stability region. Since the boundary conditions effectively embed the defect in a periodic lattice of defects, decreasing L de-"
creases the interdefect spacing, which has a cooperative destabilizing effect. Again, the stability criteria can be obtained in a given
situation by requiring that the roots of Pg(¢*)=0 lie to the left of the applicable stability curve. (c) A single defect in an infinite
domain L —» . The increase of the stability boundary with desorption can be clearly observed. The stability boundary in the case
Q=2 shown here agrees well with that of only modestly large values of L =2 and 4 shown in (a) and (b). We observe that an infinite
domain in spite of its capacity to accept material will not be stable if Pg(4) has any positive real roots. As before, stability criteria
can be obtained in a given situation by requiring that all the roots of Ps(1)*)=0 lie to the left of the applicable curve.
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D. Comments

We have introduced the concepts of multiple steady
states and stability, which will be used later in the paper.
We have also outlined a novel procedure that uses con-
formal mapping to gain insight into the way in which
various physical processes influence stability. Using this
approach it is possible to derive criteria for stability by
merely determining conditions under which a polynomial
equation will have roots in a transformed stability region.
We have derived stability criteria that will be used later
in the context of reactive trapping by defects on a catalyt-
ic surface.

The conformal mapping technique outlined in this sec-
tion can also be used to analyze the stability of diffusion-
localized-reaction problems in dimensions greater than
one. In this case, the domain functions ¢,{s) will be ex-
pressed in terms of eigenfunctions of the Laplacian
operator for the geometry of the defect surface. For ex-
ample, an infinitely long cylindrical defect with radius a
has a domain function

(s) D, (s j{w,(s)a)
¢i $= Io(wi(s)a) ’

where I is the zeroth-order modified Bessel function of
the first kind. Since the analysis that follows is essentially
restricted to one-dimensional problems we do not pursue
the higher-dimensional stability analysis here.

IV. REACTIVE TRAPPING BY DEFECTS:
THE CONTINUUM ASSUMPTION
AND THE EFFECT OF SMALL
SYMMETRY-BREAKING PERTURBATIONS
ON DESORPTION PROCESSES

In this section we analyze the effect of defects on
desorption from a catalytic surface using the continuum
model (2.1). The continuum model should provide a
good approximation to the physical situation when the
number of atoms between the defects becomes large. We
shall validate this statement. This one-dimensional mod-
el represents a lattice of parallel line or step defects on
the surface. We shall assume that a process of reactive
trapping at defects occurs in which the defects act as
sinks of material that ultimately desorbs as a product.
We investigate the effect of the distribution of defects on
the balance between the bulk desorption and the desorp-

tive process taking place at the defects themselves. -

A. Validation of the continuum approximation

In this section we consider a discrete physical system
comprising m +1 sites. The site with index O is assumed
to be a defect site at which reactive trapping occurs. Ma-
terial passes between neighboring sites on the surface by a
diffusion process with rate constant ky. Material is
desorbed from each site in proportion to the fractional
occupation 7); at the site with a rate constant k. Materi-
al is also adsorbed at each site at a rate I. At the defect
site, material is trapped with a rate coefficient
—kgs(1—ymn,), where 7, is the fractional occupation at
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the defect. The decrease of this rate coefficient with in-
creasing 17, incorporates an access limitation or satura-
tion process at the defect. The equations governing all
these processes are as follows: .

=k ¥ _;—kem+I —ks(1—yn,)m;8,0 ,
(4.1a)
(4.1b)

i=0,1,...,m
81, =0, n_;=7;.

Here A is the forward difference operator defined by
An;=m; ,1—n;, & is the central difference operator
defined by 8n;=m; 1—n;_y, §;; is the Kronecker delta
defined by 6, ;=0 if i#j and 1 if i =}, and 7, is the frac-
tional occupation. We notice from the boundary condi-
tions (4.1b) that Eqs. (4.1) determine the fractional occu-
pation of a typical defect in a periodic array of defects.
By symmetry only half of the interval between any two
defects is considered. .

Physically, the reactive-trapping process taking place
at the defect sites may represent the conversion at the de-
fects of the species under consideration to a different

. -species. The product species may be less important to the

reaction-diffusion process taking place on the surface, or
may be used by another reaction process that is decou-
pled from the original species other than through the
sources of the product species provided by the defects. In
the latter case, saturation of the defect site will occur if
the product species is formed at a rate larger than the
rate at which it is removed by the secondary decoupled
reaction system. Equations (4.1) are formally similar to
those used by Serri et al.! to model the effects of steps on
desorption of NO from a Pt(111) surface. Their model
differed from (4.1) in that the nonlinear term was located

.at two different points and represented accumulation of

material at a step owing to a difference between the in-
coming and outgoing diffusion rate constants. The pro-
cess of reactive trapping being considered in (4.1) is phys-
ically quite different from that of diffusion-based accumu-
lation.

In order to obtain a continuum approximation for the
above reactive-trapping model, we assume that m — o

‘and h, the distance between sites on the surface, ap-

proaches zero in such a way that mh =L =const. In this
limit we obtain

Jdu 9*
== K"z:_nu +f —Rg(1—pu)ud(x) ,

\ .
where D =h’ky, Q=kq, f =I1/h, Rgy=hkg, y=hy, and
u(x)=l1im, _¢(7; /h) is now the concentration of materi-
al at the point x. The appropriate boundary conditions

(4.2a)

for this problem are

a—u(x =+[,t)=0.
3x

(4.2b)
The steady-state solution for (4.2) is given by (3.3a) in
which the subscripts are dropped since we are only con-
sidering one species. The solutions to (3.3b) in this case
are

B+(B2—44c)'”?

il
0)=
u=(0) 24 ?

(4.3)



where
A=7R;g,
B =Rg+2Dwtanh(wL) ,
C=2ftanh(oL)/o .

In order to analyze the stability of these solutions, we use
the determinantal condition (3.11), which is thls case
reduces to

P*(s)=Rgs(1—-27u(0)) .

Combxmng (4.3) with (4.4) we can show that if the roots
u*(0) are real, then the stability criterion (3.13) is
satisfied by the negative branch of (4.3), while the positive
branch is always unstable. If the roots have imaginary
parts, the rate of adsorption f is so large that no equilib-
rium level due to trapping by the defect can exist. This is
beyond the regime of defect trapping in which we are in-

terested. —

In Fig. 2 we plot the steady-state concentration for a
number of discrete systems (4.1) having different numbers
of sites. Each of these discrete systems is approximated
by the same continuum model. The solutions to the ordi-
nary differential equations (4.1) of the discrete systems
have been generated numerically using Gear’s algorithm
for solving nonlinear ODE’s. We observe that there is a

close correspondence between all the discrete and contin=

uum models, which improves as the number of atoms in
the discrete model is increased. We see that the continu-
um assumption is valid even when there are as few as
2m =20 atoms between defects.

T F T T
1.00
0.90 CONTINUUM MODEL : SOLID .
0.80 DISCRETE MODEL : DOTTED T
’ NO. OF ATOMS : SYMBOL N
0.70 m=5 . i
= B . 1 i
=] m=10 4
E 0.0 L
g m=20 .
& 050 o
8 PARAMETERS
z
S 040 0=20 »
. D=0.0001 B
£=2.0 L
0.30 7=1.0 e
o 4 R =1.0 '
.20 ] 0.1 _
0.10 If |
0.00 L ; =
0.02 0.4 0:06 . 0.08 0.10”

X

FIG. 2. The steady-state concentrations for discrete systems
with reactive trapping at x =:0, and having 2m =10,20,40 inter-
defect sites, are compared with the continuum approximation to
these systems. As expected, the continuum assumption im-
proves as m increases. However, it is remarkable that the con-
tinuum approximation is this accurate for as few as 20 interde-
fect sites.
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B. The effect of symmetry-breaking
perturbations on desorption

In this section we consider the effect of symmetry-
breaking perturbations to the defects upon the desorption
processes on a surface with a nominal periodic array of

" defects. In the unperturbed case we assume that the de-

fects are located at x,=n2L so the continuum model is
of the form

2
S _pdh _guify E 8(x —x,)R(u(x)), (4.59)
ot 8 n=N
du
_(ir,t)=0 , (4.5b)
dx
u(x,0)=0

Here the reaction term R (u), which is generally non-
linear, is assumed to provide a model for the trapping

_effect of the defects, the length of the domain is

2r =2LN, and f is assumed to be constant.

“The analysis we present here will be primarily con-
cerned with reactive trapping at defects in which the de-
fects act as sinks of material. The defects then act as lo-
calized regions of desorption of final product material.
We shall distinguish between defect-based desorption and
bulk desorption that occurs' throughout the domain
[ —r,7]-—as represented by the term —Qu in (4.5a). The
reason for this distinction is that we may wish to consider
reactive trapping at defects in which the species under
consideration is converted at the defect to a different
species. This product species may be less important to
the reaction diffusion process taking place on the surface
and may, therefore, be regarded as removed from the sys-
tem. Observations of material desorbed from the surface
(ie, —0 f u dx) in this case will not detect the prod-
upt species although material has effectively been lost by
the system. Another situation that can arise is that the
species produced at the defects enters into another reac-
tive process decoupled from the original species. In this
case the balance between the defect desorption and the
bulk desorption becomes extremely important.

" Since the material is conserved, the steady-state total
desorption rate is just f—the rate of adsorption of ma-
terial to the surface (assuming the reaction causes no net
change in the total moles of all species together). There-
fore, the interesting quantity in the above situation is not
the total desorption rate, but the subdivision of the
desorption between the two desorptive processes de-
scribed above. To avoid confusion in the following
analysis, we refer to the bulk desorption process as the
desorption; the defect desorption process is referred to as
reactive trapping. Therefore, the average desorption rate
over the interval [ —r, 7] is defined to be

1 pr ‘
D=--[" Quadx . (4.6)

A convenient expression for the average steady-state
desorption rate over the interval [ —#,7] can be obtained

by integrating (4.5) with du /9t =0 to obtain
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1au'

1 N
ﬂ:;Dax +f+2r E R(u(x,,))

—r n=—N

1

4.7
2r @D

N
> R(u(x,))
n=—-N

=f+

using (4.5b).

For the purposes of the analysis that follows, we shall
place only a few restrictions on the form of the function
R{u) so as to admit a wide class of reactive-trapping
models. We shall assume that the domain of interest is
[0,u5] and that R (1) has the following properties:

(R1) R (u) is analytic on [0, ug].

{R2) R (0)=0. This ensures that if there is no material
on the surface, then no reactive trapping can take place

" at the defects. )

(R3) R(u)<0 for u €(0,ug). Since R is negative on
the domain of interest the defects act as sinks of material.

(R4) There exists a critical point uc €(0,ug) for which
R( Uc )=0.

_For u €[0,u.) we assume R'(u)<0. In this interval
an increase in the concentration u at the defect causes an
increase in the magnitude of the sink.

For u €(uc,ug] we assume R'(u#)>0. Within this in-
terval, an increase in the concentration u at the defect
causes a decrease in the magnitude of the sink. Physical-
ly, this represents a process of saturation or crowding at
the defect, which limits access to the defect. We assume
that R (ug)=0 so that the defect is eventually rendered
inoperative when the concentration at the defect reaches
a certain level. This access limitation mode can also be
interpreted as a saturation of the defect by the product
species in the reactive-trapping process. This will occur
if, for example, the rate at which the product species is
deposited is larger than the rate at which it is used by the
secondary decoupled reaction system.

(R5) R"(u)>0 for u€[0,ug]. This assumption re-
stricts the model to a single critical point u-. The possi-
bility of multiple critical points is not excluded by the
formal analysis that follows, but is excluded to simplify
the interpretation of the results.

. Assumption (R1) is formally fundamental to the analysis
that follows. Assumptions (R2) and (R3) ensure that the
defects represent reactive trapping of material. The im-
portance of (R4) is to include in the model a region of
enhanced trapping with increased defect concentration
followed by a region of access limitation or saturation
when the defect concentration is increased above a cer-
tain level. Assumption (R5) should be excluded if multi-
ple critical points are to be considered. The analysis that
follows applies to a wide class of reactive-trapping models
that satisfy conditions (R1)-(R5). In order to illustrate
this analysis, we shall make use of the following simple
model: )

R(u)=—(1—yuu . (4.8)
R (u) defined in (4.8) can be seen to satisfy conditions
(R1)=(R5) in which uc==1/2y and ug=1/y.
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1. The case of a single active site

It is illustrative to consider a symmetry-breaking per-
turbation to a single defect at x =0, which is initially at

~ the midpoint of the domain, to a new position x =¢. In

this case the solution is governed by (4.5) in which N =0
and r =L. This situation is of interest since it provides a
special case of (4.5) in which the effect of a symmetry-
breaking perturbation can be solved analytically. More-
over, if one were to assume that the effect of perturbing
one defect in (4.5) were so localized that even the nearest
neighbors were not influenced, then this simplified system
would provide an approximation to the case of the full
periodic array. We shall see that this simplified problem
does indeed exhibit similar behavior to that of the period-
ic lattice and provides a useful frame of reference to
separate effects of the periodic lattice from those that are
essentially local. We illustrate this special case using the
reactive-trapping model (4.8). However, the expressions
for the solution and the perturbed desorption rate are
provided in a form that applies to any defect trapping
model.
The solution to (4.5) with N =0, and r =L, is given by

L L coshfw(L +x)]

a o % oshlaL o] *<F
u(x)= n hlo(L —x) (4.9a)
. . COS. |CL) —X !

) lﬂ ue(e) cosh[w(L —&)]” *~F

where @=(Q/D)'/2. In the case of the reactive-trapping
model (4.8), u,(¢) is given by

2 72
2y
where T ={tanh[w(L +€)]+tanh[e(L —¢)]}wD. It

should be noted that when £=0 the perturbed solution
(4.9) reduces to the unperturbed solution given in (3.3).
The unperturbed (e=0) and perturbed (e >0) solutions
(4.9) for two different interval widths L are plotted in
Figs. 3(a) and 3(b). The parameters used in these two
cases were =2.0, D=1.0, f=2.0, £€=0.02, and
v =1.0; while the interval widths were L =0.1 and 0.2 in
Figs. 3(a) and 3(b), respectively.

Combining the determinantal condition (3.11) with the
stability criterion (3.13) we obtain the following stability
condition for the unperturbed solution u4(x):

R'(u4(0)) <2wD tanh(wlL) . (4.10a)
When R is given by (4.8),
—142yuy(0) < 20D tanh(wL) . (4.10b)

Making use of (4.9b) with £=0 it is possible to show that
if the roots are real, then the negative branch given in
(4.9b) is always stable. The situation of imaginary roots
corresponds to the input function f being so large that no
equilibrium level due the defect can exist. In this case an
equilibrium cdncentration f/Q will be achieved, which
represents a balance between adsorption and desorption
as if no defect were present. Since we are interested in

~
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FIG. 3. (a) The unperturbed and perturbed concentration profiles for the case of a single defect are plotted. The single defect may
be regarded as embedded in a periodic array of defects. The perturbation for this parameter set causes the defect to compete with its
closer neighbor for material to trap. This causes the desorption rate D(e) to be larger than the unperturbed desorption rate D(0). (b)
The unperturbed and perturbed concentration profiles for the case of a single defect are plotted. Again we regard the single defect to
be embedded in a periodic array of defects. The perturbation for this parameter set causes the defect fo cooperate with its closer
neighbor to reduce the local saturation level. This in turn causes the desorption rate D(e) to be smaller than the unperturbed desorp-
. tion rate 2(0). (c) The critical adsorption level f, is plotted as a function of L, the half-spacing between defects. To the left of or
below this curve the defects will act in a competitive fashion when perturbed and the perturbed desorption rate I(e) will be larger
than the unperturbed desorption rate 2(0). Above and to the right of this curve, cooperative behavior prevails. It can be seen that
for any adsorption level, it is always possible to achieve competitive behavior by decreasing the interdefect spacing 2L. This is due to
the strong interaction between defects that are close together. The asymptote L — oo in this figure corresponds to weak interaction
between neighboring defects. .

the case of the larger interval L =0.2 [shown in Fig.
3(b)], the unperturbed defect concentration is
u(0)=0.779 32, while in the perturbed case the defect
concentration is reduced to u.(£)=0.77875. The situa-
tion for the desorption rate, however, is quite different.
The unperturbed desorption rate is 2(0)=1.57006,
whereas perturbation decreases the desorption rate to
D(e)=1.56926.

In order to explain this phenomenon, we determine the

equilibria related to trapping by the defect, this level of
adsorption is beyond that in which we are interested.
Both the unperturbed solutions shown in Fig. 3 are
stable. In the case of the shorter interval L =0.1 [shown
in Fig. 3(a)] the unperturbed defect concentration is
u(0)=0.3974. Perturbation reduces the defect concen-
tration to u.(e)=0.3970. The desorption rate in the un-
perturbed case is D(0)=0.802 68, while in the perturbed
case the desorption rate increases to D(e)=0.80300. In



1744 ANTHONY P. PEIRCE AND HERSCHEL RABITZ 38

parameters that govern the perturbed desorption rate by
expanding D(¢g) in powers of e. Applying the perturba-
tion procedure that will be outlined in the next section,
we obtain the following expansion for the perturbed

|

desorption rate D:

.@(8)=$0+82$2+ T,

where D, is the unperturbed desorption rate and

D{[u(0)]+1[ug'(0)]} +2Dw tanh(wL){u((0)+L1ug (0)}

Dy=R"(1,(0))

Here [ ] denotes the jump-condition operator defined in
(2.3); uy(x) is the first-order perturbation function that
will be introduced in the next section; primes denote
- differentiation with respect to the appropriate arguments.

Making use of the differential equation (4.5a) (with
du /9t =0) and the jump conditions (2.3) it can be shown
that (4.11a) can be expressed in the form

R'(45(0))R (14(0))0*[ 1 —tanhX(wL)]
2Dw tanh(wL)— R (u4(0))

2D, = 4.11b)

We assume that the perturbations are made to the
stable steady states associated with reactive trapping by
-defects. Therefore, applying the stability criterion
(4.10a), we observe that 2D tanh(wL)—R'(u4(0))>0.
For reactive trapping by defects, (R3) implies that
R(uy(0)) <0. It follows that the sign of the perturbation
D, to the desorption rate is determined by the sign of the
gradient R'(u4(0)) of the reaction term prevailing at the
unperturbed defect. In particular, if R'(#4(0)) <0 then
D, >0, whereas if R'(u4(0)) >0 then D, <O0.

Two regimes of adsorption to the surface can thus be
identified. In the case of the reactive-trapping model
(4.8), the sign of R'(u,(0)) is determined by the condition

__[4Dwtanh(wL)+1]w o
fe= 8y tanh(wlL) >f=R"(uy)<0 "
_[4Dotanh(wL)+1]e _ .__ o, )

fe= 8y tanh(wL) <f=R'(uy)>0.

Here f. denotes the critical level of adsorption that
separates the two regimes of adsorption. To interpret
this condition physically, it is instructive to regard the
single defect as embedded in a periodic lattice of defects.
This assumption is valid in the unperturbed case =0,
since the solutions for the periodic lattice and the unper-
turbed defect are identical due to the symmetry of the
problem. We now assume that the perturbation of the
defect does not appreciably affect the solution of the con-
ceptual periodic lattice. In this case, within the interval
[—L,L] the solution to the perturbed lattice problem will
be approximated by (4.9), and the perturbation to the
desorption rate D, will be approximated by (4.11b).

If f <fc, R'(up(0)) <0, then it follows from (4.11b)
that the perturbation D, to the desorption rate is posi-
tive. The physical interpretation of this result is that the
perturbation causes the two defects in the lattice that are
moved closer to compete for material to trap. This com-
petitive behavior reduces the trapping efficiency of the

(4.11a)

2D w tanh(wL)—R'(uy(0))

lattice as a whole and the desorption rate increases. This
situation corresponds to the solution for L =0.1 shown
in Fig. 3(a), in which the concentration at the defect is de-
creased while the desorption rate is increased due to the
perturbation.

If f>fc, R'(uy(0))>0, then it follows from (4.11b)
that the perturbation D, to the desorption rate is nega-
tive. The physical interpretation of this result is that the
adsorption rate is sufficiently large that competition for
material by the two closer defects no longer dominates
the perturbation to the desorption rate. In fact, the
influence of the two closer defects on the desorption rate
is reversed. They now act in a cooperative fashion, each
reducing the access limitation of the other by reducing
the concentration locally. This situation prevails for the
solution in Fig. 3(b) in which both the concentration at
the defect decreased and the desorption rate decreased
owing to the cooperative behavior of the closest defects.

It is interesting to note that the change of the direction

in the condition (4.12) for the solutions given in Figs. 3(a) -

and 3(b) was achieved by increasing the lattice spacing
from L =0.1 in 3(a) to L =0.2 in 3(b) rather than by
varying the adsorption rate. This emphasizes that the re-
gime of operation (either competitive or cooperative) is
determined by a balance between the level of adsorption
Jf and the other parameters such as the interdefect half-
width L, the characteristic length scale of desorption
1/w, and the access limitation or saturation parameter y.
As an illustration, the dependence of the critical adsorp-
tion level f on L is plotted in Fig. 3(c). In the region
L > 1, the defects are sufficiently far apart for the defects
to act virtually independently. In this case f is insensi-
tive to small changes in L. In addition, weak cooperative

“behavior can be expected for relatively modest values of

adsorption, e.g., f=1.5. However, as L —0 the situa-
tion is reversed dramatically. In this case, defects in-
teract in a highly competitive manner due to their close
proximity, and will require high levels of adsorption f to
supply enough material to the surface to move the defects
into a cooperative regime. This high sensitivity of the
critical adsorption level f to small changes in defect
spacing emphasizes the enhanced effect defects have on
one another when in close proximity. Without such an
analysis, this complex behavior would be difficult to pre-
dict on the basis of physical intuition, especially in this
complex nonlinear environment. For comparison, the
level of operation of the two solutions plotted in Figs. 3(a)
and 3(b) are also indicated in Fig. 3(c) by the solid square
and circle, respectively.



We now comment on the above. o

(1) It should be emphasized that the solution glven in
(4.9a) and the expression for the perturbation to the
desorption given in (4.11a) apply for any analytic func-
tion R (u) that is used to model the trapping effect of de-
fects. The richness of information obtained using the
simple model (4.8) of reactive trapping at defects em-
phasizes the usefulness of the continuum model (4.5) and
the analytic tools that can be used to determine the struc-
ture of the solution.

(2) In the physical explanation for the phenomena ob-

served, we assumed that the defect was embedded in a.

periodic lattice of defects and that the perturbation of the
- defect has little effect on the solution in the lattice and
vice versa. In the next section we remove this assump-
tion by performing a perturbation analysis in which the

effects of the entire lattice are included. The effects due

to the lattice defects away from the perturbed defect can
then be identified clearly and contrasted w1th the s1ngle
defect case. -

2. Perturbation of a single defect
in a periodic array of defects

Readers more interested in the physical results may
omit the mathematical development presented in this sec-
tion and move to Sec. IV B 3 without a great loss of con-
tinuity.

Assume that the defect at Xo =0in (4.5) is perturbed to
Xo,e=€, while the remaining 2n defects remain _at
x,=2Ln, n=%x1,%2,...,=N. We assume a two-sided
perturbatlon expansion For the steady-state solution of

(4.5), which is of the form

—(x)+---,x<s .

e, X SES

ua(x)+eul_(x)-{—s2
ug(x) Fx)+euf(x)+e2uf (x)+ -

By allowing the freedom that results from the two-31ded
representation of u,(x), it is possible to express the ap-
proprlate jump COI‘ldlthﬂlS at x =€ in terms of jump con-
ditions in the perturbatlcm functions u(x) around x =0.

This subtle point is essential to be able to. obtain the¥

!

g (x)+etuz (x)+ -
u (x)

) +euf () + - -+ +eut (x)+eud

Therefore, we see that the odd perturbation functions
Uyk ,.1(x) are antisymmetric about x =0, while the even_

perturbation functions u,x(x) are symmetric about the

origin. Combining these symmetry conditions with (4.14)

we see, for example, that

uT(0)=—uy'(0), (4.173)
[#1(0)]=0, 4.176)
[ (0)]=0 . @178

We observe that the compatability conditions (4.14) and
the symmetry relations (4.17) place restrictions on the
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where

4.13)

+euT(x)+s?u§3§_--~
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correct expansions of the solution in the vicinity of the
singular points at which the derivative of the solution is
discontinuous. This device also allows us to take advan-
tage of the symmetry of the unperturbed lattice in order
to eventually solve the perturbation equations order by
order.

By requiring that u.(x) be continuous at x =¢ in
(4.13), by expanding the resulting condition about x =0
by Taylor’s theorem, and by equating hke powers in g, we
obtain the following conditions:

%> [14(0)]=0,
0)]+[4,(0)]=0,
M14-[u1(0)]+[u,(0)]=0,

e'> [ugl ‘
4.14
e> ug (0 @19 _

A

the operator [ ] is defined by [ug(0)]
=ug(0)—ug(0), and the prime denotes differentiation
with respect to x.

Combining the two-sided perturbation functions ui

- into a single function order by order, we see that (4. 14)

requires that uy(x) is continuous at x =0, while u,(x)
has a jump at x =0, the magnitude of which is —[u¢(0)],
and so on. )

By the symmetry of the problem, the solutions for a

~ positive (¢ >0) and negative (e<0) perturbation are re-

lated by

u(—x)=u_,(x) . (4.15)

~We now decompose u.(x) into symmetric and antisym-

metric parts:

u (x)=ui(x)+ul(x)
=3luex) +u(—0)]+ lu ) —u(—x)]

=lue(x)+u_()]+3lulx)—u_(x)]

by use of (4.15). Therefore,

, for x <¢

, forx >e. (4.16)

.
two-sided perturbation functions u;f(x), which eliminate
the extra freedom introduced mto the representation
(4.13).

"The remaining conditions on the #(x) come from the
boundary-value problem (4.5) with du / 9t =0, namely,

O=u(x)—w ue(x)-l--j—p

3 S(x —&)R(u.(x))

N .
+ 3 8(x —x,)R(u,(x))

n=-—N

(n0)

(4.18)
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here o=(Q/D)!2, together with boundary conditions
(4.5b).

In order to determine the equations governing the per-
turbation functions ug, we use the Jjump-condition form
(2.3). We substitute (4.13) into the jump conditions ob-
tained from (4.18), expand ug(c) and ug(c) about x =0,
expand R about uy(0) for the defect at x =0, expand R
about uy(x,) for the remaining defects in the lattice, and
gather like powers of €. In order to have a definite prob-
lem we choose € >0 and pay due attention to the side of
the representation (4.13) involved in the expansion pro-
cess described above. The perturbation equations are

s°>u(')’(x)+w2uo(x)+-£-=0 ,

Dlug(x,)]=—R(uy(x,)), n=0,£1,£2,...,+N ;

el>ul(x)+ou,(x)=0 (4.192)
Df[ug(0)]+[ui(0O)]}

=—R"(ug(0N{ug’(0)+u7(0)}, (4.19b)
Dlui(x,)]=—R"(ug(x,Nu,(x,), n =%1,%2,...,%N;

e2> ul (x)+0u,(x)=0

D{1[ug(0)]+[uf (0)]+[u§(0)]}
ug(0) | '
=—R"(uy(0)} 3 +u3(0)+u,(0)
ll(O) _, 2
+=——[ug"(0)+uT(O)]*, (4.19¢)
D[u'z(x,,)]=—R’(u0(x,,))u2(x,,)
RII (O
—~Q+”—u%(xn), n=+1,+2,...,£N.

a. Zeroth-order system. We observed that the zeroth-
order system (4.19a) corresponds to the unperturbed
periodic lattice. The solution to this system is given by
(4.9a) in which we choose =0 and use periodic con-
tinuation to determine the solution throughout the
domain [ —r,r]. The stability of this solution is deter-
mined by the criterion given in (4.10a). In the case of the
reactive-trapping model (4.8), uy{(0) is given by (4.9b),
and the stability criterion is given by (4.10b). The same
physical interpretations of real and imaginary branches
of (4.9b) hold.

b. First-order system. Combining the fact that u,(x) is
antisymmetric about x =0 with the conditions (4.17), we
see that the system (4.19b) on the interval [0,r] can be
rewritten as

ez 2+ R'(u(0)) X +
ui"(x)+o*ut (x)-l——D—— > 8(x —x,uf(x)=
n=1
(4.20a)
together with the boundary conditions
T0)=—uf’'(0),
(4.20b)

ut'(r)=0.
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Notice that we have used the periodicity of uy(x) to write
R'(ug(x,))=R"(uy(0)). In the remainder of the analysis
of the first-order system, we shall omit the superscript -+
foru,ie, ut —u,.

As a matter of computational convenience, we assume
that N,r— o so that we have an infinite lattice. If we
make this assumption on the zeroth-order system, then
our system would involve an infinite amount of material
that is physically inadmissible. However, we expect the
perturbation function u; to decay away from the per-
turbed point. In order that the perturbations should not
involve an infinite amount of material, we assume that
the perturbation function u, is absolutely integrable on
[0, ). This assumption has distinct computational ad-
vantages since (4.20) is reduced to solving a Dirichlet
problem on the half-line.

In order to solve this problem we use the following
Fourier sine transform pair:

(k)= [ sin(kx)u (x)dx , (4.21a)

u(x) =2 [ sin(kx)a, (k)dk (4.21b)
mJo

Applying the transform (4.21a) to (4.20) and inverting us-

ing (4.21b) we obtain

uy(x)=—ug'(0)e~2lxI

R'(u(0)) _
+ 20D

—o|x—x, | —wl|x+x, |
—e

n)l(x)-

(4.22)

Equation (4.22) expresses the solution u;(x) to (4.20) in
terms of the values u;(x,) at the defects. By choosing
x =x,, m=0,%1,... we obtain a summation equation
(analogous to an integral equation) for the lattice point
values u(x,). In fact, by letting L —0 we could approx-
imate (4.22) by an integral equation. However, we do not
pursue the approximate solution in this limiting case,
since it is possible to solve (4.22) using discrete Fourier
transforms.
We define the discrete sine transform pair

fstu,}=u,(§)=2L 3 u,sin(éx,) ,

n=1
(4.23a)
2 /2L .
u, == [ 7w, sin(ex, g
and the discrete cosine transform pair
Sfelu,}=u(E)=Luy+2L 3 u,cos(éx,),
=1
! (4.23b)

=2 [ ", (8) costx, dE

The discrete transforms (4.23) have the following com-
bined convolution property:
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© ing (4.28b), we obtain
AAEWE)=Fs |[L 3 vy _py—Vpim) |- (424 )
m=1 R (uO(O)) d —o|x—x,
uz(x)=—2wﬁ~— 2 uz(x,, Je
We now apply the finite sine transform (4.23a) to (4.22), n=—co
use the convolution property (4.24), the definition of the 1 —o]x—x, |
cosine transform (4.23b), and the inversion formula given + oD > a,e " (4.29)
in (4.23a) to obtain the solution of (4.22): o , n=—cw
Equation (4.29) expresses the solution u,(x) to (4.27) in
=u(0)6", 4.25 2
uylx,)=u,(0) #-23) terms of the values u,(x,) at the defects. The values
where 0=B—(8>—1)/? and - uy(x,) at the defects can be determined by letting x =x,,
R'(u (0)) - . in (4.29) and by solving the resulting summation equa-
B=cosh(w2L )——— "o -sinh(2wL) . tion. This summation equation reduces to an integral
20D ' equation in the limit L —0.
It should be noted that the stability criterion (4.10a) In order to solve the summation equation (4.29), we in-
guarantees that 8> 1, which ensures that 6 < 1. It follows troduce the following exponential transform pair:
that u,(x,)—0 as n— oo, which is consistent with the _ ® —itx
boundary conditions (4.20b). - felu,}8)=ua,(§)=2L 3 e Tu,, (4.30a)
In what follows we will require an expression for u 1(0) =T
in order to determine the perturbation to the desorption _1 pmnL igx,
rate. By differentiating (4.22), letting x —0%, and using “=ord aa® Ze(£)dE - (4.30b)
the boundary condition (4.20b) we obtain The discrete exponential transform (4.30) has the follow-
R’ (u (0)) = e ing convolution property:
2} (0)=oud'(0) |12 3 e | . (426 PrOPErLY
" 71 (EW(E)=f, 2L 3 upV,_p ](E) . 4.31)
¢. Second-order system. The second-order system m=—c

(4.19¢) can be rewritten in the form Taking the discrete exponential.transform of (4.29) and

R’ (uo( 0)) v B exploiting the convolution property (4.31) we obtain
> > 8(x —x,)uy(x) sinh(2wL)f, {a, }(§)
. n=—N T ’fe{uZ(xn)}(§)= ’
) 20D [f—cos(2£L)]
+5 E 8(x —x,)a, =0, (427  where Bis defined in (4.25).
n=—N . To obtain the solution u,(x,) to (4.29) we can apply
where ‘ .. the inversion formula (4.30b). However, for our purposes
. . in what follows, it suffices to determine 3°__  u,(x,).
ao=D {[u{(0)]+3{ug (0)]} Since u,(x,) is absolutely summable, we nobserve fr(')lm

ul (x)+ou,(x)+

(4.32)

1! (0) (4.30) that the above summation can be evaluated directly
+R"(ue(0)) |u1(0)+ 5 , ~ by considering feluy(x,)}(0)/2L, which can be deter-
mined by letting £=0 in (4.32). Following this procedure
R"(u4(0)) ) - we obtain
a,= uilx,), n==*1,%£2,...,£N .
2 i “

Notice that we have used the periodicity of uy(x) to write i (% )= nom g

R'(ug(x,))=R'(uy(0)). We have also used (4.17a), W 220 0= D tanh(@L)— R (19(0)) (4.33)

which eliminates the R" term from a and (4.17b),

which implies continuity of u] at x =0 and allows us to

replace the negative branch u 7’ in (4.19¢) by u . 3. The perturbation to the desorption rate
We again assume, as a matter of computational con-

venience, that we have an infinite lattice and that the per-

turbation function u, decays sufficiently rapidly away

from the perturbation point to be absolutely integrable orn

(—c0,00). To solve (4.27) we use the following exponen-

The ultimate objective of this analysis is to determine
the influence of perturbing the defect at x =0 on the
desorptlon rate . We use the expression (4.7) to deter-
mine the perturbed desorption rate D(e):

tial Fourier transform pair: C D(e)=Dy+eD+eXDy+ - - - (4.34a)
2= [ e ™u(x)dx , (4.282) _f+—— R(u,(e)+ z Rluyx,)) |. (4.34b)
—c0 s T n=—N
1 reo gon o (no20)
u()=5— [ ™ alkidk . ~ (4.28b) ”

Following the same procedure used in (4.18) to expand
Taking the Fourier transform of (4.27) and inverting us-  R(u.(x)) about the points x =0,%2L,..., we obtain
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the .following expressions for 2, :

N
ﬂ(l:f—'-zL 2 'R(uo(x,,)),
rn=—N
R'(ug(0)) | N :
1:——29_ uz O 4+uT O+ 3 ulx,) |,
r n=—N
(n£0)

R'(uy(0)) [ug"(0)

N
+uT' O+ 3 uylx,)

2y 2 N
R"(ug(0)) | _
+_r— {uo (0)+u1(0)}2
N
+ 3 uilx,) |, 4.35).
n=—N
(n0)

We observe that Dy is the unperturbed desorption rate.
Using the condition (4.17a) and the antisymmetry of
u{x) we see that D;=0. This demonstrates that the per-
turbation to the desorption rate does not depend on the
side to which the defect is perturbed, which is consistent
with physical intuition.

In order to use (4.26) and (4.33), which were derived as-
suming an infinite periodic lattice of defects, we assume
that #,N >>1. In this case the error committed by using
these infinite surface formulas is negligibly small.

Using the condition (4.17a), the antisymmetry of u,(x)
about x =0, and substituting (4.26) and (4.33) into (4.35)

‘we obtain
2r:z>22?1‘;—F D[} (0)]+1[ul (0)]} +LTul (0)

+Toug'(0)

__RL e n, ~9%,
1 wDEGe H

n=1

’ 2 "o
{ugij);lTR $ o,

n=1

(4.36)

where T =2wD tanh(wL), R'=R'(uy(0)), and R"
=R"(uy(0)). The approximate equality ~ results from
the infinite lattice approximation.

We now use the fact that the perturbation functions
ug(x), . . . satisfy the differential equations in (4.19a),. . .
respectively, the jump-condition form (2.3), the nonlinear
equation (3.3b) which is satisfied by u(0), and then sum
the series in (4.36) to obtain

into a periodic lattice of defects in which symmetry-
breaking perturbations to the defect were assumed not to
affect the solution in the lattice. Equation (4.37) is an ex-
pression for the perturbation to the desorption that in-
cludes the effects of the entire lattice of defects. Compar-
ing (4.11b) with (4.37) we see that when the effects of the
lattice of defects are included, a tanh(wl.) is replaced by
the term in square brackets in (4.37) and an additional
term appears that depends on the curvature R” of R at
the unperturbed defect concentration u4(0).

We now consider the effect on the desorption rate of
perturbing a single defect in a periodic lattice. If D, is
positive (negative) then the desorption rate is increased
{decreased) by perturbing the defect.

In the analysis that follows, we assume that we are con-
sidering perturbations to the stable steady states associat-
ed with reactive trapping by defects. Therefore, applying
the stability criterion (4.10) we observe that in (4.37),

T—R'>0. (4.38)

Applying the property (RS), the fact that 6<1 for a
stable system, and (4.38) we observe that the second term
in (4.37) is always positive. We observe the following
properties of the expression for 0, given in (4.37).

(I) For values of uy(0)E€(0,uc), D,>0. To demon-
strate this result we consider the sign of the first term in
(4.37) when u4(0)E(0,uc). According to (R4), R’ <0 for
this range of values of 14(0). Now define & to be the ex-
pression in curly brackets in (4.37), namely,

2ae ~2¢Lg
S(wL,a)=1—tanh(wl) l_——eTLG
where = |R'| /20D and we have used the fact that
R'<0. We now look for the roots of &, which can be

shown to be given by the solution of

1+ , (4.39)

a[(1+a)et —2qe?l —(1—a)]=0 . (4.40)
We observe that & is zero when

a=0, (4.41a)

e?l=1, (4.41b)

ez“’L=l—ﬁa~ . - (4.41c)

From (4.41a) we see that & has a root when R'=0, which
does not occur in the interval (0,uc). From (4.41b) we
see that & has a root when wL =0. This root corre-
sponds to an infinite number of defects in which case
ug(0)=0&(0,uc). Since © >a>0 we see that (4.41c)
has no solution for positive (i.e., physically admissible)

’ 2
2rDy ~ R R,“,‘?T L elme o eree - - := = =-yalues of wL. Therefore, we conclude that & has no roots
T—R . . for u(0)E(0,uc). We also note that the root (4.41b) is
R’ e—20Lg associated with the end point u =0 of the interval, while
X {1—tanh(wlL) I—Z)—D_ 1o —telg } the root (4.41a) is associated with the end point u.. Since
the interval (0,u ) is open these points are not included.
TR"R? g2 Since & has no roots in (0,u¢) we need only determine

— . o (437
4D¥T —R’') 1 —6* @37

In Sec. IV B 1 we consider a single defect to be embedded

the sign of 6 at one point in the interval (0,u.). We
achieve this by considering the limiting case
0<—R'/20D =a << 1, for which
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14+a(l+at)e 2L —(1—qa)’e 4L
1+e_2“’L—(1—a)e —4wL_(1~_a)e——6wL
4.42)

This expression is positive, provided that O<wL < .
We conclude, therefore, that u €(0,u.) implies that

&~ —2wL

&>0. Since both R and R’ are negative on (0,uc) we

conclude that D,>0 on (0,uc). v
(II) For values of uy(0)E (ug,ug), D, may be positive
or negative. However, for values of uy(0) remote from
the critical point u¢, D, <0. From (4.37) it can be seen
that when R’> 0 the term in the curly brackets is always
positive. Therefore, the first term in (4.37) is then always
negative. The sign of 2, now depends upon the relative
magnitudes of the first and second terms in (4.37). In or-
der to demonstrate a regime of desorption in which
D, <0 assume the following: we have a relatively large
value of adsorption f that admits a steady-state defect
concentration uy(0)E(uc,ug) for large values of wlL,

which is not close to uc, i.€., R'(uy(0))>>e~2E. For

wL >>1, we have

. ' 2 v, —4ol
TRuRZ e—4wL
i ol (4.43)
+ 4D¥T—R') |1-R

We observe that provided the curvature R''(u4(0)) is
bounded, the first term will dominate when oL >>1.
Since R’ >0and R <0 we conclude that D, <0.

In Fig. 4 we illustrate the various regimes of desorption
for a periodic lattice of defects using the simple reactive-
trapping model (4.8). 2rD, as given by (4.37) is plotted as
a function of L assuming that the other parameter values
are fixed at the values D =1.0, f=1.4, 0=2.0, and
¥=1.0. By allowing L to increase we are effectively in-
creasing the steady-state defect concentration ug(0).
This allows both intervals (I) u,(0)€(0,uc=) and (ID)
uo(0)E(ug,ug=1) to be accessed and the behavior of D,
to. be observed. In order to see the relationship between
D, and R’, R' is also plotted in Fig. 4 in the vicinity of
the value of L =0.3356 at which R’ changes sign.

In Fig. 4 the perturbation D, to the desorption is clear-
ly positive in the region (I) 0 <L <0.3356 within which
the gradient R’ is negative. Within the region (II)
0.3356 <L <2.0, D, is initially positive and smalil [con-
sistent with the first term of (4.37) vanishing at
uo(0)=uc] after which I, becomes negative and exhibits
the asymptotic behavior predicted by (4.43) as L in-
creases. -

It is interesting to note that 7, reaches a maximum
value at about L =0.1. Physically this implies that in the
range 0 <L <0.1, there is such a high density of defects
that the perturbation of just one defect starts to lose its
dominant effect as L is decreased.

4. Comments

We have considered a class of continuum models
representing reactive trapping by defects. We investigat-
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FIG. 4. The function 2+, represents the perturbation to the
desorption when the effects of all the defects in the periodic lat-
tice are included. We notice that in region (I) R’ <0 and D, > 0.
In region (II) D, is initially small and positive in the vicinity of
the critical point at which R’=0. Away from this point D, is
clearly negative with an asymptotic behavior given by (4.43).

ed the influence of defect locations on the balance be-
tween desorption associated with defects (which we re-
ferred to as reactive trapping) and bulk desorption (which
we referred to as desorption). In order to analyze the
effect of defect locations, we considered symmetry-
breaking perturbations to a single defect in a periodic lat-
tice and measured the effect on the desorption rate.

For the class of reactive-trapping models (R1)—(R5) it
is possible to identify two regimes of desorption. In the
region in which R’(u) <0, competitive behavior between
the two defects that are moved closer together by the per-
turbation reduces the trapping efficiency of the lattice of
defects as a whole, and the bulk desorption rate increases. .
In the region in which R'(u)> 0 the desorption rate may
be either increased or decreased by perturbing a defect.
However, for nominal values of # which are remote from
the critical point uc: R'(uc)=0, the bulk desorption
rate can be shown to decrease as a result of perturbing a
defect. In this regime, the defects that are moved closer
together by the perturbation exhibit cooperative behav-
ior. Each reduces the access limitation or saturation level
of the other, which enhances the trapping efficiency of
the lattice of defects as a whole.

These interesting phenomena may at first sight seem
intuitively obvious. However, the following argument
might be made for either enhanced or reduced competi-
tiveness to occur: The defect that is moved by the pertur-
bation is moved closer to one of its neighbors and farther
from the other. This defect will experience enhanced
competition with its nearer neighbor and reduced com-
petition with the farther neighbor. It is in this situation

of competing effects that a detailed quantitative account
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of all the opposing physical processes is necessary in or-
der to decide which dominates. Therefore, without an
analysis such as that presented in this section, it would be
extremely difficult to determine which of the intuitively
predictable processes dominate in this nonlinear environ-
ment.

If small random perturbations of the order of & were
made to the locations of all the defects, then the equa-
tions governing the perturbation functions u,(x) and
u,(x) would be of the same form as (4.19b) and (4.19¢),
respectively. Since these equations are linear, the solu-
tions u,(x) and u,(x) can be expressed as a superposition
of solutions in which each defect is perturbed one at a
time. The perturbations to the desorption rate could
then be expressed in terms of the single-defect perturba-
tion functions. The importance of this superposition
property is that we can expect similar competitive and
cooperative behavior when all the defects undergo small
periurbations.

If we consider the steady bulk desorption rate to be a
function of the locations of the defects, then in the regime
R'(u) <0 the uniform spacing of defects is a local
minimum of this desorption rate function. The fact that
we have only identified a local minimum is due to the as-
sumption of small perturbations. We shall investigate the
issue of finite perturbations and global minima numerical-
ly in the next section.

Since only the requirement (R1) [that R (u) be analytic]
is formally fundamental to the analysis, the analysis pro-
cedure outlined could be applied to investigate the effect
of defect locations in other physical situations. The prop-
erties (R2)~(RS) used to build the features of reactive
trapping by defects into the model are by no means ex-
haustive. Other features that could be included are, for
example, multiple cycles of enhanced trapping and access
limitation provided that the fundamental requirement
(R1) is retained. However, the model already treated en-
compasses all the anticipated basic physics. The same
techniques could be applied to the case of more complex
chemistry with several species.

V. THE DESORPTION RATE
FOR A RANDOM DISTRIBUTION
OF DEFECTS -FINITE PERTURBATIONS

In Sec. IV we identified a regime of desorption from a
surface with a periodic array of defects in which a small
perturbation to one of the defects caused an increase in
the rate of bulk desorption from the surface. Therefore,
by regarding the bulk desorption rate as a function of the
defect locations, we see that the uniform spacing of a
given number of defects is a local minimum of the func-
tion. It is natural for realistic practical situations to con-
sider the effect of finite perturbations and the issue of a
global minimum of the desorption function for a given
number of defects.

The problem of finite perturbations requires numerical
calculations. The implementation and convergence of the
boundary-element (BE) technique for solving linear
diffusion problems with localized nonlinear reactions has
been discussed by the current authors.!>* We use the
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BE technique to determine the steady desorption rate
when the defects are randomly distributed throughout
the surface. For the purposes of this study we use the
simple reactive-trapping model (4.8).

A. Finite perturbations in the competitive regime

We consider an array of ten defects that fall in the
competitive regime when they are distributed uniformly
throughout the interval [0,2]. In this case the interdefect
spacing is 2L =0.2, while the other parameters defined in
Sec. IV are 1=2.0, D =1.0, f=2.0, and y=1.0. This
parameter set for the uniformly distributed array of de-
fects is precisely that used in Sec. IVB 1 to demonstrate
competitive behavior between neighboring defects. The
unperturbed solution and the solution assuming a small
perturbation in the single-defect case is shown in Fig.
3(a). In terms of the critical adsorption level f,, this pa-
rameter set corresponds to the competitive regime denot-
ed in Fig. 3(c) by a square symbol. The unperturbed
desorption rate for this parameter set is 2(0)=0. 8027.

We now introduce finite random perturbations to the
defect locations and determine the corresponding bulk
desorption rate D using the BE technique. In Fig. 5 the
steady-state concentration profile across the interval
[0,2.0] is plotted in the case of evenly spaced defects and
a particular random selection of defects. The locations of
the randomly spaced defects are indicated in Fig. 5 by
solid circles. The desorption rate in the case of the finite
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FIG. 5. The steady-state concentration profile for a uniform-
ly spaced set of ten defects is plotted with a solid line. These de-
fects are assumed to undergo finite random perturbations and
the steady-state concentration profile is plotted with a dotted
line. The location of the random defects are denoted by the
solid circles. The small perturbation theory predicts that the
uniform defects are in the competitive regime. Thus the desorp-
tion rate is expected to increase. The desorption rate increased
from D=0.8027 for the uniform distribution to 0=0.8235 for
the randomly perturbed defects. Thus the competitive behavior
persists even when there are finite perturbations.
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random perturbations increased to the value of 0.8235.
Thus even finite perturbations to defects in the competi-
tive regime cause the bulk desorption rate to increase.

In order to establish whether this is an isolated in-
cident the perturbation procedure was repeated 800 times
with a different random defect distribution in each case.
The average bulk desorption rate for all these random de-
fect distributions was 0.8457. In Fig. 6(a) the frequency
distribution of the desorption rates of all the defect distri-
butions is plotted. For reference the uniform desorption
level D(0) is denoted by the triangular symbol. From the
enlargement plotted in Fig. 6(b) it can be seen clearly that
there was no incidence of a defect distribution below
D(0). o

Although this random sampling method does not pro-
vide a proof that the periodic spacing is a global
minimum, it does provide statistical evidence for this
claim. .

B. Finite perturbations in the cooperative regime

We consider an array of five defects that fall in the
cooperative regime when they are evenly distributed
throughout the interval [0,2.0]. In this case the interde-
fect spacing is 2L =0.4, while the other parameters
defined in Sec. IV are 0=2.0, D=1.0, f=2.0, and
y=1.0. The parameter set for this uniformly spaced ar-
ray of defects is that used in Sec. IVB1 to demonstrate
cooperative defect behavior. The unperturbed solution
and the solution assuming a small perturbation in the sin-

gle defect case are shown in Fig. 3(b). In terms of the

critical adsorption level f,, this parameter set corre-
sponds to the cooperative regime denoted in Fig. 3(c) by a
solid circle. The unperturbed desorption rate for this pa- .
rameter set is 2(0)=1.5701. )

As was done in the previous case we introduce finite -

random perturbations to the defect locations and deter-

mine the corresponding steady solution and desorption
rate using the BE technique. In Fig. 7 the steady-state
concentration profile across the interval [0,2.0] is plotted
in the case of uniformly spaced defects and in the case of
a particular random selection of defects. The locations of
the defects are indicated in Fig. 7 by solid circles. The
desorption rate in this case of finite random perturbations
is decreased to the value D=1.4614. This is consistent
with the fact that defects that are moved closer together
act cooperatively to reduce the local saturation level so
the bulk desorption rate decreases. This result demon-
strates that the defects still operate in the cooperative re-
gime even when the defects undergo finite perturbations.
In order to establish whether this is an isolated in-
cident, the perturbation procedure was repeated 400.
times with different random defect spacing in each case.

The average bulk desorption rate for all these random de- _

fect distributions was 1.4572. In Fig. 8 the frequency dis-
tribution of the desorption rates of-all the random defect
distributions is plotted. For reference the uniform
desorption level D(0)=1.5701 is denoted by the triangu-
lar symbol. It can be seen that there was no incidence cf
a defect distribution above 2(0). This indicates that the
cooperative behavior that was established theoretically in
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FIG. 6. (a) The frequency distribution of the desorption rate
D is plotted for 800 different perturbation cases. We use the
same parameter set as that in Fig. 5 so that the ten uniformly
spaced defects are in the competitive mode. The desorption rate
D(0)=0.8027 for the uniform distribution of defects is indicat-
ed by a triangular symbol. Clearly there was no incidence of a
perturbed defect set that had an associated desorption rate that
was lower than 2X(0). This provides statistical evidence for the
claim that the desorption rate is a global minimum when the de-
fects are evenly spaced. (b) The frequency plot in (a) is enlarged
in the vicinity of the desorption rate 2(0) of the evenly spaced
defects. The triangular symbol indicates the level of 2(0) of the
uniformly spaced defects. The circular symbols indicate the fre-
quency at the midpoints of the sampled intervals.

the small perturbation case persists even when the defects
are subjected to finite random perturbations.

VI. COMMENTS AND CONCLUSION

We have considered the linear diffusion equation with
localized nonlinear reactions. This class of equation has
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FIG. 7. The steady-state concentration profile for a uniform-
ly spaced set of five defects is plotted with a solid line. These
defects are assumed to undergo finite random perturbations and
the steady-state concentration profile is plotted with a dotted
line. The locations of the random defects are denoted by solid
circles. The small perturbation theory predicts that the uni-
formly spaced defects are in the cooperative regime so we expect
the desorption rate to decrease. The desorption rate decreased
from D(0)=1.5701 for the uniform distribution to H=1.4614
for the randomly perturbed defects. Thus the cooperative be-
havior persists even when there are finite perturbations.

been considered by a number of authors in the context of
membrane bound enzymes,’~!! cooperative instability
phenomena in arrays of catalytic sites,® and enzyme par-
ticles in stirred reacting fluids.!> We have considered the
diffusion-localized-reaction equation in the context of a
continuum approximation to study the effect of defect
sites on a catalytic surface.

We have outlined a novel procedure that uses confor-
mal mapping to determine sufficient conditions for linear
stability of steady states. This technique enables one to
reduce the complex problem of determining conditions
under which roots of a transcendental equation lie in the
region Re(s) <O to that of determining conditions under
which a polynomial equation has roots in a transformed
stability region. In addition to being able to derive stabil-
ity criteria for given situations, the technique provides
useful insight into the way in which the various physical
processes influence stability by altering the slope and ex-
tent of the stability region. The procedure was intro-
duced by means of some simple examples, and we dis-
cussed the manifestation of the various physical processes
by the way they deform the various stability regions. Us-
ing this technique it was possible to derive stability cri-
teria that were used later in the paper.

We considered a class of models in which a process of
reactive trapping with eventual saturation is assumed to
take place at defects. In the context of such models, we
assessed the continuum assumption by comparing the
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FIG. 8. The frequency distribution of the desorption rate D
is plotted for 400 different perturbation cases. We use the same
parameter set as that in Fig. 7 so that the five uniformly distri-
buted defects are in the cooperative mode. The desorption rate
D(0)==1.5701 for the uniform spacing of defects is indicated by
a triangular symbol. There is no incidence of a perturbed defect
set for which the desorption rate was larger than 2(0). This
provides statistical evidence that the cooperative phenomenon
established by the small perturbation theory persists when finite
random perturbations are applied.

continuum approximation to the steady states of a
discrete defect model. The continuum approximation is
already seen to be remarkably good even when the num-
ber of sites between defects is as low as 20.

Having validated the continuum model, we used it to
analyze the effect of the distribution of defects on a sur-
face upon the desorption processes on the surface. In
particular, we considered the effect of small symmetry-
breaking perturbations to the defects in a periodic array
on the balance between the desorption processes taking
place on the surface.

A number of interesting phenomena were observed..

(i) Competitive behavior. There is a regime in which
competitive behavior occurs between defects that are
moved closer by perturbation. This reduces the trapping
efficiency of the lattice of defects as a whole and the bulk
desorption rate increases as a result. If the desorption
rate is regarded as a function of the defect locations, then
the uniform distribution of defects forms a local
minimum of this desorption function.

(ii) Cooperative behavior. A regime of cooperative be-
havior can be identified in which defects that are moved
closer by the perturbation mutually reduce the saturation
effect locally. This increases the trapping efficiency of the
lattice of defects as a whole, and the bulk desorption de-
creases as a result. Near critical points of the.reactive-
trapping model, we demonstrated that cooperative behav-
ior does not necessarily dominate the perturbations to the
desorption process. .

If physical intuition is used to attempt to predict the



effect of such perturbations, then it is likely that ambigu-
ous conclusions will arise. This stems from the fact that
there are a number of competing physical effects that
could make the desorption rate increase or decrease.
Thus an analysis is required which provides a detailed
quantitative account of all the competing physical pro-

cesses in this nonlinear environment in order to deter-.
mine which process dominates. We outlined a procedure: _

which enables one to identify the dominant physical pro-
cesses, and to identify features of the reactive-trapping
model that determine the regime of desorption in a given
situation. This procedure makes use of a two- sided per-
turbation representation, which introduces more freedom
into the representation than can be determined by the
governing differential equation and boundary conditions
alone. This additional freedom is removed by requiring
that the solution be continuous and that the representa-
tion satisfy appropriate symmetry conditions. This de-
vice allows us to obtain the correct expansions in the vi-
cinity of the singular points at which the derivative of the
solution is discontinuous. It also enables us to take ad-
vantage of the symmetry of the periodic lattice in order
to solve the perturbation equations order by order.

This procedure is quite general in that it applies for a
large class of reactive-trapping models and can also be
used to analyze situations in which different physical pro-
cesses take place at the defects. The perturbation pro-
cedure can also be extended to analyze the effect of
symmetry-breaking deformations to defect manifolds in
dimensions greater than one.

We investigated numerically the effect of finite random
perturbatlons to defect locations on the bulk desorption
rate using the boundary-element technique. An illustra-
tion was provided in which the effect of finite random
perturbatlons to a uniform lattice in the competitive re-
gime still increased the bulk desorption rate. By per-
forming a large number of such finite random perturba-
tions, statistical evidence was provided for the claim that
the desorption rate considered as a function of the defect
locations has a global minimum when the defects are
evenly spread. A similar experiment was performed for

the cooperative regime in which the findings of the small
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perturbation analysis were also corroborated.

These analytical and numerical investigations of the
properties of the continuum model of defects on surfaces
have led to the identification of interesting competitive
and cooperative phenomena. The current study also
demonstrates the usefulness of such continuum models in
that they provide access to powerful analytic tools that
can be applied to the problem. Similar nonlinear compet-
ing effects were found to operate in cases of active site
poisoning of catalytic surfaces. 5

The same class of reactive-trapping defect reactions
have been investigated numerically for defect structures
on two-dimensional surfaces.'> The effect of changes in
defect geometry on the balance between the desorptive
processes were explored in that study. A richer class of
competitive and cooperative phenomena occurred in the
case of the two-dimensional defect structures than oc-
curred in the case of the one-dimensional defect arrays
considered in this paper. First, strong intrinsic competi-
tion occurred for circular defect structures that formed
islands of nearly constant concentration. Second, materi-
al along V-shaped defect structures was found to be dis-
tributed in a way that reflects the relative competitiveness
of defects on opposite sides of the defect structure. The
phenomenon of maximum competitiveness demonstrated
in ‘Fig. 4 also occurred in the case of V-shaped defect
structures. The V-shaped defect structures exhibited a
region of maximal competitiveness away from the vertex
along the axis of symmeiry. Third, in two dimensions,
defect distributions that are less regular in shape were

found to be less competitive than defect structures which

had the same defect length but which had greater symme-
try.
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