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Developing numerical schemes to model the evolution of hydraulic fractures is particularly challenging due to the

degenerate, hypersingular nature of the coupled integro-partial differential equations along with a singular free boundary,

whose velocity is typically only defined in terms of a distinguished limit. This chapter describes how the tip asymptotic

behavior can be exploited to locate the fracture free boundary as well as capture the multiscale effects relevant at the

computational scale in a weak form. We illustrate the technique in the context of the Displacement Discontinuity (DD)

formulation continuum governing equations on a structured mesh. Numerical examples are provided to illustrate the

performance of the numerical scheme.
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1 Introduction

Hydraulic fractures (HF) are a class of brittle fractures that propagate in pre-stressed solid media due to the injection

of a viscous fluid. On a geological scale, HF occur as kilometers-long vertical dikes that bring magma from deep

underground chambers to the earth’s surface [39]. Industrial applications of HF include: accelerating the waste

remediation process, waste disposal, or preconditioning in rock mining [41]. One of the most common industrial

applications is reservoir stimulation to enhance the recovery of hydrocarbons to create of permeable pathways [14].

Inspired by the seminal 1987 paper by Spense and Sharp [38] and the 1994 discovery of the so-called “SCR viscous

asymptote” [7], the beginning of this millennium heralded intense research into the propagation of HF in the special

case of plane strain. See [8] for an excellent review of this corpus of research, which established the pivotal role of

the asymptotic behavior of the solution in the vicinity of the fracture tip and the complex multiscale structure of

the solution in which two or more physical processes compete at multiple length and time scales.

However, progress on incorporating this multiscale structure into numerical models has lagged behind these de-

velopments. Despite significant progress made since the first algorithms were developed in the 1970’s [5], many 3D

HF algorithms still use propagation criteria based on the LEFM of dry cracks (see the 2007 review of numerical

models [2]). This lag in development is due to the intrinsic complexity of the coupled HF equations, which involve

a degenerate hypersingular integro-delay-PDE along with a singular free boundary problem. It was not clear how

to develop numerical models of HF in 3D elastic media with arbitrarily shaped boundaries able to capture the

multiscale structure without prohibitively expensive and complex re-meshing. In this chapter we describe how the

tip asymptotic behavior is an essential tool in the construction of numerical schemes that can locate the unknown

fracture boundary and capture the multiscale behavior on a coarse mesh [31, 33, 13, 34].

In section 2, we state the governing equations for the elastic medium, fluid flow, boundary conditions, and tip

asymptotics; in section 3, we discuss discretization of the DD equations, solving the coupled equations, and locating
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the free boundary using the implicit level set method; in section 4 we provide numerical examples; in section 5 we

provide concluding remarks.

2 Mathematical Model

2.1 Assumptions

The equations governing the propagation of a HF in a reservoir have to account for the dominant physical pro-

cesses taking place during the treatment, namely: deformation of the rock; creation of new fracture surfaces; flow

of fracturing fluid in the crack; leak-off of fracturing fluid into the reservoir. We consider the governing equations

for hydraulic fracture propagation that involve continuum descriptions of fracture in the solid medium and fluid

flow within the fracture. For the solid medium we choose to discuss the displacement discontinuity (DD) boundary

integral formulation and assume: (i) that the rock is homogeneous, linear elastic, brittle, permeable and of infinite

extent whose stiffness is characterized by the Young’s modulus E and Poisson’s ratio ν, while the energy required to

break the rock is represented by the fracture toughness KIc; (ii) the fracturing fluid is incompressible and Newtonian

with a dynamic viscosity µf ; (iii) Carter’s leak-off [4] is used to model loss of fluid to the reservoir and characterized

by the coefficient CL; (iv) the fracture evolves in a plane orthogonal to the minimum in situ confining stress field

σ0(x, y) ; (v) high confinement conditions prevail so the fluid front rapidly coalesces with the crack front [16].
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Figure 1. The planar fracture footprint A(t) inscribed within curve C(t) moving with normal velocity V and driven by the
fluid contained within the dashed curve Cf(t). The xy coordinate system is centered on the point source.

The solution of the hydraulic fracture problem involves determining the fracture aperture w(x, y, t), the fluid

pressure pf(x, y, t), the fluid flux q(x, y, t), and the position of the front C(t), where t denotes the time and x, y are

coordinates referenced to the injection point (see figure 1(a)). The solution depends on the injection rate Q(t), the

far-field compressive stress perpendicular to the fracture plane σ0(x, y) (a known function of position), and the four

material parameters µ′, C ′, E′, and K ′ defined as

µ′ = 12µf , C ′ = 2CL, E′ =
E

1− ν2
, K ′ = 4

(
2

π

)1/2

KIc. (2.1)
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Here E′ is the plane strain modulus, and the alternate viscosity µ′, leak-off C ′, and toughness K ′ are introduced to

keep the equations uncluttered by numerical factors.

2.2 Governing Equations

2.2.1 Elasticity

In view of the rock homogeneity and linear elasticity assumptions, the elasticity equation that relates the fracture

aperture w to the compressive stress field along the crack (which is related to the fluid pressure pf ) can be condensed

into a single hypersingular integral equation [6]

pf (x, y, t) = σh(y)− E′

8π

∫

A(t)

w(x′, y′, t)dx′dy′

[(x′ − x)2 + (y′ − y)2]
3/2

, (2.2)

where A(t) denotes the fracture footprint, i.e. the area enclosed by the crack front C(t) (see Fig. 1) and σh(y) is the

prescribed in-situ geological stress field.

2.2.2 Fluid transport

By combining Poiseuille’s law q = −w3

µ′ ∇pf and the continuity equation ∂w
∂t +∇ · q + C′H(t−t0(x,y))√

t−t0(x,y)
= Q(t)δ(x, y),

we obtain the Reynolds lubrication equation

∂w

∂t
=

1

µ′∇ ·
(
w3∇pf

)
− C ′H(t− t0(x, y))√

t− t0(x, y)
+Q(t)δ(x, y). (2.3)

where the trigger-time t0(x, y) represents the time at which the unknown fracture front passes the point (x, y)

constitutes a history term t0(x, t), which is not known a priori so that (2.3) is a delay partial differential equation.

2.2.3 Boundary and propagation conditions

For this nonlinear problem there exist multiple equilibrating and volume-conserving width and pressure fields, so

imposing the appropriate boundary and propagation conditions is the key to selecting the desired global solution [9].

Finite lag between fluid and fracture fronts

When the fluid front Cf(t) is distinct from and entirely contained within the fracture front C(t) there is a finite lag

between the two fronts the boundary and propagation conditions are:

pf (x, t) = 0 and Vf (x, t) = q(x, t)/w(x, t) for x ∈ Cf (t), (2.4)

w(x, t) = 0 and KI(x, t) = KIc for x ∈ C(t). (2.5)

In each of (2.4)-(2.5) the first conditions prescribe boundary conditions on the fluid pressure and width fields, while

the second conditions in (2.4)-(2.5) respectively provide the Stefan condition for the moving fluid front Cf(t) and the

propagation condition that the stress intensity factor match the fracture toughness at all points of C(t).
Coalescent fluid and fracture fronts

For most HF treatments the confining stress σ0 is large compared to the characteristic driving stress µ′V E′2/K ′2

causing the lag to vanish rapidly [16]. Rather than resolve this vanishingly small lag with a fine mesh it is more

efficient to establish the appropriate boundary conditions for the limit Cf(t) → C(t) [9]. For an impermeable medium,

as x ∈ Cf → C the corresponding width w(x, t) → 0, thus from (2.4(b) in order that |Vf | remain finite it follows that
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q(x, t) → 0. The limit for a permeable medium is more subtle [9] but yields the same result, so (2.4)-(2.5) reduce to

w(x, t) = 0, KI(x, t) = KIc, and q(x, t) = 0 for x ∈C(t). (2.6)

From the propagation condition KI = KIc and LEFM it follows [35] that

w ∼ K ′

E′ s
1/2, (2.7)

where s(see figure 1(a)) denotes the distance from the crack front C(t). Since the front velocity V for an impermeable

medium is equal to the average fluid velocity as s → 0 it follows that

V =
1

µ′ lims→0
w2∇pf , (2.8)

which shows that V is the limit of an indeterminate form, which is difficult to evaluate numerically. For a permeable

medium, in the region of dominant leak-off the average fluid velocity tends to infinity as s → 0, and the crack front

velocity needs to be determined by detailed asymptotic analysis [9]. Thus front location algorithms [37] based on

knowing the front velocity V explicitly, cannot be applied directly to this singular free boundary problem.

2.2.4 Tip asymptotics, vertex solutions, and generalized asymptotes

A propagating HF with zero lag is governed by two competing dissipative processes: one associated with viscous

energy losses and the other with the energy expended in breaking the rock, which is characterized by the fracture

toughness; and two competing fluid-balance components: fluid storage in the fracture and storage in the surrounding

rock - associated with leak-off. Limiting regimes can be identified in which just one of the dissipative processes

and one of the storage mechanisms is dominant. Associated with each of these limiting regimes are so-called vertex

solutions with reference to vertices of a multi-process phase space within which the dissipative and storage mechanisms

compete. For example, for the storage-viscosity regime known as the m-vertex, leak-off is negligible compared to the

fluid stored in the fracture and the energy expended breaking the rock is negligible compared to viscous dissipation,

so that K ′ ≈ 0 ≈ C ′. A HF having radial symmetry and for which K ′ ̸= 0 ̸= C ′ will change its regime of propagation

over time during which multiple length and time scales are important (see [31, 8] for further details). The key

tool to characterize this multiprocess multiscale environment is an analysis of the tip asymptotics and the so-called

semi-infinite fracture problem.

Tip asymptotics and semi-infinite crack problem

Provided the fracture front C is sufficiently smooth that a finite radius of curvature can be defined at each point

along its perimeter and assuming a homogeneous elastic medium it can be shown [31] that the governing equations

(2.2), (2.3), and (2.7) for the aperture w and net pressure p in the vicinity of the fracture front reduce to those

for a semi-infinite fluid-driven fracture steadily propagating in a state of plane-strain at a constant velocity V and

characterized by zero lag (see [16]), namely:

ŵ3

µ′
dp̂

ds
= V ŵ + 2C ′V 1/2s1/2, p̂ =

E′

4π

∫ ∞

0

dŵ

dz

dz

s− z
, lim

s→0

ŵ

s1/2
=

K ′

E′ . (2.9)

Here s represents a coordinate located on the moving tip and pointing toward the interior of the fracture. The

consequence of this reduction is profound in that the tip asymptotic solution for a finite fracture at any time is given

by the solution of the stationary semi-infinite crack in a state of plane strain whose constant tip velocity corresponds

to the current propagation speed of the finite fracture. The tip solution is thus autonomous. Note that the spatial
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variation of the far-field stress can be ignored when viewed at the tip scale, unless the stress field is discontinuous

(in which case, the tip solution outlined here is not relevant).

Vertex solutions

Assuming the fracture width is given by a power law ŵ = Asα and recognizing that in this case the integral operator

(2.9) reduces to a Mellin Transform, it follows [25] that

p̂ =
E′Aα

4π

∫ ∞

0

zα−1

s− z
dz =

1

4
E′Aα cot(πα)sα−1, 0 < α < 1 (2.10)

Thus for this range of values of α the power law is an eigenfunction of the integral operator in (2.10).

This power law solution pair can be used to identify the three limiting regimes of propagation also known as vertex

solutions, namely: the viscosity dominated solution, the leak-off dominated solution, and the toughness dominated

solution. Choosing α ̸= 1/2 and substituting the power law behavior ŵ = Asα and the corresponding power law

behavior for p̂ given by (2.10) into the lubrication equation in (2.9a) we can obtain two different vertex solutions by

identifying two distinct dominant balances. Choosing the dominant balance between the term on left side and the

first term on the right, we find that α = 2/3 and matching coefficients yields the so-called m-vertex solution [7]

wm = βm

(
µ′V
E′

)1/3

s2/3, pm = O(s−1/3), βm = 21/335/6. (2.11)

Choosing a dominant balance between the term on the left and the second term on the right of (2.9a), we obtain

that α = 5/8 and matching coefficients we obtain the so-called m̃-vertex solution [23]

wm̃ = βm̃

(
4µ′2C ′2V

E′2

)1/8

s5/8, pm̃ = O(s−3/8), βm̃ = 4/(15(
√
2− 1))1/4. (2.12)

Finally, if α = 1/2 then the toughness asymptote (2.7) is the so-called k-vertex solution wk and matching the term

on the left of (2.9a) with the first term on the right we find that pk = O(log(s)).

Generalized asymptotes

From the vertex solutions described above we see that for s ≪ 1 there is a hierarchy of powers

s1/2 ≫ s5/8 ≫ s2/3 (2.13)

that establishes the region moving away from the fracture tip that will be occupied by the different solutions. For

example closest to the tip the toughness solution (provided K ′ > 0) will always be dominant. Then provided C ′ ≫ 0,

as one moves further from the tip, the solution will transition to the leak-off asymptote characterized by the 5/8 power

law. The length scale at which this transition occurs is determined by the relative magnitudes of the coefficients of

the two solutions. Finally, the leak-off solution will transition to the viscous solution characterized by the 2/3 power

which prevails farthest from the tip. Thus we can see that there are multiple physical processes possible that can

be active at vastly different length scales. If only two of these processes are present then the same ranking in (2.13)

determines the regions occupied by the two processes relative to the tip.

Garagash [15] was the first to consider a two process solution involving the transition from the toughness to the

viscous dominated regimes (C ′ = 0) by solving the semi-infinite crack problem (2.9) with the boundary condition

at infinity ŵ
s→∞→ wm(s). The numerical solution to this connection problem (shown in figure 4 (b)) involves the

generalized asymptote Ω̂ in terms of which the asymptotic solution can be expressed in the form:

wmk =
K ′4

E′3µ′V
Ω̂(s/ℓmk), ℓmk =

K ′6

E′4µ′2V 2
, (2.14)
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where ℓmk is the transition length scale. The m and k vertex solutions as well as the m− k transition solution have

all been observed experimentally for penny-shaped fractures [3, 8].

The corresponding viscous to leak-off transition (K ′ = 0) involving the transition length scale ℓmm̃ = 26C′6E′2

µ′2V 5 has

been considered by [1]. Having established the two-process “edge solutions” Garagash et al [17] have provided the

numerical solution for the generalized tip asymptotics for an HF in which all three processes are active (K ′ > 0, µ′ >

0, C ′ > 0). This generalized asymptote involves multiple length scales, which are characterized by the dimensionless

parameter χ =
(

ℓmm̃

ℓmk

)1/6
= 2C′E′

K′V 1/2 . Recently [11] a simpler non-singular formulation of the hypersingular integral

equation (2.9) has made it possible to solve the multiscale problem using standard numerical techniques and yields

an approximate formulation in terms of a separable first order ordinary differential equation (ODE). The closed form

solution of this ODE yields not only all the vertex solutions but also the following approximate solution [11, 13] for

w̃ := E′w
K′s1/2

given s̃ =
(

s
ℓmk

)1/2
defined implicitly in terms of a given function gδ

s̃

w̃3
= gδ

(
1

w̃
,
χ

w̃

)
, (2.15)

which is able to capture the complete multiscale solution within a fraction of a percent. A contour map of w̃ as a

function of s̃ and χ is shown in figure 3, in which the transitions between the m, k, and m̃ can be clearly observed.

This generalized asymptote has been used to model 3-process multiscale planar [13] and multi-planar [12] hydraulic

fractures.

3 Discretization, Coupled Equations, and the multiscale ILSA scheme to locate the free boundary

In this section we briefly describe the discretization of the DD equations on a structured rectangular mesh. Since the

resulting coupled evolution equations are extremely stiff (for which explicit schemes require time step restrictions

∆t ≤ O(∆x3) [29, 2]) the L-stable backward Euler implicit time stepping is often used to evolve the solution. Hence

we also describe iterative schemes and preconditioners that have been developed to solve the fully-coupled equations

that need to be solved at each time step. Having established the importance of the tip asymptotic behavior in

governing the propagation of HF, we discuss specialized numerical schemes that have been developed to locate the

free boundary and to accommodate this multiple length scale behavior that can span 5-20 decades without having

to resort to mesh refinement. In a recent comparative study [22] this class of schemes was shown to provide accurate

solutions on a relatively coarse fixed structured mesh.

3.1 Discretization

3.1.1 Displacement Discontinuity formulation for planar fractures

We assume [31] that the fracture will grow within a rectangular region that has been tessellated into a fixed uniform

rectangular mesh ∪∆Am,n with dimensions ∆x and ∆y in the two coordinate directions (similar to the fracture shown

in figure 1(a)). The fracture footprint A(t) is then covered by rectangular elements ∆Am,n such that A ⊆ ∪∆Am,n.

Constant displacement discontinuity (DD) elements are used for the elasticity computations [6] along with collocation

at element centers to yield a fully populated linear system relating the element net pressures p to the element widths

w

p = pf − σ0 = Cw, (3.1)
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in which, for a homogeneous elastic medium, C assumes the convolution form

Ck−m,l−n = −E′

8π

[√
(xk − x)2 + (yl − y)2

(xk − x)(xl − x)

]x=xm+∆x/2, y=yn+∆y/2

x=xm−∆x/2, y=yn−∆y/2

. (3.2)

Consistent with the constant DD discretization with collocation at element centers, the lubrication equation (2.3) is

discretized via the finite volume method to yield a five node finite difference stencil [40, 31] and the Backward Euler

scheme to obtain

w − wt−∆t = ∆tA(w)pf + S, (3.3)

where S is a vector of source/sink terms and A(w) is the difference operator defined by

[A(w)p]k,l =
qk+ 1

2 ,l
− qk− 1

2 ,l

∆x
+

qk,l+ 1
2
− qk,l− 1

2

∆y
, (3.4)

and qk± 1
2 ,l

are the fluxes along the vertical edges of the element defined as qk± 1
2 ,l

= ±w3
k± 1

2 ,l

(
pk±1,l−pk,l

∆x

)
, where

wk± 1
2 ,l

are the corresponding edge widths defined by wk± 1
2 ,l

=
(

wk±1,l+wk,l

2

)
. The fluxes and widths along the

horizontal edges of the element are defined analogously. Zero flux boundary conditions are implemented in tip

elements by removing those terms associated with the element faces having zero boundary fluxes from the difference

operator.

Solving the coupled equations (3.1) and (3.3) for pf and w as primary variables requires the inversion of the operator

A(w), which is rank deficient owing to the Neumann boundary condition on pf due to the zero flux boundary condition

(2.6c) that holds in the zero lag case. In order to ensure a solution exists in this case it is necessary to impose the

solvability condition ∫

A

(w − wt−∆t) dxdy +∆L = Q0∆t, (3.5)

where ∆L is the volume leaked from the fracture over the current time step and (3.5) is obtained by integrating

(2.3) in space over the region A and in time over [t, t + ∆t], using the divergence theorem, and imposing the zero

flux boundary condition (2.6c). To avoid the complexity of having to impose the solvability condition (3.5) we use

(3.1) to eliminate pf from (3.3) to obtain the following evolution equation for the width w at time t

w = wt−∆t +∆tA(w)(Cw + σ0) + S. (3.6)

Once the width has been determined, the corresponding net and fluid pressures can be obtained directly from (3.1).

This coupled system of nonlinear equations is typically solved by Picard, Fixed-Point, or Newton iterative methods

or combinations thereof [34]. The large system of dense linear equations that need to be solved during each of these

nonlinear iterations are also typically solved iteratively, which facilitate acceleration methods such as: the FFT [27]

and Fast Multipole Method [28] to perform C-matrix vector products; and preconditioners that significantly reduce

the number of linear iterations based on multigrid [29] or Incomplete LU factorizations of localized Jacobian matrices

[30].

3.2 Locating the free boundary using the implicit level set algorithm (ILSA)

Since there are an infinite number of volume preserving-equilibrating pairs (w, pf) that are solutions to the nonlinear

equations (3.1) and (3.3), each associated with a slightly different footprint A, it is important to select the correct
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solution by determining the appropriate fracture boundary C. Due to the singular free boundary problem character-

istic of HF propagating with zero lag, the local fluid velocity in the vicinity of the tip, which requires the numerical

evaluation of a distinguished limit, cannot be used to locate the free boundary C.
Indeed, the algorithm to locate the free boundary has to incorporate the singular tip asymptotics discussed in

section 2.2.4. We now describe the Implicit Level Set Algorithm (ILSA) [31, 33, 13] that was developed to use the tip

asymptotics to locate the fracture free boundary. It is notionally convenient to separate the DD elements representing

the fracture into two sets, namely: the tip elements At and the channel elements Ac. The tip elements are the partially

filled elements colored by light shading in figure 1, while the channel elements comprise those elements surrounded

by the tip elements that are completely filled with fluid. We also identify the ribbon of channel elements ∂Ac on the

boundary of the channel region Ac that share at least one side with a tip element (see the dark shaded elements in

figure 1(a)), which we refer to as survey elements.
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Figure 2. Steps used by the ILSA scheme to locate the fracture free boundary using the tip asymptote

Steps in the ILSA procedure:

The steps in the ILSA algorithm are illustrated in figure 2 in which width cross sections w(x, 0, t) are plotted. The

blue curves represent the exact width (dashed at time step t − ∆t and solid at time step t). The black rectangles

represent the piecewise constant DD approximations to the crack width. The first row of sub-figures represents the

procedure used by the ILSA scheme in the first front iteration, which starts with the injection of a volume of fluid

Q0∆t over the interval [t − ∆t, t] and assumes that the fronts starts at the position reached at the end of the in

previous step t − ∆t. The second row of sub-figures represents the procedure used by the ILSA scheme assuming
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that the front has been moved to the position determined by the prevailing asymptote at the end of the first front

iteration.

(i) Determine equilibrium pressures and widths for the current footprint A
Given a trial footprint (initially taken to be that at the previous time step A(t −∆t) see figure 2 (a)) the coupled

equations (3.6) are used to determine the width w (and hence pf) that corresponds to the fluid flux into the well-bore

over the current time step. In the first front iteration (see figure 2 (a)) the crack widths are treated as the primary

variable over the whole fracture A. In the second and subsequent front iterations, since estimates of the asymptotic

tip widths are known (see step (iv) below), the fluid pressures are treated as the primary unknown in the tip region

At and the widths are treated as the primary unknown in the channel region Ac (see figure 2 (d));

(ii) Use tip asymptote to find shortest distances from elements in ∂Ac to the new trial crack front C
Given the new width estimate w at each of the survey elements in ∂Ac the current trial fracture widths are used to

invert the appropriate asymptotic relation from section 2.2.4 to determine the shortest distance s from the centers

of these elements to the free boundary C. In particular, (2.9c) can be inverted to obtain s given wk, (2.11) can be

inverted to obtain s given wm, (2.12) can be inverted to obtain s given wm̃, the generalized asymptote (2.14) can be

inverted to find s given wmk, and given wmkm̃ the generalized asymptote (2.15) can be used to find s. This process

is illustrated in figure 2 (b) and (e) in which the asymptote is represented by the magenta curve, which terminates

at the centre of the survey element (just adjacent to the tip element) on the one end and, in the case of this cross

section, the other end terminates at the new estimate of the fracture front position.

We observe that all the tip asymptotes (except for the toughness asymptote (2.9c)) involve the unknown front

velocity V , which is so crucial to locating the free boundary. To resolve this issue, if s is the shortest distance from

the current collocation point to the trial free boundary, then in each asymptote involving the front velocity explicitly

we replace V by its difference quotient approximate

V =

(
s− st−∆t

∆t

)
. (3.7)

The generalized mk-asymptote (2.14) has been implemented for plane strain fractures [19] and for planar fractures

[33]. For each survey point in ∂Ac the trial width w is used to find s from the nonlinear equation

wmk =
K ′4∆t

E′3µ′ (s− st−∆t)
Ω̂

(
E′4µ′2 (s− st−∆t)

2
s

K ′6∆t2

)
.

The generalized mkm̃-asymptote (2.15) has been implemented in planar [13] and multi-planar HF models [12]. For

each survey point in ∂Ac the trial width w is used to determine s from

s2 (s− st−∆t)µ
′

E′w3
mkc∆t

= gδ

(
K ′s1/2

E′wmkc
,

2C ′s1/2∆t1/2

wmkc (s− st−∆t)
1/2

)
;

(iii) Solve the eikonal equation to locate the new trial crack front C
In figure 2 the fracture fonts is parallel to the sides of the rectangular elements. However, for an arbitrarily shaped

fracture boundary this is not the case for all elements of the structured mesh. For this situation, the solution of the

eikonal equation is used to reconstruct the front position from the set of shortest distances from the survey elements

in ∂Ac to the new trial front C, which establishes the following initial conditions

T 0(x, y) = −s for all (x, y) ∈ ∂Ac (3.8)
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to construct the signed distance function T (x, y) by solving the eikonal equation

|∇T | = 1. (3.9)

The negative sign in the initial condition (3.8) enforces the sign convention that T (x, y) < 0 for all points (x, y) that

lie within the fracture boundary curve C(t), while points for which T (x, y) > 0 lie outside C(t). Moreover because

the initial condition (3.8) defines the distance to the free boundary, the fracture boundary curve C(t) is defined by

the level set T (x, y) = 0;

(iv) Set the tip volumes from the asymptote to impose the tip asymptotics in a weak form
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Figure 3. Scheme to integrate the asymptotic solution, backwards from the front, over the partially filled rectangular tip
element using the integral over a triangle.

Having determined a new estimate for the location of the free boundary C(t), the volume of fluid in each tip element

can be determined by integrating the applicable tip asymptote backward from the from the front to opposite vertex

of a triangular region shown in figure 3

V▲(ℓ) =
2

sin 2θ

ℓ∫

0

wa(ℓ− s̄)s̄ds̄, (3.10)

where wa(s) is one of the asymptotes wm, wk, wm̃, wmk, or wmkm̃, ℓ is the distance from the front to the farthest

interior corner of a tip element, and θ is the angle that the local outward normal to the front makes with the tip

element edge. From the mapping of the span of s ∈ (0, ℓ) within the element to the interval of length ℓ̃ in the w̃ map

shown in figure 3, we observe that the model is able to capture, in a weak sense, all the multiscale behavior from the

computational element scale right down to the finest length scale. The volume over a triangular region V▲(ℓ) can be

used to construct the fracture volume within a partially filled rectangular element as follows:

V■ = V▲(ℓ)− V▲(ℓ−∆x cos θ)− V▲(ℓ−∆y sin θ). (3.11)
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In order to evaluate these integrals only the first two moments of the tip asymptote ŵ are required.

The average width wt in the tip element is set to

wt =
V■

∆x∆y
.

In figure 2 (c) and (f) the asymptotic widths are indicated by the magenta curves while the average tip widths in

the tip element are represented by the magenta rectangles.

Since the width in the tip element is determined from the asymptotics once the front position is set, the fluid pressure

in the tip element now becomes the primary unknown. The equation for the fluid pressure comes from integrating

the Reynolds equation (2.3) over the tip element and applying the zero flux boundary condition. This is precisely

the procedure used in the finite volume method and results in an expression for the change in fluid volume over the

time step involving V■ that should match the flux of fluid across the boundaries, which involves the fluid pressure

at the center of the tip element;

(v) Convergence check

If the iterations on the fracture front C have converged then proceed to the nest time step, if not return to (i) with

the new estimate of A

We observe that the concept of a partially filled element with tip asymptotics imposed in a weak sense is remarkably

effective at representing a fracture with an arbitrary front on a structured mesh. The ability to capture the tip

asymptotics in a weak form makes it possible to account for multiscale effects that act at length scales that are many

orders of magnitude smaller than the computational mesh size. Modeling such multiscale behavior directly would

require prohibitively fine meshes. Given that the material parameters are assumed to be fixed, the tip velocity V is

the primary determinant of the region in phase space that a particular asymptote finds itself. Since the ILSA scheme

is able to autonomously determine the front velocity V from the asymptote, it is able to automatically adjust the

point in phase space to determine the propagation regime of the fracture front in the neighborhood of the survey

points.

In a comparative study [22] this class of schemes was shown to provide accurate solutions on a relatively coarse

fixed structured mesh. Recent enhancements to the ILSA strategy [42] have achieved reduced front iterations by

using the velocity at the previous step to determine an initial estimate of the front position in the current time

step. The ILSA strategy has also been implemented in XFEM HF models [18, 19, 20]. Moreover, since ILSA scheme

treats the width as the primary variable in the determination of the fracture front position, it is an ideal candidate

to combine with the Extended Kalman Filter to develop a scheme to monitor the evolution of the fracture footprint

from remote tiltmeter measurements [36, 32, 26].

4 Numerical Results

In this section we present numerical solutions that illustrate the performance of the ILSA strategy for three different

examples. In the first two examples we consider a fracture that propagates in an elastic medium in which there are

positive jumps in the confining stress field located symmetrically with respect to the fluid source. For the first example

we compare the ILSA solution using the m-vertex solution (2.11) to the results from a laboratory experiment. In the

second example we consider the same experimental symmetric stress jump situation, but demonstrate the influence of

toughness using the ILSA scheme along with the mk-asymptote (2.14). In the third example we consider a hydraulic
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fracture propagating in a homogeneous elastic medium in which there are jumps in the confining stress field - positive

in the layer above and negative in the layer below the fluid source.

4.1 Symmetric stress barrier: m-vertex solution vs experiment and the effect of toughness
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Figure 4. Left-Top: Experimental (blue) and ILSA (black) footprints of the blade-shaped fracture formed by a symmetric
stress jump in σ0 at times t = 88, 171, 375, 603 s; Left-Bottom: Experimental (blue) and ILSA (black) fracture widths (left
cross section y = 0) and (right cross section x = 0) at the same time steps; Right: Fracture footprint C(t) at time t = 600 s for
K′ = 0.75 MPa.m1/2. The M-vertex footprint (shown red online) encompasses the MK footprint (shown blue online), which
is sampled at the corresponding time.

In this section we compare the ILSA m-vertex solution with the results of a laboratory experiment [21] in which

an HF was initiated at the center of a layer of height H = 50 mm bounded symmetric stress jumps ∆σ = 4.3 MPa

in σ0, which is given by

σ0 =

{
2.2 MPa for |y| < 25 mm

6.5 MPa for |y| > 25 mm.

The ILSA model uses the following parameter values reported for the experiment:

E = 3.3 MPa, ν = 0.4, µ = 30.2 Pa.s, K ′ = 0, C ′ = 0, Q0 = 0.0017 ml/s

Since the fracture takes place between two un-bonded impermeable blocks of PMMA, the fracture in the experiment

propagates in them-vertex viscous regime. In figure 4 (a) the experimental (blue) and ILSA (black) blade-like fracture

footprints and fracture width cross-sections with the planes y = 0 and x = 0 are compared at a sequence of sample

times. The numerical results show remarkable agreement with the experimental results. In figure 4 (b) we compare

the ILSA results using the m-vertex and mk-asymptote K ′ = 0.75 MPa.m1/2 at t = 600s, while all the other

parameters are kept the same. In this plot the DD mesh is denoted by the thin grid lines and the thick horizontal

lines represent the interface across which the confining stress field jumps. The colored survey elements indicate the

different length scale active at each point of the fracture boundary, which corresponds to color bar located below the

ξ̂ axis in the plot of the generalized asymptote Ω̂ vs ξ̂.
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Figure 5. Hydraulic fracture footprints calculated for the stress drop geometry defined in (4.1) for ϕ = 10−4 at the time
instants t = {112.5, 225, 450, 900, 1800, 3600} s.

4.2 A stress drop: distinct propagation regimes along the periphery

In this section we illustrate the ILSA solution using the generalized mkc-asymptote (2.15) for a hydraulic fracture

propagating in a confining stress field σ0 that drops discontinuously across two interfaces a distance H = 20 m apart.

The material parameters used in this example are

E = 9.5 GPa, ν = 0.2, µ = 0.1 Pa.s,K ′ = 3.192 MPa.m1/2, C ′ = 0.521× 10−5m/s1/2, Q0 = 0.01 m3/s,

while the confining stress field is defined by

σ0 =





7.25 MPa for y > 10 m

7 MPa for |y| < 10 m

6.5 MPa for y < −10 m

(4.1)

The dimensionless leak-off parameter [24] associated with this parameter set is given by ϕ =
µ′3E′11C ′4Q0

K ′14 = 10−4.

The survey elements are colored according to the location of the corresponding asymptotic solution in the parametric

mkc-triangle. Black circular markers inside the parametric triangle shows the positions of all survey elements for the

footprint that corresponds to the last time instant t = 3600 s.

5 Conclusions

In this chapter we have described how to build efficient numerical schemes to model HF propagation that exploit the

recent advancements the analysis of the multiscale tip asymptotic behavior that occurs on multiple time scales as the

different physical processes of viscous dissipation, energy requited to break the rock associated with toughness, and
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diffusive leak-off of fluid into the porous rock. As a starting point we briefly summarized the governing equations,

boundary and propagation conditions, and the limiting tip asymptotic behavior needed in the construction of these

algorithms. We then illustrate in detail the process of iterative location of the free boundary and capture, in a weak

sense, of the multiscale behavior relevant at the computational scale by the integration of the tip asymptote down to

the finest scale active in the problem. We conclude by providing some numerical results illustrating the performance of

the algorithm for the following problems: viscosity dominated propagation compared with experiments; two-process

(viscous-toughness) propagation in a symmetric stress
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