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We consider a boundary element (BE) Algorithm for solving linear diffusion desorption
problems with localized nonlinear reactions. The proposed BE algorithm provides an
elegant representation of the effect of localized nonlinear reactions, which enables the
effects of arbitrarily oriented defect structures to be incorporated into BE models without
having to perform severe mesh deformations.

We propose a one-step recursion procedure to advance the BE solution of linear diffu-
sion localized nonlinear reaction problems and investigate its convergence properties.
The separation of the linear and nonlinear effects by the boundary integral formulation
enables us to consider the convergence properties of approximations to the linear terms
and nonlinear terms of the boundary integral equation scparately.

For the lincar terms we investigate how the degree of piecewise polynomial colloca-
tion in space and the size of the spatial mesh relative to the time step affects the accumu-
lation of errors in the one-step recursion scheme. We develop a novel convergence
analysis that combines asymptotic methods with Lax’s Equivalence Theorem. We iden-
tify a dimensionless meshing parameter @ whose magnitude' governs the performance of
the one-step BE schemes. In particular, we show that piecewise constant (PWC) and
piccewise linear (PWL) BE schemes are conditionally convergent, have lower asymp-
totic bounds placed on the size of time steps, and which display excess numerical diffu-
sion when small time steps are used. There is no asymptotic bound on how large the tic
steps can be —this allows the solution to be advanced in fewer, larger time steps. The
piccewise quadratic (PWQ) BE scheme is shown to be unconditionally convergent; there
is no asymptotic restriction on the relative sizes of the time and spatial meshing and no
numerical diffusion. We verify the theoretical convergence properties in numerical ex-
amples. This analysis provides useful information about the appropriate degree of spatial
piccewise ‘pol¥nomial and the meshing strategy for a given problem.

For the nonlinear terms we investigate the convergence of an explicit algorithm to ad-
vance the solution at an active site forward in time by means of Caratheodory iteration
combined with piecewise lincar interpolation. We consider a model problem comprising
a singular nonlinear Volterra equation that represents the effect of the term in the BE
formulation that is due to a single defect. We prove the convergence of the piecewise
lincar Caratheodory iteration algorithm to a solution of the model problem for as long as
such a solution can be shown to exist. This analysis provides a theoretical justification
for the use of piecewise linear Caratheodory iterates for advancing the effects of local-
ized reactions.
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I. INTRODUCTION

A problem of significant physical interest is the linear diffusion equation
with localized nonlinear reactions representing, for example, the influence of
defects on a catalytic surface [1-3]. We advocate the use of a boundary element
(BE) algorithm [4-7] for solving these linear diffusion-desorption problems
with localized nonlinear defect reactions. The proposed BE algorithm provides
an elegant representation of localized nonlinear reactions in which the effect of
defect reactions is incorporated by adding a term to the standard BE formula-
tion for heat conduction. This separation of linear and nonlinear terms in the in-
tegral equation enables the effects of arbitrarily oriented defect structures to be
incorporated into the model without having to disturb the mesh used to propa-
gate the linear part of the solution. More traditional methods for solving diffu-
sion problems such as finite difference and finite element methods provide poor
representations of localized reactions and would require severe mesh deforma-
tion to incorporate the effects of arbitrarily oriented defect structures.

We desire the solution of the diffusion localized reaction problem throughout
the spatial domain of the problem for each time-step. Because of this require-
ment we choose to advance the BE solution by means of a one-step recursion
process in which the solution throughout the spatial domain is carried from one
time level to the next and then used as initial data for the following time step.
A second time marching strategy, commonly used in the BE solution of linear
diffusion problems, is to calculate boundary data for all time and solution val-
ues at selected interior points within the spatial domain. The one-step recursion
procedure is very similar to explicit time marching schemes for finite difference
and finite element spatial discretizations of the diffusion equation. The main
difference in the case of the one-step BE discretization is that the matrix com-
municating the solution from one time level to the next is fully populated
whereas the corresponding matrices for the finite difference and finite element
methods are sparse. This is apparently a distinct computational disadvantage of
the one-step BE procedure. However, the Fast Fourier Transform can be used
to exploit the convolution form of the discretized BE equations to yield a more
efficient and competitive algorithm. Our ultimate objective is to use the accu-
rate representation of localized reactions as provided by the BE algorithm, and
not to search for 2 more efficient algorithm for solving the linear, diffusion
equation. Therefore, we restrict our investigation to the convergence properties
of the one-step BE procedure for solving linear diffusion localized reaction -
problems. Consistent with this objective, we will restrict comparisons between
the BE algorithm and finite difference and finite element methods to discussion
of the qualitative differences between these algorithms.

The separation of the linear and nonlinear effects by the boundary integral
formulation will form the basis for our investigation of the convergence proper-
ties of the one-step BE procedure.

Analysis of Linear Effects

The one-step recursion procedure relies heavily on the spatial discretization
of the linear part of the integral equation to communicate the effects of preced-
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ing time steps to subsequent time steps. We investigate the manner in which the
degree of piecewise polynomial collocation in space and the size of the spatial
mesh relative to the time step affects the accumulation of errors in the one-step
recursion scheme. We develop a novel convergence analysis that combines
asymptotic methods with Lax’s Equivalence Theorem [8]. It is possible to iden-
tify a dimensionless meshing parameter © whose magnitude governs the perfor-
mance of the one-step BE schemes. Although the one-step BE schemes have
a similar form to explicit finite difference and finite element schemes, their
space-time mesh requirements are very different.

We verify the convergence properties predicted by the asymptotic analysis in
numerical examples. The close correspondence between the theoretical predic-
tions and the numerical results validates the assumption that the major error ac-
cumulation is due to the spatial discretization. The insight gained from the
analysis presented in this paper should prove useful in the choice of the appro-
priate degree of piecewise polynomial to use in the spatial discretization and the
meshing strategy for a given problem. Although the analysis performed here is
restricted to one-dimensional problems, it can, in principle, be extended to
higher dimensions. Numerical evidence suggests that the same phenomena of
numerical diffusion persists in two dimensions for schemes based on piecewise
constant and piecewise linear interpolation.

Analysis of Nonlinear Effects

We propose an explicit algorithm to advance the solution at an active site for-
ward in time. The algorithm combines Caratheodory iteration with piecewise
linear interpolation to form an explicit time marching scheme. Since the BE
formulation separates the linear and nonlinear effects we assume that the time-
advancement of the linear effects is convergent according to the linear analysis
discussed above. Therefore, our analysis concentrates on the performance of
the piecewise linear Caratheodory iteration algorithm when it is used to ad-
vance the solution at a single active site at which a nonlinear reaction process is
assumed to occur. We consider a model problem that includes the term in the
BE formulation that is due to a single defect. Alternatively, the model problem
may be viewed as a singular nonlinear Volterra equation to which the BE for-
mulation reduces for certain special geometries. We prove the convergence of
the piecewise linear Caratheodory iteration algorithm to a solution of the model
problem for as long as such a solution can be shown to exist. This analysis pro-
vides a theoretical justification for the use of piecewise linear Caratheodory it-
eration for advancing the effects of localized reactions in linear diffusion
localized nonlinear reaction problems.

Analyses of numerical methods based on the boundary integral formulation
of the linear diffusion equation have been considered [9, 10]. These analyses are
more appropriate for the second time-marching strategy described above, the
primary goal of which is to determine the boundary unknowns and from these
the solution values at only selected interior points within the spatial domain.
These analyses assume that the solution vanishes when ¢ = 0 and therefore will
give no account of the error due to the approximation of the spatial convolution
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integral of the Green’s function and the initial condition, which dominates the
error in the one-step recursion algorithm studied in this paper. Moreover, if the
initial conditions were not zero, the second time-marching strategy would re-
quire the evaluation of the spatial convolution integral for times that are typi-
cally large. In this case, the effect of errors in approximating this integral will
be subdominant to errors in approximating the boundary integrals. Therefore,
the linear convergence analysis of the one-step iteration procedure presented in
this paper is quite distinct from the previous analyses mentioned. As can be ex-
pected the phenomenon of numerical diffusion, which is explored in this paper,
was not predicted by previous analyses as they did not discuss any of the essen-
tial features of the one-step recursion procedure.

In Section 2 the governing linear diffusion localized nonlinear reaction equa-
tions are introduced and the representation of this problem as a boundary inte-
gral equation is presented. In Section 3 we analyze the convergence properties
of the one-step recursion algorithm when used to advance the BE approxima-
tions to the linear diffusion equation. Stability of the discretized BE equations
is established using discrete Fourier transforms. Consistency is investigated us-
ing asymptotic methods. The theoretical and practical implications of the con-
vergence analysis are discussed. A numerical verification of the convergence
properties is provided. In Section 4 we discuss the convergence of an explicit
algorithm to advance the solution at localized reaction sites. By assuming cer-
tain special geometries, the problem is reduced to a model problem involving a
singular nonlinear Volterra equation. A piecewise linear Caratheodory iteration
scheme is proposed for the Volterra equation. The existence theory of Miller [11]
is used to establish convergence of the piecewise linear Caratheodory iterates to
a solution of the Volterra equation for as long as such a solution is guaranteed
to exist by the Miller theory. The piecewise linear collocation scheme is applied
to two simple problems. In one, the localized reactions are linear and the ap-
proximate and analytic solutions are compared. In the second problem, the
localized reactions are nonlinear and the numerical solution is shown to ex-
hibit the correct qualitative features and tend to the theoretical stable equi-
librium point of the problem. Two appendices are provided. Appendix A gives
details of piecewise polynomial discretization of the BE equations. Appendix B
provides expressions for the influence matrices used in the linear conver-
gence analysis.

Il. GOVERNING EQUATIONS AND BOUNDARY
ELEMENT FORMULATION

A. The Initial-Boundary Value Problem for Linear Diffusion
and Localized Nonlinear Reaction

The equations governing the diffusion, adsorption-desorption, and localized
reaction are taken to be

du u

L
- =D—=- Q'! + E R(u)d(x — x,) + f x,x,8(xq,xy) 2.1
at ox 1=t -
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Here u(x, 1)eR** is a vector with positive valued components representing the
concentrations of the s different species, D is a matrix of diffusion coefficients,
Q is a matrix representing adsorption-desorption or linear bulk reaction, R, is
the rate term due to reactions taking place at the active site x,, and f(x, ) is the
incident flux. In this paper we assume that the bulk is homogeneous so that D
and () are constant, and that the bulk processes are decoupled so that D and Q
are diagonal.
To determine the solution « of (2.1) we prescribe an initial condition

u(x, 0) = u’x) (2.2a)

and appropriate boundary conditions that may be expressed in the general form:

(g’a—i + é.-)zs(xz.t) =g() i=0 and N (2.2b)

Here, as with the bulk, we assume that the boundary conditions are decoupled
so that ¢, and 3, are diagonal and g, is a specified function. Hence the only cou-
pling in the equations governing the various species occurs through the reaction
term, which is generally nonlinear.

Physically these equations can be used to represent localized reactions that
occur at chemically active parallel line-defects on a two-dimensional surface, or
they can be used in the modelling of the influence of membrane-bound en-
zymes in living organisms [1-3]. In the absence of the localized reaction terms
Ry, (2.1)-(2.2) reduces to the classical heat-transfer problem.

B. Boundary Integral Formulation

In this section, the BE formulation of the initial-boundary value problem
(2.1)~(2.2) is stated without derivation in view of the fact that the technique is
well documented [4-7].

The starting point for the BE formulation is the use of the free-space Green's
function associated with the linear partial differential operator in (2.1) to re-
write the solution of (2.1)-(2.2) as an integral equation. Let

0 xé[xg,xy]
y(x) =11 xe(xq, xy) then
b x=x, oOr xy

voue) = [ g - &g + [ [ g - 61 - npte.nden

+[ {[g(x - 61 = DD HED

(2.3)
- - - DDute, r)] £

o¢ £ =1x

+ EL: Glx — x,t = DR (ulx, T))} dr
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The Green's function G(£ — x, 7 — t) is the solution to the following cquation
2
(DE"’? -0- 1—)0(5 —x 7= 1) = —8(€ = 08 — 1)

subject to G —> 0 as |x] — = and the causality condition G(x,7) = 0 if 1 < 0.
The explicit expression for G can be derived using Fourier or Laplace
transforms [12, 13]

exp[—Q — x*/4Dy]
2V Dy

Gylx, 1) = H(r) 0 1<0

2.9)

=
8 i,j=l,...,s;H(t)={l r=0

This Green’s function differs from that of the standard diffusion equation
through the term exp(—) that is due to desorption. The value y(x) = ¥z is
derived by letting x — x, from the interior of the interval (xo,xy) in (2.3) and
evaluating the contribution of the singular kernel 3G/9¢ (x — £,¢ — 7) over the
small interval (+ — &, ¢) analytically.

Consider the implications of the integral equation (2.3) for solving a well-
posed boundary value problem such as (2.1)—(2.2) in the absence of localized
reactions, i.e., R, = 0. In this case (2.3) is an expressxon of the solution in
terms of quadratures of the prescribed functions 4’ and f and an integral involv-
ing the values of u and its derivative du/dx at the boundary points x; and xy . If,
for example, we were considering Neumann boundary conditions (a; = [,
8 = 0 in (2.2b)), then all that prevents us from obtaining the solution u(x, ¢)
directly are the unknown values of u at x, and xy. If we let x — x, and x, in
turn, we obtain two integral equations from which u(x;, t) { = 0, N can in prin-
ciple be found. Once u(x,, t) i = 0, N are known, the solution at any point (x, 1)
can be found by direct quadrature using (2.3). The full variety of boundary
value problems as represented by (2.2b) can be solved in an analogous way.

lil. CONVERGENCE PROPERTIES OF THE ONE-STEP
RECURSION ALGORITHM WHEN USED TO ADVANCE THE
SOLUTION OF THE BOUNDARY INTEGRAL FORM OF THE
LINEAR DIFFUSION EQUATION

In this section we analyze the convergence properties of a one-step recursion
algorithm for advancing the BE solution of the linear diffusion equation in the
absence of forcing (i.e., R, = 0 and f = 0 in (2.1)-(2.2)). We exploit the fact
that the one-step recursion algorithm can be expressed in a similar form to
explicit finite difference schemes in order to use Lax’s Equivalence Theorem (8]
to investigate its convergence. We restrict the analysis in this section to the case
of a single species s = 1 and therefore omit the vector notation used in
Section 2.

A. The Plecewise Polynomial One-step Recursion Algorithm
for Solving the Boundary Integral Eq. (2.3)

There are a number of different strategies that can be used to obtain a nu-
merical solution of (2.3) [14, 15]. In the piecewise polynomial collocation tech-
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nique, the space-time region [xo, xy JX[O, T is divided into cells [x, , Xen)Xlty 4441
e=0,....,.N—1;j=0,...,M — 1. Over this mesh of space-time cells we
construct piecewise polynomial basis functions in terms of which the solution «
and specified functions f, g, and «° are expanded.

The Volterra form of the time integral in (2.3) can be exploited to arrive at
the following one-step recursion time-marching scheme. The solution is carried
from one time level 1, to the next 1,,, = #; + A, by using (2.3) in which ¢ =
At;, and the solution values at time t; are regarded as initial values #°(x) =
u(x,5;). Depending on the prescribed boundary conditions, we solve (2.3) for
#(€) and/or (du/d¢&) (£,7) at the boundaries. Equation (2.3) can then be
used to generate u’*'(x) = u(x, #,,,), which can be used as initial data for the next
step. If we assume that all the time-steps are of the same size, i.c., At = Ar,
then a substantial computational saving can be achieved by a priori generation
and storage of the required influence matrices. These influence matrices are
formed by integrating the product of the Green’s function G and the appropriate
piecewise polynomial basis functions. Thus the discretized BE equations can be
used to advance the solution by a procedure that involves mainly matrix multi-
plication (i.e., explicitly). Only terms involving the boundary unknowns have
to be solved at every time-step (i.c., treated implicitly). The procedure outlined
above is illustrated in Appendix A and influence matrices for piecewise con-
stant and piecewise linear basis functions are given.

The one-step recursion procedure relies heavily on the discretization of the
spatial convolution integral of the Green’s function and the initial condition (the
first integral in Eq. (2.3)) to communicate the effects of preceding the time
steps to subsequent time steps. Therefore it can be expected that the error com-
mitted in the approximation of this integral will dominate the accumulation of
errors in the one-step recursion procedure. The contribution of the approxima-
tion of the boundary integrals to the total error is assumed to be subdominant —
particularly in the light of thc exponential decay of the Green's function in
space and the typically small time steps involved in the recursion process. If the
extent of the domain is large and the region of interest is far from the bounda-
ries then these assumptions are even more appropriate. We also assume, to fa-
cilitate the calculations that follow, that the region of interest is infinite, so that
Eq. (A.2) can be written in the form

' = Y G (3.1
The assumption that the domain is infinite is often used in convergence analyses
of finite difference schemes. The influence matrices G,,, are given in Appendix B
for basis functions representing piecewise constant, linear, and quadratic inter-
polation. In Appendix B, and in the analysis that follows, a uniform spatial mesh
with spacing 2a is assumed.

B. Stability of the BE Schemes (3.1)

Because we are analyzing a linear problem, the equation for error amplifica-
tion is the same as (3.1). Thus we need only check the growth properties of the
Fourier modes when the scheme (3.1) is used. To exploit the convolution prop-
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erty of the kernel G,,, = G,_, in (3.1), we use the following discrete Fourier
transform pair [16]:

m2a

*® . l
Fluy) = w'(§) =2a 3 e™uy; uy= 27
Nz—= T Jogma

e (u'(&) d¢
We use the following properties associated with this transform pair

4] Convolution: w'(&)v(¢) = F€{2a i u,‘vh,_,‘}

k=

(2) Parseval’s relation:

"“N"§ = 2a Z I"NIZ =

l /22
no-x E -

. (@) d¢ = '@}

By Parseval’s relation we see that to ensure that the solution does not grow as
time progresses, we need only ensure that each mode does not grow in time.
Using the fact that G,,, — G,._, and the convolution property (1) to transform
(3.2) we obtain:

1i ey = L5 '
-G, a0 M) {2aG(§.At)} 1°kg)

Thus none of the modes will grow as J — = provided |(1/2a) r(?(f, A= 1.
By a direct calculation using the definition of the transform F{ }, the expres-
sions for G,,, (given in Appendix B), and the triangle inequality we obtain:

"ul'*\(g) =

%'E(g, A:)I < erf(®) = 1

Thus the BE schemes (3.1) are unconditionally stable for all of the piecewise
constant, linear and quadratic approximations.

C. Consistency of the BE Schemes (3.1)

In this section it is demonstrated that the piecewise constant and piecewise
linear BE schemes are conditionally consistent, while the piecewise quadratic
scheme is unconditionally consistent.

To establish consistency [8] it is sufficient to show that the truncation error

< 1 _ gl
”EE_”G,,,,,(At,a)U,, U, U’ ao

> 0 uniformly in ¢

-D
At ox?

where U7 represents the analytic solution of the differential equation at the
. nodal point (x,, #;).

Proposition 1. The difference scheme (3.1) is consistent with the initial value
problem:

du u

=pD— —00’ 0
at Pl )
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for any sequence of calculations in which a — 0, Ar — 0 in such a way that
At = Ca”
where C > 0 is some constant and
(i) 0 <y < 2 for the piecewise constant (PWC) and piecewise linear
(PWL) schemes

(i) 0 <y < o for the piecewise quadratic (PWQ) scheme (i.e., uncondi-
tionally consistent).

Proof. First we expand U, around x,,, use the convolution property
G, = G(Im — n|), and use the influence coefficients given in Appendix B to
show that

z Gm Un - Um 2 a2 4 a4
£ d4a° U, 4a® 3'U
== = — = + — 2 + ... .
Ar ar o (Ot 385 1O @3.3)
where @ = 2 aDAl and
(a) For the PWC Case.
® e

1(©) = z nzlgzﬁ: where [, = % CXp[—sz]ds
f=o )

J(©) = nt!

(b) For the PWL Case.

» 2 z
10) = %{—l + 2 n§o exp[—4(—%) ]} - ,E, n(n + 1)120+Y

J(@®) = %{l + 2; (1 + 6n? exp[—4 (%)2]}

—_ E n(n + l)(3"2 + 3n + I)I;(.rwl)

n=0

(c) For the PWQ Case.

1(8) = ©%16

10 = =

m {[(4,:2 = D{n(2n + 1)* - 16n%} + %2{(2,: + 1) = 320y y3!

+ @2n+ 1) {(n +1)2n +3) + %2}1;::?
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_ 2
= [mn‘(zn - 1) = 32 + 1) exp[—(%fl—)]

2V
+ {16n*(2n + 1) — n(2n + 1)%} exp[%]

_ 2
+{n+ D2+ 1)} exp[(zz)—:-g’)]]}
3.4)

Part (i)

For the PWC and PWL schemes (cases (a) and (b)), the truncation error does
not approach O for all nonzero finite values of -y without restriction. However,
if the mesh is refined, i.e., a = 0, Ar — 0 in such a way that Ar = Ca” and
0 <y < 2, then in this limit

9=uﬁt-=C’a(%— l) =

_ 0,
a

To demonstrate the consistency of these two schemes we need to determine
the asymptotic expansions of the sums /(®) and /(@) as © — = for cases (a)
and (b).

(a) The PWC Scheme. Consider the asymptotic expansion of /(®). We split
the sum into two parts 0 < n < [@%?] and [0*?] < n (here [©”?] denotes the
largest integer less than ®*?). Thus

1 [8372) 2 10
1(®) = = ,,% n? exp[—4 (%) ] I-Ve epr:—s2 - 4(%):] ds
1 » \ @2n+1)0 \ (3.5)
+ ~s%d
7= Sy n J: exp[—s*lds

n=[@Y2)4+1 2n-1)/8

The integrals in the first summation on the right side of (3.5) are such that their
integrands can be expanded by a Taylor expansion. The contribution of the sec-
ond summation can be shown to be exponentially small. Integrating the Taylor
expansion term by term and interpreting the resulting summations as Riemann
sums we have

HO) = Q— + ﬂ + 0(1/0% as @ — (3.6a)
If we follow a similar procedure with J(©) we obtain
94
J(®) ~ s as®—
If we substitute these expansions into (3.3) we obtain
2, GmUn = U _pFUn _ 1 Qa2 #U, 1 8Uny
At ax’ A1 24 ox® *2

(3.7)
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=D

2
66;.2,,, COAr*" A1) asAt— 0, a—> 0: At =Ca”, 0 <y <2

This establishes the consistency of the PWC BEM for the one parameter family
of calculations represented by At = C - @, 0 < y < 2.

(b) The PWL Scheme. We use a similar procedure as outlined above on the

summations involving /37"*" and interpret the remaining sums as Riemann sums
to obtain
1(@)_@+L+0L a8 — (3.6b)
16 12 o’ )
and

4
J(®) ~ m as @ —
The truncation error in this case is of the same order as the PWC case but its
leading term is larger by a factor of two. Thus the PWL BE method is also con-
sistent for the one parameter family of calculations represented by 0 < y < 2.
This proves Part (i) of the proposition.

Part (i)

For the PWQ scheme /(@) = ©%/16, so the truncation error only involves
terms with the fourth derivative of U, and higher. Therefore, in order to estab-
lish convergence, we must show that a*/At J(®) — 0 for the sequence of
mesh refinement under consideration.

In the case ® — », we can perform a similar asymptotic analysis as that
given in Part (i). If the mesh is refined in such a way that 0 < ® = constant <
®, then J(@) = constant < « since the series converges. If ® — 0 as the
mesh is refined, then we use Laplace’s Method [17) for the asymptotic expan-
sion of series. The results of this analysis are summarized below:

0©) as@— = for0<y<2

constant if0 <@ < fory =2

aexp(—B/0) as@—0 for2<y<x
where « and 8 are constant and 8 > 0

J(©) ~

In each case (a*/Ar) J(©) = 0 so we conclude that the PWQ scheme is consis-
tent for the one-parameter family of meshes represented by 0 < y < =,

D. DISCUSSION OF THE IMPLICATIONS OF THE
CONVERGENCE ANALYSIS

Theoretical Implications

If we combine the consistency and stability results of Sections 3 (B) and (C),
convergence of the BE method follows from Lax’s Equivalence Theorem (8] in
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the case of
(i) the PWC and PWL BE method for any sequence of calculations for
which At, @ — 0 in such a way that Ar = Ca” where 0 <y < 2.
(ii) the PWQ BE method for any sequence of calculations in which A,
a— 0, in which case Ar = Ca” where 0 < y < 0,
We see that for the PWC and PWL schemes the crucial property of a successful
mesh sequence is that ® — « as Ar, a — 0 to ensure that the asymptotic ex-
pansions for /(@) and J(@) are valid. If, for a given sequence of meshes, a set
of difference equations is not consistent with the differential equation they ap-
proximate, then in this limit the difference equations do not reduce to the given
differential equation. In the above proposition the case y = 2 is excluded as the
PWC and PWL BE methods are then not consistent because in such a mesh se-
quence © = 2(VDAt/a) = constant < . Surprisingly we see from Figure 1
that for @ > 2, the asymptotic expansion (3.6a) already gives a good approxi-
mation to /(©). From (3.7) we see that for such a mesh sequence, the BE dif-
ference equations (3.1) approximate the differential equations:

2
%‘f = D(l + 3%)"2)%5 in the PWC case
and (3.8)
2
% = (l + 3%)2)% in the PWL case

Since ® = constant for all meshes in the sequence represented by y = 2, the

— I(e)
------------- 8°%/16+1/24
050
0.30 ¢t
0.10 ¢t

0.50 1.50 2.50
e

FIG. 1. Comparison of /(®) and its asymptotic cxpansion as & — , which is given
in (3.6a). The close agreement for © > 2 is clear.
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BE difference equations will approximate a diffusion equation in which the dif-
fusion coefficient is consistently too large. This phenomenon of “numerical dif-
fusion™ will be illustrated in Section 3(E). The case 0 < y < 2 considered in
the proposition may be interpreted as a family of meshes in which the diffusion
coefficient is initially too large, but in which the correct value is achieved as
the mesh is refined and @ — ». We now decrease the size of At relative to a
further than ¥ = 2 by choosing y > 2. In this case ® — 0 as At — 0, and the
BE difference equations approximate the differential equation (du/dt) = 0.
The conditional consistency of the PWC and PWL schemes thus prohibits small
time-steps, i.e., ¥ = 2, while consistency places no restriction on how large At
can be made relative to a 0 < y < 2. This is significant from a computational
point of view as it allows the solution to be advanced in time with fewer and
larger time-steps. This is in contrast to explicit finite difference schemes where
At cannot exceed an upper value proportional to a.

The excess diffusion observed for the PWC and PWL BE schemes when
2 < y < o, does not occur for the PWQ BE scheme which yields a sequence
of convergent difference equations irrespective of the relative sizes of the time
and spatial meshing.

Practical Implications

In contrast to the hypothetical sequence of meshes constructed for the above
theoretical analysis, we are in practice confronted with the issue of deciding on
an appropriate algorithm and mesh for a given problem. The above analysis can
also be used to shed light on such a choice.

First, for the PWC and PWL BE schemes a minimal consistency requirement
of a mesh is that the asymptotic expansion (3.6) should be valid. From Fig. 1 it
can be seen that for the PWC scheme © > 2 is sufficient to ensure consistency.
If (1/0% < 1 then from (3.8) we can expect the BE method to provide good
approximations provided At is not too large. Also if we examine the first and
second terms given explicitly on the right of (3.7) we observe that for a given
spatial mesh size a we can predict the existence of an optimal time-step. This
will be determined by the value of A¢ for which these two terms are equal.
Since these two terms depend on the derivatives of the solution, an a priori esti-
mate of the optimal time-step is not possible.

E. Numerical lllustration of Convergence Properties
In this section we illustrate the convergence properties that we established in
Sections (B) through (D) by means of a simple example.
ou

62
== D-al; x¢(0, 1)

We consider the scalar initial-boundary value problem [18]

=x=1
u(x,0)={2x 0=<x ;

2(1 = x) %<x;
u(0,1) =0 =u(l,1)

3.9
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The analytic solution to this problem can be obtained by separation of variables
and is given by:

u(x, 1) = ‘rrz 2 p; sm( ) sin(nmx) exp(—Dn’w’t)
n=1 B

A sequence of runs was performed for a variety of time-steps Az = 0.1, 0.05,

0.025, 0.01, 0.005, and 0.001. In each case 10 spatial cells were used (i.e.,

2a = 0.1) and D = 1.0. Figure 2 shows the PWC BE solutions at ¢t = 0.1 in

which various time-steps are used. The analytic solution is also plotted for

EXACT SOLUTION
- == .- At=0.001 & ©= 1.26
e« o +8tc0005 & O= 283
s At=0.010 & ©= 4.00
............. At=0.025 & ©= 6.32
— — = .At=0.050 & O= 8.94
............. 8t=0.100 & ©=12.65

025 |

U(X,0.1)

0.05 | .4

0.10 0.30 0.50
X

FIG. 2. Exact and Piecewise Constant BE solutions at t = 0.1 using a = 0.05 and
various time-steps. (a) At = 0.001 so @ = 1.26: clear lack of consistency characterized
by excess diffusion even greater than that predicted by (3.8). (b) At = 0.005s0 & = 2.8:
lack of consistency but the excess diffusion is exactly as predicted by (3.8) because ©
satisfies the minimal consistency requirement © > 2. (c) Ar = 0.01 so © = 4.0: same
as in (b). (d) Ar = 0.025 so © = 6.32: no lack of consistency and time-step is nearly
optimal. (e) At = 0.05 so @ = 8.9: no lack of consistency but degradation in accuracy
due to the boundary interpolation scheme for such a large time-step. (f) Az = 0.1 so
© = 12.6; same as in (e), still no instability even for such a large time-step.
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comparison. The following trends are observed:

At = 0.001, © = 1.26: There is a lack of consistency characterized by
an excessive amount of diffusion of the numerical solution. In this case there is
even more excess diffusion than predicted by (3.8) owing to the fact that for
such a low value of 8 < 2, the mesh does not satisfy the minimal consistency
requirement of validity of the asymptotic expansion (3.6a) (see Figure 1).

At = 0.005-0.01, @ = 2.8-4: These numerical solutions also exhibit
a lack of consistency characterized by excessive diffusion. However, these two
meshes do satisfy the minimal consistency requirement, and the excess diffu-
sion in each case corresponds to that predicted by (3.8).

At = 0.025, © = 6.32: In this case the excess diffusion is negligible and
the time-step is nearly optimal.

At = 0,05-0.01: As in the case Ar = 0.025 the excess diffusion is negli-
gible. However, in these two examples a degradation in accuracy is observed.
This is a direct result of the large time-step that has been used. As mentioned in
Section D, a greater accuracy for large time-steps can be achieved by using
higher degree time-interpolation on the boundaries. This improvement can be
seen in Fig. 3 in which linear time-interpolation is used.

In Fig. 3 the PWL BE solutions at = 0.1 for the selected range of time-
steps are presented. A similar degradation in the BE solution is observed for
small time-steps. In fact, for time-steps Az = 0.01 and At = 0.005 the excess
diffusion for the PWL case is exactly double that of the PWC case. This agrees
precisely with the theoretical values of the excess diffusion for the PWC and
PWL schemes given in (3.8). For the larger time-steps A¢ = 0.05 and
At = 0.1, the degradation in accuracy is less marked when the PWL time-
interpolation is used than when PWC interpolation with endpoint collocation is
used (compare the solutions Az = 0.1 in Figs. 2 and 3). This insight can be
used to determine the most appropriate algorithm for a given problem.

In Fig. 4 the PWQ BE solutions at ¢ = 0.1 for the selected range of time-
step are presented. In this case there is no excess diffusion associated with loss
of consistency when small time-steps are used. In fact, the solution improves as
the time-steps are decreased and become virtually indistinguishable from the
exact solution for Ar =< 0.025. This confirms the results of the convergence
analysis of Sections B through D. As was the case for the PWC and PWL
schemes, the PWQ solution also degrades as the time-step is increased, e.g.,
At = 0.1, due to boundary discretization. The sizes of the spatial cells
(2a = 0.1) were kept the same as those of the PWC and PWL schemes in spite
of the fact that the number of spatial mesh points was in cffect doubled. This
was done so that the numerical results were compatible with the convention
adopted in the convergence analysis. To be fair to the other schemes, a com-
parison should be made between solutions involving the same number of de-
grees of freedom. Such a PWQ solution was determined in which 2a = 0.2.
The coarse mesh PWQ solution showed only a slight degradation compared to
the fine mesh PWQ solution and did not display the phenomenon of numerical
diffusion. This is consistent with the predictions of the convergence analysis.
However, since the objective here is to illustrate the convergence properties
rather than to provide a direct accuracy comparison, these results are omitted.
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EXACT SOLUTION
- - .= .- At=0.001 & O= 1.26
o o «At=0.005 & O 283
e 81=0.010 & @= 4.00
............. Ate0.025 & 6= 6.32
— = = - At=0.050 & ©= 8.94

............. At=0.100 & ©=12.65
025 |
~~
o
o3
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FIG. 3. Exact and Piecewise lincar BE solutions at ¢ = 0.1 using @ = 0.005 and for
the same time-steps as in Fig. 2. The same trends as in Fig. 2 are observed but in this
case twice as much excess diffusion occurs for the small time-steps Af = 0.005 and
0.01. Also for the large time-steps Az = 0.05 and 0.1 therc is less degradation in accu-
racy because of the more accurate boundary interpolation scheme.

Finally, in Figs. 2 to 4 there is no hint of numerical instability even when
large time-steps are used. This confirms the unconditional stability that was es-
tablished in Section B for all the BE schemes. This behavior is distinct from
that of explicit difference schemes such as the explicit Euler scheme with cen-
tral differences [18]. This scheme would experience severe instability problems
for any time-steps larger than As = 0.005, while all the BE schemes are still
stable when A7 = 0.1 and larger. The close correspondence between the theo-
retical predictions of the convergence analysis and the numerical results vali-
dates the assumption that the dominant accumulation of errors in the one-step
recursion procedure is due to the approximation of the spatial convolution inte-
gral of the Green’s function and the initial condition.
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EXACT SOLUTION

--=.-.- At=0.001 & O= 1.26
e o +41=0.005 & Oc 2.83
——————— At=0.010 & ©= 4.00
------------- At=0.025 & 0= 6.32
- = = - At=0.050 & O= 8.94
------------- At=0.100 & ©=212.65

0.25 |

U(x,0.1)

015 |

0.05

2 i " Y n ' )

0.10 0.30 .0.50
X

FIG. 4. Exact and Piccewisc quadratic BE solutions at ¢+ = 0.01 using a = 0.05 and
the same range of time-steps as in Fig. 2. Consistent with the unconditional convergence
of this scheme, there is no cxcess diffusion observed. There is only a slight degradation
in accuracy observed for Ar = 0.1 due to the degradation in accuracy of the boundary
interpolation scheme.

IV. CONVERGENCE OF AN EXPLICIT PIECEWISE LINEAR
CARATHEODORY ITERATION ALGORITHM TO ADVANCE THE
SOLUTION AT LOCALIZED REACTION SITES

In this section we consider the convergence of an explicit algorithm to ad-
vance the solution at a localized reaction site forward in time by means of
Caratheodory iteration combined with piecewise linear interpolation. To be able
to focus on the accumulation of errors when the piecewise linear Caratheodory
iteration (PLCI) procedure is used to advance the solution, we make some sim-
plifying assumptions. In this case (2.3) reduces to a nonlinear, singular Volterra
integral equation in time. This equation can either be regarded as a model prob-
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lem that retains the dominant features of the original problem, or a special case
of (2.3) that is realized for special regions. We give some examples in which
(2.3) reduces to the model problem.

To prove the convergence of the time discretization scheme based on piece-
wise linear collocation, we exploit the techniques used by Miller {11] to ana-
lyze the existence and uniqueness of nonlinear singular Volterra integral
equations. While this approach does not yield a completely general theory ap-
plicable to all problems, it demonstrates that the piecewise linear collocation
technique does provide a convergent scheme in this nonlinear environment. Fi-
nally, the performance of the piecewise linear collocation scheme is illustrated
in two numerical examples.

A. Model Problem

We consider a class of problems in which the active sites are located in a re-
gion remote from the boundaries. In this case the contribution of the boundary
terms in (2.3) are assumed to be negligibly small. Furthermore, we assume that
we have a problem for which the solution value y(x,, ) at each of the active
sites is identical, i.e., u(x,,1) = u(x;,1) = + - - = u(x, - t). This situation oc-
curs in the case of a single active site in an infinite domain or in the case of an
infinite periodic array of active sites. This symmetry is not restricted to one-
dimensional problems. For example, in two dimensions we can envision an ac-
tive circular ring, or in three dimensions an active spherical shell. Each of these
problems is essentially one-dimensional due to symmetry. We now write down
the integral eq. (2.3) in the special case when the field point x coincides with
one of these active sites. In this case the integral Eq. (2.3) reduces to the form:

W) = FO) + [ gle = DR dr @.1)

Here the first two terms of (2.3) have been absorbed into the term F(r), the re-

actions taking place at each of the active sites are assumed to be indentical,

i.e., R, = R for all /, and the kemel g for the various problems is as follows:
(a) a single active site in an infinite domain:

g;(t) = H(t)(&l_P-;:DT"‘) 3 (4.2a)
(b) a periodic array of active sites a distance / apart:
> n*h?|| exp(—Qt)
gi](t) - H(’) {"EZ—Q exp[ 4Di‘:|} (4‘”D‘t)llz 8'} (4'2b)

(c) an active circular ring of radius a:

(1) = H(t) — S Y 5 42
8 = B 4D P "o T \2py (4.2¢)

Here H(t) is the Heavyside function defined in (2.4) and /, is the zeroth order
modified Bessel function of the first kind.
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To develop the theory that follows, we shall require that F, g, and R satisfy a
number of properties that we now state and motivate: )
(P1) FI[0,T) — R’ is continuous:
Motivation. Provided 4°(x) is continuous on (—%, ) it can be shown [11]
that F(¢) is continuous for all 7 = 0.
(P2) g:[O,T] — R* x R’ is an element of L' ([0, T], R* X R):

Motivation. We consider each of the above cases (4.2a—c) in turn.
(a) Trivial
(b} The simple estimate
+ (4mwD1)'"

- nh?
,Z',, e"p[ D1 A
and an application of the Lebesgue dominated convergence theorem
yields the desired result.
(c) ast— 0, gi(1) ~ §,/(167°Dyt)"* so that g € L'([0,T], R*)
We note that provided Q,; # 0, i = 1,...,s (P2) holds for all T < o,

(P3) R:R* — R’ is assumed to be a continuous function:

Motivation. In isothermal reaction kinetics R is often assumed to be analytic,
and the corresponding Taylor Series is commonly truncated and only second- or
third-order terms retained.

B. Piecewise Linear Caratheodory lterates

In this section we define a Caratheodory iteration scheme that is based on
piecewise linear interpolation. The scheme involves advancing across a finite
time interval [0,56] C [0,7] an approximate solution that uses piecewise linear
interpolation and collocation at a finite number of nodal points. These
Caratheodory iterates differ from those used by Miller [11] in that only a finite
number of degrees of freedom are needed for each piecewise linear iterate. In
contrast, those used by Miller involve determining a function for each iterate,
which essentially involves an infinite number of degrees of freedom. However,
since our task is one of approximation, the piecewise linear Caratheodory iter-
ates (PLCI) are better suited to our purposes than those of Miller, who was in-
terested in questions of existence. These PLCI have the useful property that the
approximate solution is marched in an explicit fashion so that a system of non-
linear equations do not have to be solved every time-step.

Given J ¢ Z we partition the bounded interval [0,b] into subintervals of
length &, = b/J. Let X = (C[0,b], | - |.) be the Banach space of continuous
functions mapping [0,5] to R and let | - |. be a norm constructed by combining
some vector norm on R’ with the sup norm on [0,b]. Let X, be the S(J + 1)
dimensional subspace of X comprising the piecewise linear functions defined on
the subintervals of length &,. Let L, :X— X, define the projection operator that
maps a function ¥ & X onto its piecewise linear interpolant L,y & X,. We now
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define the PLCI for (4.1) as follows:

b =LE:) O0sise } “.3)
Y, () = L,F(r) + j g(t - & — LR, (M) dr; g <t1<b
(1]

Thus we can define a sequence {{,(1)};., of PL.CI of (4.1).

C. Convergence of the PLCI to a Solution of (4.1)

In this section we prove that the PLCI converge uniformly on [0,b] to a con-
tinuous solution of (4.1). The theory holds for a finite time interval [0,5], the
size of which is determined by on F, g and R. The interval of convergence
[0,b] for the piecewise Caratheodory iterates defined in (4.3) is identical to the
interval of existence guaranteed by the Miller theory. We have chosen not to
place additional restrictions on R that will guarantee uniqueness because it is
often of interest to obtain an approximate solution of (2.1) in the regime of
multiple solutions.

Theorem 1. Let F, & and R satisfy conditions (P1), (P2), and (P3) respec-
tively, then there exists a be(0, T] and a subsequence of PLCI defined by (4.3),
which converge uniformly on [0,b] to a continuous solution of (4.1).

Restrictions on the interval of convergence:

(i) let My = n?oa;(] |L; F(0)] (4.4a)
1elV,.

(i) letM, = m%g{ llg(x)l (4.4b)
Mgwo

then choose the number & such that 0 < b < T and such that
b
m, [ 1golds < my (@.40
0

Notice that we have let | - | denote the vector norm on R* that is used in the
definition of | - |., and | g(s)| denote a consistent matrix norm of g induced by
the vector norm | -

We prove theorem 1 using the following five lemmas:

Lemma 1. Let F ¢ X = (C[0,B), | - |.) then the sequence {L,F};., where
L,F e X, is equicontinuous on [0,8]

Proof. Let te[0,B] and h:r + he[0,B]. By the triangle inequality we have
IL,F(t +h) = L,F@)| =< |L,F(t + h) = F(t + h)| + |F(r + h) - F(@r)| +
IL,F(:) — F(1)|. Let & > 0 be given. Since L,F 4= F in the sup norm on
[0,b] there exists an N (e):

J = N(g) => |L,F(r) — F(r)] < ¢/3 for all ¢ [0,B]

Now since L, F are continuous there exists for each J = 1,...,N(g) — 1
ad(e) >0
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|h| < 8,(e) => |L,F(e + h) — L,F(t)| < &
Finally since F is continuous there exists a 3;(¢) > 0:
lh] < 8:(e) => [F(e + B) — F(1)| < &/3
We now choose 8 = min{8,(¢), . . . , 8y~ (€), 8¢(€)} for which

| < & =>|L,F(t + h) — L,F(1)| < ¢ independent of J
QED
Lemma 2. The sequence {{,(s)} is uniformly bounded on some subinterval
[0,b) C [0,T)

Proof. The proof is by induction on the subintervals into which [0,b] is di-
vided when the Caratheodory iterates are set up in (4.3).

tel0, g ]:
@, (e)| = L, F(1)] =< M, < 2M, by (4.4a).

te(ey, 2¢,):

t~ey

w01 = LEOL+ | 150 = & = DR dr

=M, + M, j Ig(t - g — 7)|dr by (4.4a,b)

0

= 2M, by (4.4¢c)

This process can be continued over the whole interval [0,b].
Thus |, (¢)] = 2M, for all t[0,b] and for all J.
QED

Lemma 3. The sequence {{,}7., is equicontinuous at any point t¢[0,b).
Proof. t = 0: From (4.3) it follows directly that
g, (h) — $(0) = L,F(h) — F(0) for 0=h=g,

h-2;

B0 = 40 = LEW - FO + [ g = &= L, @yl dr

0
g<h<b

Let & = max{0,h — &,}; then combining the above two equations we have

() = & (O] = L, F(k) - L, FO) + j |8t — I IL, RG] dr

B
< |L,F(h) — L,FO)| + M, f |g(s)lds by Lemma2
0

Now since {L,F}., is equicontinuous by Lemma 1, the right-hand side ap-
proaches 0 as # — 0 for all J. So the result is established for ¢ = 0.

0 <t=b,: Choose J such that &, <t < g,_, and pick 4 small enough that
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g<t+h<b Ifj=J, then
it + h) — @ (t) = L;F(t + h) — LF(z)

+ f - {glt + h — & = 5) — glt = & — IL,R(Y(s))ds

0
1+h—¢g;

+ f l glr + h — & — SIL;R(;(s)) ds
L]

thus

r

e+ B = 0 = ILEC+ B = LEOL+ M, [ Lgls + ) - golds

h
o, [ |golas
o - (4.5)

= |L,F(t + h) — L,F(1)] + M, I |§(s + h) - g(s)lds
0
h
+, [ lgolas

Since {L,F}.., are equicontinuous by Lemma 1, the first term on the right of
(4.5) approaches 0 as £ — O for all j. Since g is an L' function we can use the
Lebesgue dominated convergence theorem to show that the second term on the
right of (4.5) approaches 0 as h — 0. Since ¢,, . . ., ¥;_, are only finite in num-
ber and continuous, given an &£ > 0 it is thus possible to choose a 8(g) > 0
such that || < 8(e) => |y;(r + I) — Y,(1)] < & for all j.

QED

The Arzela-Ascoli Theorem [19] combined with Lemmas 2 and 3 implies
that {,};2., has a subsequence {{,,} that converges uniformly on [0,b] to a con-
tinuous limit function (). We next show that the subsequence of {L,y,};.,
corresponding to {¢,, } also converges uniformly to y(r).

Lemma 4. Let {#,(s)},-, be a sequence of continuous functions that converge
uniformly to a continuous limit function A(t), then L, (t)eX, converges uni-
formly to h(r).

Proof. Since h(t)eX, we know that the sequence {L,h},., of piecewise lin-
ear interpolants converge uniformly to h. Thus given an & > 0 there exists an
M(e):

m>Me) =>|Lh - h.<e
Now since #, converges to k uniformly there exists an N(g):
n>N()=>h, - h.<e¢
Now using the triangle inequality
Lo, = Al = |L, (R, — Bl + |Loh — Al.
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Now if we choose n > N’ = max {M(g), N(¢)} then it follows that |4, —
h|. < &. Combining this with the fact that the function h, — h is continuous,
and using piecewise linear basis functions to expand L,(h, — k), we can derive
the estimate

an('!n - }_')lan = l’!n - ’!Ix < g

Thus n > N' => |Lh, — hl.< e
QED

Lemma S. There exists a subsequence of {y;;(¢)};-, that converges uniformly
on [0,b] to a solution Yi(z) of (4.1).

Proof. Let {¢,(1)};-, denote the elements of the subsequence of {y,, ()},
which by the Arzela Ascoli Theorem converge uniformly to the continuous limit
function (7).

1=0 $(0) = lim y, (1) = lim F(0) = F(©0)
0<t=pb:
() L,F(t+ (b/n))—> Ft) asn—>

@ [[ gt - 9L, Rw,6) - Rl

= mgi(]u,. R(,(7)) 4.6)

- R gl

Since y, — ¢ uniformly and R is continuous, it follows that the sequence
R(Y, (1)) converges uniformly to R(Y(¢)) on [0,b). Applying Lemma 4 it follows
that L, R({,) — R() uniformly. Thus the right-hand side of (4.6) approaches 0
as n — o since Io”l,s(s)lds < o by (P2).

(iii) ¢,(¢ + b/n) —> Y1) asn—> =
This follows from the inequality
[l + B/m) = YO =< g, (¢ + B/m) = @, ()] + W) — ¥()| @7

The first term on the right of (4.7) can be made arbitrarily small as n — = by
exploiting the equicontinuity of {{,}, while the second can also be made arbi-
trarily small since §, — Y as n — o,

Combining (i) through (iii) and using (4.3), we have
$(0) = lim gt + (b/n)

= lim {L,,F(t + (b/n)) + f ‘ glt — )L R(Y, (7)) dr}
n—>x T 0 -

= F(o) + L g = RGO dr

which shows that {i(¢) is a solution of (4.1) on [0,5]. QED

Theorem | now follows from Lemmas 4 and 5.
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Comment. It should be noticed that the PLCI were shown to converge for
some model problems that required some simplifying assumptions on the
geometry of the active sites and the extent of the domain— for example, a
single active site in an infinite domain. The interval of convergence [0,b] of
Theorem 1 agrees precisely with the interval of existence guaranteed by the
Miller theory. [11] Thus the PLCI will, according to the theory established
here, capture a solution (4.1) for as long as such a solution is guaranteed to ex-
ist by Miller’s Theory. The extent of the interval of existence depends upon the
relationship (4.4c) between the forcing represented by M,, the reaction repre-
sented by M,, and the diffusion processes embodied in the kemnel g

If we were to use the above theory to try to provide estimates for the interval
of convergence of the PLCI for practical problems in which the domain is fi-
nite, we would find that the estimates are extremely conservative due to the fact
that the Dirichlet problem is inherently less stable on an infinite domain than a
finite domain [20]. What is probably more important to remember is that the
PLCI provide a convergent approximation to the model problems and only
break down when existence of a solution is not guaranteed.

D. Numerical lllustration of Convergence

In this section we demonstrate that the PLCI do provide a viable numerical
scheme by solving two model problems:

(i) An initial boundary value problem with a single active site at which a lin-
ear reaction occurs. We consider the scalar initial value problem

ou du
— + —
Y Py 8(x - 1Ju  xe(0,2)

X O=x=1
= 4.8
u(x, 0) {l -x 0<x=2 “9

u(0,¢) = 0 = u(2,1)

The analytic solution for this problem can be obtained by exploiting the sym-
metry of the problem and by using the method of separation of variables:

ulx,t) = > Ae ™ sin A, x
n=l

Here {A,};-, are solutions to the equation tan A, = 2d\,/J and A, = 4(sin A, —
A, €os A,)/(2AZ — A, sin 2),).
In this example the values D = 1.0 and J = —2.0 are used.

In Fig. 5 the exact and BE solutions to (4.8) at two different times r = 0.01
and ¢ = 0.1 are presented. Two different schemes are used to treat the integral
in (2.3) that represents the active site: -

PWC: the solution is assumed to be constant over the time-step when evalu-
ating the integral in (2.3) that involves R,.

PWL: a piecewise linear interpolation scheme based on the Caratheodory
iteration procedure outlined in (4.3) is used to evaluate the integral in (2.3) that
involves R,.
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[ EXACT SOLUTION
-.=.==- PWC BE SOLUTION
6 o o PWL BE SOLUTION
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FIG. 5. Exact and PWC and PWL BE solutions at times ¢ = 0.01 and ¢ = 0.1 for the
single linear active site problem (4.8). An accurate BE algorithm based on PWQ inte-
gration was used with @ = 1/60 and At = 0.01 so that ® = 12.0. The diffusion coeffi-
cient used was D = 1.0 while J = —2.0. After one time-step t = 0.01 the maximum
error is 2.3% for the PWC BE solution and 0.20% for the PWL BE solution. As time
progresses to ¢ = 0.1 the error is reduced to 1.3% for the PWC BE solution and 0.06%
for the PWL BE solution.

Both of these BE algorithms are explicit in that it is not necessary to solve a
system of nonlinear equations at each time-step.

To be able to focus exclusively on the errors introduced by the BE represen-
tation of the active site and the explicit PWC and PWL treatment in time of the
active site equations, we use an accurate spatial discretization of the BE equa-
tions by means piecewise quadratic interpolation. A mesh with A7 = 0.01 and
a = 1/60 was used so that @ = 12.0.

In Fig. 5 we observe that the error committed by the explicit PWC scheme
for solving the active site equation is of the order of 2.3% at + = 0.01 and is
even reduced to 1.3% by ¢ = 0.1. The PWL BE solution is virtually indistin-
guishable from the exact solution in Fig. 5 and has a maximum error at 1 =
0.01 of 0.20% and at t = 0.10 of 0.06%. The PWL scheme, based on the
piecewise linear Caratheodory iterates analyzed in Section 4, is clearly the bet-
ter of the two techniques and involves only a marginal increase in computing
costs. Naturally the errors observed here can be decreased by decreasing the
size of the time-step. If the time-steps required by a particular reaction process
are extremely small, then the appropriate domain collocation scheme and mesh
must be used. From the theory established in Section 3 small time-steps will re-
quire a very fine spatial mesh if piecewise constant or piecewise linear domain
cells are used. Extremely fine spatial meshing will not be required if quadratic
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cells are used. This simple illustration demonstrates how useful the theory in
Section 3 can be when an appropriate meshing strategy is to be determined.

In this problem the constants of (4.4) are My, = 1 and M, = 4 so that the in-
terval of convergence guaranteed by the above theory is [0,7/16]. As was sug-
gested in the remark at the end of Section C this convergence interval is
extremely conservative as it assumes an infinite domain, and no account is
taken of the sign of J. If J > 0 and the domain is infinite, then the solution
would become infinite as + — c. In contrast, the solution to the problem (4.8)
exists [20] for all time, provided J < (4D/L) = 2 (where L = 2 is the length
of the interval). In view of the fact that we established, for the model problem,
that the PLCI will capture the solution as long as it exists, we expect in this
case that the PLCI will provide a convergent scheme.

(ii) An initial-boundary value problem with a single active site at which
a nonlinear reaction occurs. We consider the vector initial-boundary value
problem

— = D,-7 + 6(x - —;—)R,-(uj) xe(0,L) i, je{l,2}
u,(x, 0) = ui(x) 4.9)
1,(0,6) =0 =uwlL,1)

In this problem we choose a reaction term R;(;) associated with the Lotka-
Volterra system of nonlinear ordinary differential equations:

R\(w;) = 4u, — 4uyu,

Rz(uj) = —4u2 + 4“.“2

4.10)

Although it is not possible to find a closed form solution to (4.9-4.10)
it is possible to locate the equilibrium solutions (i.e., those for which
(du; /3ty = 0; i = 1,2). The stability of these equilibria can be investigated by
linearizing (4.9) about these equilibrium solutions. We obtain a system of linear
partial differential equations that governs the behavior of some small perturba-
tion to the equilibrium solutions. The growth, boundedness, or decay of these
small perturbations as + — o« determines the stability of the system. It should
be remembered that this type of linear stability analysis is inherently local and
does not guarantee stability in the large.

We now assume for simplicity that the coupled lmeanzzd system can be de-
coupled into two scalar equations by diagonalization. This will be possible if,
for example, D, = D, and the Jacobian

R,
™

{

|x=u2

can be diagonalized by a similarity transformation. Applying the Laplace
Transform to the scalar equations we obtain [20] the following sufficient condi-
tions for stability:
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0)) L <D, where J,eR
or 2 “.1)

(2) J|argZ))| > % where J,e€ and D, # 0.

Here J, are the eigenvalues of the Jacobian.
The two equilibrium solutions of (4.9-4.10) are readily obtained by integrating
(2.1) with du;/8t = 0:

Ax 0=sxs1L/2

=4 4.12

4 (x) {A,(L —x) Li2<x=L @.12)
where (4,,4,) = (0,0) or (4,,4,) = 2/L(1 + D,/L,1 — D,/L).
In the numerical experiments we choose D, = D, = 1.0, L = 2,

X 0=x=1

$2-x) 1=x=2 P, =100 o, =1.00

and ul(x) = {
For this parameter choice the equilibria are given by (4.12) with (4,,4,) =
(0,0) and (A,,A,)(3/2, 1/2); and the eigenvalues of the Jacobian are
Ji==)"x40,=201=%i V/3) respectively. Since the eigenvalues in each
case are distinct, the Jacobians in both cases are not defective. Therefore, the
stability criteria of (4.11) apply. For the zero solution, stability is not guaran-
teed by either criterion. In fact, this solution is unstable. However, for the other
equilibrium solution, criterion (2) of (4.11) guarantees stability.

Figure 6 presents the phase diagram at the active site of a number of PWL
BE solutions in which the time-steps At = 0.050; 0.020; 0.010 and 0.005 are
used. We use the same spatial meshing as in example (i) of this section, These
solutions correspond to piecewise linear Caratheodory iterates over the time in-
terval [0,7 = 5.0] and J = 100, 250, 500, and 1000 respectively. All the
Caratheodory iterates converge to the stable equilibrium point (3/2, 1/2)
predicted by the theory. The convergence (in the sense of Cauchy) of the
Caratheodory iterates can be clearly observed in Fig. 6.

As was the case in example (i) of this section, the guaranteed interval of conver-
gence is extremely conservative, namely [0, (7/576)]. This is due to the infinite
domain assumption and the fact that the bound 4.4(b) does not take into ac-
count the detailed structure of R;(x;). For this finite domain problem the PLCI
solution approaches the steady state predicted by the theory outlined above.

V. COMMENTS AND CONCLUSIONS

In this paper we hve performed a convergence analysis of BE schemes for
the linear diffusion equation with localized nonlinear reactions. The analysis is
divided into two parts:

(i) The linear diffusion equation. We use a novel convergence analysis that
combines asymptotic methods with Lax’s Equivalence Theorem to establish a
number of interesting properties of a one-step recursion algorithm appropriate
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At=0.005 J=1000

£ e At=0.010 J= S00
/ - === At=0020 J= 250
=s=-=-=- At=0.050 J= 100

0.70 |

U2

0.50

0.30 |

0.80 1.20 1.60

Uy
FIG. 6. Phase plots at the active sitc of PWL BE solutions to (4.9).
¥.x 0=sx=<|
b2-x) 1<x<?2

and the Lokta-Volterra reaction term of (4.10) was used. The BE spatial mesh parame-
ters were @ = 1/60. All the PWL BE solutions approach the stable equilibrium position
and the convergence of the PWL Caratheodory iterates can be clearly seen.

Here D, = D, = 1.0, ui(x) = { Y =10, $,=1.0

for advancing BE solutions when localilzed reactions are present. This analysis
provides a theoretical framework for the choice of the appropriate size of time-
step. A dimensionless meshing parameter @ is identified, the magnitude of
which governs the performance of the BE scheme.

In particular, PWC and PWL BE schemes are shown to be conditionally con-
vergent having lower asymptotic bounds on the size of time steps. In addition,
no restrictions need be placed on how large the time-steps can be, other than
for considerations of accuracy. The PWQ BE scheme is shown to be uncondi-
tionally convergent, i.e., there is no restriction on the relative sizes of time and
spatial meshing. Thus, the payoff for using higher-order spatial interpolation
is evident.

The convergence properties of the BE schemes that are predicted by the
above convergence theory are verified in numerical experiments. The crucial
role of the mesh parameter © for PWC and PWL BE schemes is confirmed by
these numerical experiments. The phenomenon of numerical diffusion for small
values of @, which is predicted by the theory for PWC and PWL schemes, can
also be observed in the numerical experiments. The amount of excess diffusion

’
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observed numerically and predicted theoretically agrees well for those values of
© for which the asymptotic expansions used in the theory are still valid. In the
numerical experiment the magnitude of the mesh parameter © has little effect
on the PWQ BE scheme and no excess diffusion is observed. This result is con-
sistent with the theoretical unconditional convergence of the PWQ BE scheme.

The insight gained from this analysis enables us to choose the BE algorithm
and meshing strategy best tailored to the nceds of a given problem. For ex-
ample, if we are interested in short-time transient behavior, we should invest in
high-order spatial interpolation while the degree of time-interpolation is not as
important. On the other hand, if we are interested in achieving a long-time so-
lution rapidly, we should use high order time integration. In this case the de-
gree of spatial interpolation is less important. Finally, if PWC or PWL BE
schemes are used, the chosen mesh should satisfy appropriate minimal consis-
tency restrictions on @. This analysis therefore enables us to exploit the proper-
ties of the one-step recursion schemes for the BE equations that are quite
distinct from those of finite differences and finite elements.

(ii) The diffusion equation with localized nonlinear reactions. We have ana-
lyzed the convergence of an explicit algorithm to advance the solution at local-
ized reaction sites forward in time. To simplify the analysis we assumed a
special geometry in which the BE equations were reduced to a nonlinear singu-
lar Volterra equation. We established the convergence on a finite time interval
of a Caratheodory iteration scheme based on piecewise linear collocation. The
length of the interval of convergence is exactly the same as that for which a so-
lution is shown to exist by the theory of Miller [11]. Since the above conver-
gence analysis was performed for a model problem, estimates of the interval of
convergence tend to be very conservative if applied directly to practical prob-
lems. However, the analysis does establish that the piecewise linear collocation
scheme performed well in the approximation of integral equations representing
localized nonlinear reactions. A numerical illustration is provided in which the
piecewise constant and piecewise linear collocation techniques are applied to a
diffusion equation with a localized linear reaction. In this case the approximate
solutions agree closely with the analytic solution. Piecewise linear Caratheo-
dory iterates are provided for a second problem in which the localized reaction
is nonlinear. The convergence of the piecewise linear Caratheodory iterates can
be seen clearly in this example. All of the Caratheodory iterates tend to the
stable equilibrium position, which can be determined analytically.

The linear convergence analysis developed in this paper provides a use-
ful theoretical framework for choosing the appropriate degree of piece-
wise polynomial to use in the spatial discretization and meshing strategy for a
given problem. Recently the BE algorithm has been demonstrated to be emi-
nently suited to the analysis of realistic linear diffusion equations with localized
nonlinear reactions [21]. In the present paper the nonlinear convergence analy-
sis has been performed on a simplified model problem. The analysis provides
a theoretical justification for the approximation of BE equations representing
localized nonlinear reactions by a scheme using piecewise linear Caratheodory
iteration.
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APPENDIX A: DISCRETIZATION OF BE EQUATIONS

Letx, < x; < ... < xy., < xybe a pattition of the interval [x,, xy] in which
the set of active sites {x,}}., are included as a subset. In accordance with the
one time-step recursion algorithm described in Section 3(A), we introduce
piecewise polynomial interpolation functions over the rectangular space-time
cells [x,-,, x,]x[0, At]. Within the e® interval [x,_,,x,] we introduce the nodal
points {x7}_, and over the time interval [0, A¢] we introduce the nodal points
{t"}%.,. Here P — 1 and Q — 1 are the degrees of the spatial and time polyno-
mial approximation respectively. We now define basis functions, X; and T":

X7 X7(xy) = 848, TMT"(" =38,

The resulting interpolants of the functions u(x, t), (du/dx) (x;, 1) = ¢(x;,1) and
[f(x, 1) are obtained:

N P
wlx, ) = X X XP(u(x7, 1)
e=] m=1
Q
S, 4+ 1) = 2 T"()plx;,, + 1t i=0,N (A.1)

fx, 4 +1) = z 2 ZX’"(x)T"(l)f(x,,r + ")
e=1 m=1 n=1
Substituting these expressions into (2.3) and assuming homogeneous Dirichlet
boundary conditions, we obtain

N P
ulx, ) = 2 3 G™(x, Anu™(g) + X, E&(X)d’..(t)

e=1 m=] i=0,N n=1
L ar

e
E Glx — x,,At — 7)R, 2] T"(ulx,,, b + t")) dr

¢

+ 2 2 > Gy (A.2)

e=1 m=1 n=]

Here G™(x, At) = f Glx — £ ANX™(£) dE
At

gix) = | Glx - x;,At — T"(v)dr
[}

at Xe
Gl = | T'@)| Gl — &A48r—1X(€)dEdr
0

x.=1
ar

= | T'("NG™(x,At — 1)dr
)

It is possible to evaluate the integrals G™(x, At) and the self effects gi(x;) ana-
Iytically. In the remaining cases the integrands are smooth and can be evaluated
using Gauss integration.
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Rather than providing the general expressions of G™, etc., we will provide
the results in the two special cases P = Q = | and P = Q = 2. These kernels
will be used in Section 3 to analyze the convergence of the BEM.

Interpolation by a Constant Function in Space and Time:
P=Q=1

In this case

x: = %(xe—l + xe); X: = {H(.X - X¢_|) - H(X - xe)}

where H = the Heavyside function.

t'=At;  T'={H@t) - Htt - A1)}

(G‘])’l(x! At) l Exp[ i ]I (x2 : D 'A;) rf( et) 8‘]
2 i 2 L iA ’
(A.3)

W‘;_Qerf(\/f) 0,#0
(8u)i(x;, A1) = ( k3 hx

Af 12
5) 6” Q‘, = O

interpolation by a Linear Function in Space and Time:
P=Q=2

In this case
F-0,) -1 +6,) + 0,0
X, =Xy X, =x,; X!= (x, = x.-1)
| 2 M == - + Ar
r'=o0; 1=An (l 6.) 0"A
where

1 m=1
1 m=2

x m
[ (270,131) - “f( VDA )]X )
0, (DkAt)
( e _-(:li N ) (A.4)
' [e"p[ aD, A1 ]

— exp| &=L [ |1
*P| 4D, Ar .

(Gy)"(x,A¢) = —exp[—ﬂ,At]

]
|
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(8u)ilx;, At) =

—— __6, 0, exp[—-Q,A7]
8“{ Vn.nf'f( 2.A1) [ (1 +6) mkm] * T30, VaD,Ar

Q,#0
1 6\ [ At \'"?

APPENDIX B: INFLUENCE MATRICES OF PIECEWISE
POLYNOMIAL COLLOCATION METHOD

Consider a uniform spatial mesh x, = n - 2a, n € Z and a time-step At. We
define the following dimensionless mesh parameter © as follows

2VD At

a

Q. =

and introduce the notation

e )
= exp(—s9)ds
Ve b

Exploiting the convolution property G,,, = G(lm — n|) of the influence matri-
ces, we can write them as follows:
(1) Piecewise constant basis functions:

G(n) = 137
(2) Piecewise linear basis functions:

G(n) = (n + DI = (n = Digpeyy + %

2 2 _ 1\2
{exp[— —4(n(;2 l)] -2 exp[— 4—9"—2] + exp[— 4—-(" o D ]}

(3) Piecewise quadratic basis functions*:

e’ e’
G2n+1) = {n(2n -D+ T}lﬂf} + {(n +1)(2n + 3) + 4} -

c] 2n + 1 2n + 3)°
+m{—3exp|: ———( n®+ )]+( +1)exp[ @n+ 3y nez )]

*Note that the influence matrices G with odd arguments represent the effect of basis
functions located at the endpomts of the cells evaluated at midpoints of cells, while
those with even arguments give the effect of basis functions located at cell midpoints
evaluated at cell midpoints.

Kl
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-n exp[_ (___Zne;z l)z]}

G(2n) = —|4n* - 1 +gz e =2
2 )17 Vn

{—(Zn -1) exp[—g%l)z]

_ 1\2
+ 2n+1) exp[—gzn—@z-&]}
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