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Dedicated to J.R.A. Pearson, FRS, who, 15 years ago, recognized that incorporating the relevant tip asymptotics
in hydraulic fracture simulators is critical for the accuracy and stability of the algorithms.
Abstract

We describe a novel implicit level set algorithm to locate the free boundary for a propagating hydraulic fracture. A number of char-
acteristics of the governing equations for hydraulic fractures and their coupling present considerable challenges for numerical modeling,
namely: the degenerate lubrication equation; the hypersingular elastic integral equation; the indeterminate form of the velocity of the
unknown fracture front, which precludes the implementation of established front evolution strategies that require an explicit velocity
field; and the computationally prohibitive cost of resolving all the length scales. An implicit algorithm is also necessary for the efficient
solution of the stiff evolution equations that involve fully populated matrices associated with the coupled non-local elasticity and degen-
erate lubrication equations. The implicit level set algorithm that we propose exploits the local tip asymptotic behavior, applicable at the
computational length scale, in order to locate the free boundary. Local inversion of this tip asymptotic relation yields the boundary val-
ues for the Eikonal equation, whose solution gives the fracture front location as well as the front velocity field. The efficacy of the algo-
rithm is tested by comparing the level set solution to analytic solutions for hydraulic fractures propagating in a number of distinct
regimes. The level set algorithm is shown to resolve the free boundary problem with first order accuracy. Further it captures the field
variables, such as the fracture width, with the first order accuracy that is consistent with the piecewise constant discretization that is used.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Fluid-driven fractures are a class of tensile fractures that
propagate in compressively prestressed solid media due to
internal pressurization by an injected viscous fluid. There
are numerous examples of hydraulic fractures (HF) that
occur both in natural geological processes as well as in
geo-engineering. At the geological scale, these fractures
occur as kilometers-long vertical dikes that bring magma
from deep underground chambers to the earth’s surface
[1–3]; they also occur as horizontal fractures that divert
0045-7825/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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magma from dikes to form so-called sills that are sub-par-
allel to the earth’s surface due, in part, to favorable in situ

stress fields [4,5]. At an engineering scale, hydraulic frac-
tures can propagate in dams [6,7], sometimes causing the
failure of the whole structure [8]. However, hydraulic frac-
tures are also engineered for a variety of industrial applica-
tions including: remediation projects in contaminated soils
[9–11]; waste disposal [12,13]; excavation of hard rocks
[14]; preconditioning and cave inducement in mining
[15,16], and most commonly for the stimulation of hydro-
carbon-bearing rock strata to increase production in oil
and gas wells [17–19]. To minimize the energy expended
during propagation, hydraulic fractures typically develop
in a plane that is perpendicular to the direction of the min-
imum principal in situ compressive stress.
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The numerical simulation of fluid-driven fractures
remains a particularly challenging computational problem,
despite significant progress made since the first algorithms
were developed in the 1970s [20,21]. The challenge encoun-
tered in devising stable and robust algorithms stems from
three distinct issues that arise from the particular structure
of this problem. Firstly, the lubrication equation, govern-
ing the flow of viscous fluid in the fracture, involves a
degenerate non-linear partial differential equation. The
coefficients in the principal part of this equation vanish
as a power of the unknown fracture width similar to the
degenerate porous medium equations, or, for a non-New-
tonian fluid, these coefficients may vanish with powers of
the pressure gradient similar to the p-Laplace equations.
This non-linear degeneracy poses considerable challenges
for numerical modeling – for example near the fracture
tip, where the aperture tends to zero. Secondly, the elastic-
ity equation, which expresses the balance of forces between
the fluid pressure, the in situ stresses, and the linear elastic
response of the rock mass, involves a boundary integral
equation with a hypersingular kernel. Thirdly, the foot-
print of the fracture and its encompassing boundary is also
unknown. The resolution of this free boundary problem
requires that an additional growth condition be specified.
This condition, which comes from linear elastic fracture
mechanics (LEFM), specifies that the stress intensity factor
along the perimeter of the fracture should be in limit equi-
librium with a material parameter known as the toughness.
The stress intensity factor is a functional of the fracture
opening and geometry, while the toughness is related to
the amount of energy that is required to break the rock.
Established methods for free boundary evolution, such as
the front tracking and the volume-of-fluid methods both
need an accurate front velocity, while the level set method
requires the determination of an extension velocity field in
addition to an accurate front velocity. As with other degen-
erate diffusion problems [22,23], the HF front velocity can
only be determined by evaluating an indeterminate limit
involving a product of the vanishing fracture width and
the pressure gradient, which tends to infinity at the front.
Evaluating this indeterminate limit numerically poses a
considerable challenge.

The degenerate non-linear lubrication PDE, the hyper-
singular non-local elasticity operator, and the fracture
propagation criterion combine to yield a multi-scale struc-
ture of the solution near the fracture tip [24–27]. This
multi-scale solution structure results from the competing
physical processes that manifest themselves at different
length and time scales. For example, the viscous energy dis-
sipation associated with driving the fluid through the frac-
ture competes with the energy required to break the rock.
The multi-scale tip asymptotics has to be properly captured
at the discretization length scale used in the numerical
scheme to yield an accurate prediction of the fracture evo-
lution [28,29]. In particular, there are conditions – actually
prevalent in hydraulic fracturing treatments – under which
the classical square root asymptote of linear elastic fracture
mechanics exists at such a small scale that it cannot be
resolved at the discretization length used to conduct the
computations. Under these conditions, which correspond
to the viscosity-dominated regime of fracture propagation,
significant errors in the prediction of the fracture dimen-
sion and width result from imposing an asymptotic behav-
ior that is not relevant at the grid size used to carry out the
computations. The recent progress in the development of
these matched asymptotic solutions in the vicinity of the
fracture tip presents the opportunity for substantially
improving the accuracy of the numerical solutions by
employing the appropriate asymptotic behavior in the rep-
resentation of the numerical solution as well as in the loca-
tion of the free boundary. Indeed, the objective of this
paper is to provide a methodology that can exploit these
asymptotic solutions in an algorithm that yields accurate
numerical results with relatively few computational
resources.

While the above three attributes each present difficulties
for numerical computation, their combination in the cou-
pled equations conspire to substantially complicate the
numerical solution. Due to its sedimentary genesis, the
elastic rock mass is typically assumed to comprise bonded,
homogeneous layers. For such a layered medium, assem-
bling the Green’s function matrix for the discretization of
the integral equation involves the solution of a new three-
dimensional boundary value problem for each additional

degree of freedom. This constraint makes it impracticable
to use a Lagrangian moving mesh algorithm to capture
the rapid variation of the solution that is to be expected
in the vicinity of the fracture front. By exploiting the trans-
lational invariance of the integral operator parallel to the
layers, an Eulerian approach involving rectangular ele-
ments yields considerable savings in memory requirements
and CPU resources [30–32]. Although we do not consider
layered problems in this paper, we do adopt an Eulerian
rectangular mesh in the discretization of the problem in
order to explore the feasibility of this approach.

When discretized in space, the coupled system of non-
linear integro-partial differential equations reduces to a stiff
system of ordinary differential equations for which explicit
time stepping involves a CFL condition of the form
Dt ¼ OðDx3Þ [33]. Since evaluation of the discrete integral
operator involves OðN 2Þ operations, this time step restric-
tion makes explicit time stepping an extremely computa-
tionally intensive option. For a layered elastic material,
the FFT can be used to reduce this count to OðN 3

2 log NÞ
operations, while jump discontinuities in the field variables
across layer interfaces make the implementation of a fast
multipole algorithm difficult. As a result, implicit time step-
ping is required to solve for the field variables comprising
the fracture width and the fluid pressure, while an implicit
algorithm is also required to locate the free boundary. This
paper proposes a novel implicit front location algorithm
suitable for the propagation of hydraulic fractures by a
level set method [34], which involves the solution of the
Eikonal equation by the fast marching method (FMM)
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[35,36] combined with the tip asymptotic solutions men-
tioned above.

A number of approaches have been used to solve the HF
free boundary problem. Front tracking has been combined
with a Lagrangian moving mesh approach [20,21] in which
the fracture is assumed to grow until the stress intensity
matches the fracture toughness. This approach is not
appropriate, for example, when the length scale on which
the square root behavior associated with the fracture
toughness is much smaller than that of the local mesh size.
Assuming an Eulerian mesh with rectangular elements,
front tracking [32] and adapted VOF methods with simpli-
fied boundary conditions [37] have been used to locate the
free boundary for fractures propagating in a viscosity-dom-
inated regime. These techniques are restricted in their
application to a single physical process and are certainly
not able to model a transition from one propagation
regime to another.

On the other hand, FMM level set methods have been
used in conjunction with the extended finite element
method (xFEM) to model the propagation of fractures
[38,39]. These papers consider the growth of ‘‘dry cracks”
due to the application of a pulsating tensile stress field.
The steps in this procedure are as follows: (1) the signed
distance function T is calculated by solving the Eikonal
equation F jrT j ¼ 1 with the speed function F set to unity
and the boundary condition T ðx; yÞ ¼ 0 imposed along the
current fracture front; (2) the Paris growth law [40] is used
to calculate a normal velocity field F for the fracture front
(in pseudo-time); (3) using the signed distance function
T ðx; yÞ and the value of F on the front, the extension veloc-
ity field F ext is constructed; (4) using this extension velocity
field the Eikonal equation F extjrT extj ¼ 1 is used to con-
struct the crossing-time map from which a new front posi-
tion is determined, and the process is repeated. To
implement Paris’ law, the stress intensity factor has to be
evaluated for the current fracture footprint at considerable
computational expense. In the HF context this approach
will not work since determining the front velocity involves
the evaluation of an indeterminate form.

The implicit level set algorithm we propose relies on a
tip asymptotic relation of the form

w �s�1 W ðs; V ;E0; l0;K 0;C0Þ ð1Þ

to provide the information about the location of the frac-
ture front. Here w is the fracture opening, s is the distance
from the fracture front and V is the local front velocity,
while E0, l0, K 0, and C0 are material parameters, and W is
a monotonically increasing function of s. Since it is impor-
tant that the algorithm be able to locate the fracture front
implicitly, the following iterative procedure is adopted. Gi-
ven the current fracture footprint at time t � Dt, we search
for the location of the fracture front at time t. With the in-
creased time and the additional fluid that has been injected
into the fracture over the time step Dt, the coupled elasticity
and lubrication equations are solved to determine the frac-
ture width w and the corresponding fluid pressure pf . The
asymptotic relation (1) is inverted for the band of elements
that are closest to the current fracture front and which fall
entirely within the fracture perimeter. By setting
T ðx; yÞ ¼ �s for each of these band elements and solving
the Eikonal equation jrT j ¼ 1, we obtain an estimate
of the desired zero crossing-time map T ðx; yÞ ¼ 0, from
which the new front location can now be determined. With
this new fracture footprint, the coupled elasticity and lubri-
cation equations are solved to determine the corresponding
width and fluid pressures and the process is repeated until
the fracture footprint has converged. The time is then ad-
vanced, bringing more fluid into the fracture, and the
above sequence of front location steps is repeated. This
algorithm is amenable to implicit implementation and pro-
vides a direct calculation of the crossing-time map without
requiring the normal front velocity field or its extension
field. Therefore, this procedure avoids having to estimate
the normal front velocity from an indeterminate limit
involving divided differences of the pressure field. Indeed,
for those asymptotic relations (1) in which the front veloc-
ity V appears explicitly, it is possible to use the implicit le-
vel set formulation to determine the local front velocity as
part of the process of inverting (1). Updating the signed
distance function is done naturally at the beginning of each
iteration by using the asymptotic relation (1) and no exten-
sion velocity field is required. It is interesting to note that
for dry cracks, which are probably the most commonly
modeled fracture propagation process, the asymptotic
expansion is equivalent to the statement that the stress
intensity function is in limit equilibrium with the fracture
toughness, which is precisely the same as the fracture
growth criterion used in [39]. In the numerical examples,
we demonstrate that the implicit level set algorithm can
also be used to model the propagation of dry cracks.

In Section 2, we describe the governing equations and
the appropriate scaling for a hydraulic fracture. In Section
3, we briefly summarize the tip asymptotic solutions that
are central to the successful implementation of the novel
implicit level set algorithm to capture the free boundary.
In Section 4, we describe the discretization of the governing
equations: for the integral operator we use piecewise con-
stant displacement discontinuities; for the lubrication equa-
tion we use a finite volume approach for interior elements
and weak form tip asymptotics to account for the fluid vol-
ume stored in tip elements, while exact integration of the
sink terms is used to determine the fluid leaked from tip ele-
ments. We also describe a mixed-variable formulation of
the discrete equations that are required to determine the
unknown channel widths and tip pressures. In Section 5,
we describe the details of the implicit level set method:
for a number of important physical cases we invert the
tip asymptotic relations to determine the boundary condi-
tions for the Eikonal equation, whose solution is then used
to locate the fracture front. In Section 6, we provide a num-
ber of comparisons between the numerical solution pro-
posed in this paper and radially symmetric analytic



Fig. 1. Sketch of a planar fracture.
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solutions. A number of distinct propagation regimes are
considered in order to demonstrate the versatility of the
new method: (1) a radially symmetric fracture subject to
a pressure field that is constant in space; (2) a radially sym-
metric fracture propagating in a storage-toughness-domi-
nated regime; (3) in a storage-viscosity-dominated regime
we consider both a radially symmetric fracture as well as
a fracture propagating in a symmetry-breaking in situ stress
field; (4) a radially symmetric fracture propagating in a vis-
cosity-dominated regime with significant leak-off.

In Appendix A, we provide details of the tip volume cal-
culations required to implement the new implicit level
set algorithm. In Appendix B, we demonstrate that, for a
regular fracture front, the governing equations reduce, in
the near-tip asymptotic limit, to those for a one-dimen-
sional crack propagating under conditions of plane strain.
In Appendix C, we compile analytic solutions for a radially
symmetric fracture subject to a constant pressure field as
well as HF that are propagating in the following three spe-
cific regimes: storage-toughness-dominated, storage-viscos-
ity-dominated, leak-off-viscosity dominated. In Appendix
D, we provide the viscosity-toughness scaling suitable for
the analysis of hydraulic fractures that propagate in a
regime in which toughness and viscosity are the dominant
physical processes while leak-off is sub-dominant.

2. Mathematical model

2.1. Assumptions

The equations governing the propagation of a hydraulic
fracture in a reservoir have to account for the dominant
physical processes that take place during the treatment:
deformation of the rock, creation of new fracture surface,
flow of fracturing fluid within the crack, leak-off of fractur-
ing fluid into the reservoir, and formation of a cake by par-
ticles in the fluid. Besides the standard assumptions
regarding the applicability of LEFM and lubrication the-
ory, we make a series of simplifications that can readily
be justified for the purposes of this contribution: (i) the
rock is homogeneous (having uniform values of toughness
KIc, Young’s modulus E, and Poisson’s ratio m), (ii) the
fracturing fluid is incompressible and Newtonian (having
a viscosity l), (iii) the fracture is always in limit equilib-
rium, (iv) leak-off of the fracturing fluid into the formation
is modeled according to Carter’s theory [41], which is char-
acterized by the Carter leak-off coefficient CL, which is
assumed to be constant, (v) gravity is neglected in the lubri-
cation equation, and (vi) the fluid front coincides with the
crack front, because the lag between the two fronts is neg-
ligible under typical high confinement conditions encoun-
tered in reservoir stimulation [24,42].

The assumption that KIc and l are homogeneous can be
relaxed without any significant changes to the model. The
assumption that E and m are homogeneous is not trivial
to relax (see for example [30–32]), however we do assume
a rectangular Eulerian grid on which an efficient multi-
layer algorithm can be implemented without revising the
algorithm presented in this paper. This can be achieved
by merely replacing the Green’s function matrix elements
for a homogeneous elastic medium by those for a layered
elastic medium.

2.2. Mathematical formulation

The solution of the hydraulic fracture problem com-
prises the fracture aperture wðx; y; tÞ, the fluid pressure
pfðx; y; tÞ, the flux qðx; y; tÞ, and the position of the front
CðtÞ, where t denotes the time and x; y are the coordinates
in a system of axes referenced to the injection point, see
Fig. 1. The solution depends on the injection rate QðtÞ,
the far-field compressive stress rðx; yÞ perpendicular to
the fracture plane (a known function of position),
and the four material parameters l0, C0, E0, K 0 defined as

l0 ¼ 12l; C0 ¼ 2CL; E0 ¼ E
1� m2

; K 0 ¼ 4
2

p

� �1=2

KIc:

ð2Þ
Here E0 is the plane strain modulus and the alternate vis-
cosity l0, toughness K 0, and leak-off coefficient C0 are intro-
duced to keep equations uncluttered by numerical factors.
The front CðtÞ, and the field quantities wðx; y; tÞ, pfðx; y; tÞ,
and qðx; y; tÞ are governed by a set of equations arising
from linear elastic fracture mechanics, lubrication theory,
filtration theory, and the associated boundary conditions.

2.2.1. Elasticity

In view of the homogeneous nature of the infinite med-
ium, the elasticity equations, relating the displacement and
stress fields in the solid, can be condensed into a hypersin-
gular integral equation between the fracture aperture w and
the fluid pressure pf [43,44]

p ¼ pf � r ¼ � E0

8p

Z
AðtÞ

wðx0; y 0; tÞdAðx0; y0Þ
½ðx0 � xÞ2 þ ðy 0 � yÞ2�3=2

; ð3Þ

where AðtÞ denotes the fracture footprint (enclosed by the
crack front CðtÞ and having a characteristic dimension
LðtÞ), and p is the net pressure.
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2.2.2. Lubrication

The lubrication equations consist of Poiseuille’s law

q ¼ �w3

l0
$pf ð4Þ

and the continuity equation

ow
ot
þ g þ $ � q ¼ QðtÞdðx; yÞ; ð5Þ

with the leak-off rate gðx; y; tÞ given by

g ¼ C0Hðt � t0ðx; yÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � t0ðx; yÞ

p ; ð6Þ

where t0 denotes the time that the point ðx; yÞ within the
fracture was first exposed to fluid and H is the Heavyside
function. Eqs. (4) and (5) can be combined to yield Rey-
nolds’ lubrication equation

ow
ot
þ g ¼ 1

l0
$ � ðw3$pfÞ þ QðtÞdðx; yÞ: ð7Þ

It should be noted that t0ðx; yÞ is not known a priori but de-
pends on the location of the unknown fracture front over
the evolution of the fracture. Thus, since the history term
gðx; y; tÞ involves delays, which depend on the unknowns
of the problem, the lubrication Eq. (7) is classified as a de-
lay partial differential equation.

2.2.3. Boundary conditions at the moving front CðtÞ
The boundary conditions at the front CðtÞ are deduced

from the propagation criterion and a zero flux condition.
Assuming that the fracture is always in limit equilibrium
and that a limiting condition is reached everywhere along
the front, implies that the fracture aperture in the immedi-
ate vicinity of the front is given by

w � K 0

E0
s1=2 ð8Þ

where s denotes the distance from the crack front CðtÞ
(with the s-axis directed inwards). The form of this condi-
tion is a classical result from LEFM [45].

The second condition simply expresses a zero flux
boundary condition at the fracture tip

lim
s!0

w3 opf

os
¼ 0: ð9Þ

We note that the pressure gradient becomes infinite as
s! 0 according to both Eqs. (3) and (7), since w! 0 as
s! 0. Unlike a classical Stefan boundary condition at a
moving front, where the front velocity is given in terms
of quantities having a definite limit at the front, the front
velocity has to be extracted from an asymptotic analysis
of the non-linear system of Eqs. (3)–(9). In the particular
case of an impermeable medium, the front velocity V is
equal to the average fluid velocity as s! 0

V ¼ 1

l0
lim
s!�

w2 opf

os
; if C0 ¼ 0; ð10Þ
which shows that V is the limit of an indeterminate form
when C0 ¼ 0. If C0 > 0 then V is the limit of another inde-
terminate form. The above discussion makes it clear that
velocity-based front location algorithms face a serious
challenge due to the need to evaluate large pressure gradi-
ents and large leak-off velocities in order to estimate the
front velocity.

2.3. Scaling

2.3.1. Multiple time scales

The system of Eqs. (3) and (7)–(9) is closed and can, in
principle, be solved to determine the evolution of a hydrau-
lic fracture, given appropriate initial conditions. Before dis-
cussing the solution of this system of equations as well as
its behavior in the tip region, it is convenient to scale the
problem.

We now summarize the scaling laws for the special case
of a penny-shaped fracture (also referred to as a radial or
axisymmetric fracture) driven by a fluid injected at a con-
stant rate [46], as these laws are the key to understanding
the different regimes of propagation.

Propagation of a hydraulic fracture with zero lag is gov-
erned by two competing dissipative processes associated
with fluid viscosity and solid toughness, respectively, and
two competing components of the fluid balance associated
with fluid storage in the fracture and fluid storage in the
surrounding rock (leak-off). Consequently, limiting propa-
gation regimes can be associated with the dominance of
one of the two dissipative processes and/or the dominance
of one of the two fluid storage mechanisms. Thus, we can
identify four primary asymptotic regimes of hydraulic frac-
ture propagation (with zero lag) where one of the two dis-
sipative mechanisms and one of the two fluid storage
components vanish: storage-viscosity (M), storage-tough-
ness (K), leak-off-viscosity ð eM Þ, and leak-off-toughness
ðeK Þ dominated regimes. For example, in the storage-vis-
cosity-dominated regime (M), fluid leak-off is negligible
compared to fluid storage in the fracture and the energy
expended in fracturing the rock is negligible compared to
viscous dissipation. The solution in the storage-viscosity-
dominated limiting regime is given by the zero-toughness,
zero-leak-off solution ðK 0 ¼ C0 ¼ 0Þ.

Consider the general scaling of a finite fracture which
hinges on defining the dimensionless crack opening
Xðq;P1;P2Þ, net pressure Pðq;P1;P2Þ, and fracture radius
cðP1;P2Þ as [47,46]

w ¼ eLX; p ¼ eE0; R ¼ cL: ð11Þ

With these definitions, we have introduced the scaled coor-
dinate q ¼ r=RðtÞ ð0 6 q 6 1Þ, a small parameter eðtÞ, a
length scale LðtÞ of the same order of magnitude as the frac-
ture length RðtÞ. In addition, we define two dimensionless
evolution parameters P1ðtÞ and P2ðtÞ, which depend
monotonically on t.

Four different scalings can be defined in connection to
the four primary limiting cases introduced earlier. These



Table 1
Small parameter e, length scale L for the two storage scalings (viscosity and toughness) and the two leak-off scalings (viscosity and toughness)

Scaling e L P1 P2

Storage/viscosity (M) ð l0E0t Þ
1=3 ðE

0Q3
0t4

l0 Þ
1=9 Km ¼ ð K 018 t2

l05E013Q3
0

Þ
1
18 Cm ¼ ðC

018E04 t7

l04Q6
0

Þ
1
18

Storage/toughness (K) ð K 06

E06Q0 t
Þ1=5 ðE

0Q0t
K 0 Þ

2=5 Mk ¼ ðl
05Q3

0E013

K 018t2 Þ
1
5 Ck ¼ ðC

010E08 t3

K 08Q2
0

Þ
1

10

Leak-off/viscosity ð ~MÞ ð l04C06

E04Q2
0 t3 Þ

1
16 ðQ

2
0t

C02
Þ1=4 K~m ¼ ð K 016 t

E012l04C02Q2
0

Þ
1
16 S~m ¼ ð l04Q6

0

E04C018 t7 Þ
1

16

Leak-off/toughness ðeK Þ ðK 08C02

E08Q2
0 t
Þ1=8 ðQ

2
0t

C02
Þ1=4 M~k ¼ ð

l04E012C02Q2
0

K 016t
Þ

1
4 S~k ¼ ð

K 08Q2
0

E08C010 t3 Þ
1
8

Parameters P1 and P2 for the two storage scalings (viscosity and toughness) and the two leak-off scalings (viscosity and toughness).
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scalings yield power law dependence of L, e, P1, and P2 on
time t; i.e. L � ta, e � td, P1 � tb1 , P2 � tb2 , see Table 1 for
the case of a radial fracture. Furthermore, the evolution
parameters can take either the meaning of a toughness
ðKm;K~mÞ, or a viscosity ðMk;M~kÞ, or a storage
ðS~m;S~kÞ, or a leak-off coefficient ðCm;CkÞ. These solution
regimes can be conceptualized in a rectangular phase dia-
gram MK eK eM shown in Fig. 2. For each of the four primary
regimes ðM ;K; eM ; and eK Þ of hydraulic fracture propaga-
tion, corresponding to the vertices of the diagram, both
P1 and P2 for that particular scaling are zero. For exam-
ple, at the M-vertex, only viscous dissipation takes place
and all the injected fluid is contained in the fracture (so that
Km ¼ 0 and Cm ¼ 0, see Table 1). The similarity solution
for each primary regime has the important property that
it evolves with time t according to a power law. In partic-
ular, the fracture radius R evolves in these regimes accord-
ing to R � ta where the exponent a depends on the regime
of propagation: a ¼ 4=9; 2=5; 1=4; 1=4 in the M-, K-, eM -,eK -regimes, respectively.

The regime of propagation evolves with time, since the
parameters M, K, C and S depend on t. With respect
to the evolution of the solution in time, it is useful to locate
the position of the state point in the MK eK eM space in terms
of the dimensionless times smk ¼ t=tmk, sm~m ¼ t=tm~m, where
the time scales are defined as

tmk ¼
l05E013Q3

0

K 018

� �1=2

; tm~m ¼
l04Q6

0

E04C018

� �1=7

: ð12Þ

Indeed, the parameters M, K, C and S can be simply ex-
pressed in terms of these times according to

Km ¼M
�5=18
k ¼ s1=9

mk ; Cm ¼ S
�8=9
~m ¼ s7=18

m~m ð13Þ
Fig. 2. MK eK eM parameter space [46].
and, therefore, the dimensionless times s’s define the evolu-
tion of the solution along the respective edges of the rectan-
gular space MK eK eM . Furthermore, the evolution of the
solution regime in the MK eK eM space takes place along a
trajectory corresponding to a constant value of the param-
eter /, which is related to the ratios of characteristic times

/ ¼ E011l03C04Q0

K 014
¼ tmk

tm~m

� �14=9

ð14Þ

(Examples of such trajectories are depicted in Fig. 2.)
In view of the dependence of the parameters M, K, C,

and S on time, see (13), it becomes apparent that the M-
vertex corresponds to the origin of time, while the eK -vertex
corresponds to the end of time (except for an impermeable
rock). Thus, given all the problem parameters, which com-
pletely define the number / ð0 6 / 61Þ, the system
evolves with time (say time smk) along a /-trajectory, start-
ing from the M-vertex (viscosity-storage-dominated
regime: Km ¼ 0, Cm ¼ 0) and ending at the eK -vertex
(toughness-leak-off dominated regime: M~k ¼ 0, S~k ¼ 0).
For small values of / (i.e., for small values of the ratio
tmk=tm~m), the trajectory is attracted by the K-vertex, and
conversely for large values of / the trajectory is attracted
by the eM -vertex.

The evolution of the fracture in the phase diagram
MK eK eM is, in part, linked to the multi-scale nature of the
tip asymptotes [48], in particular to the transition from
the viscosity edge M eM to the toughness edge K eK [29].
For example, along the viscosity edge, the tip aperture pro-
gressively changes from w � s2=3 at the M-vertex to
w � s5=8 at the eM -vertex [28].
2.3.2. Time scaling for viscosity-dominated regimes of

propagation

Although the propagation of a hydraulic fracture gener-
ally depends on multiple time scales, in this paper we will
restrict our discussion to particular cases where only one
time scale is active. For the sake of brevity, we will only
consider the transition between storage and leak-off domi-
nated regimes along the M eM viscosity edge for which the
time scale is tm~m, and the transition between viscosity and
toughness-dominated regimes along the MK storage edge
for which the time scale is tmk. Each transition requires a
separate scaling. In this Section, we provide the details of
the scaling used to analyze the evolution of the fracture
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along the M eM -edge, and in Appendix D we summarize the
corresponding scaling for the MK-edge.

We introduce a length scale L�, a time scale T �, a char-
acteristic fracture aperture W �, and a characteristic (net)
pressure P � (all yet to be defined). The physical quantities
of the problem are thus formally expressed as

x ¼ L�v; y ¼ L�f; t ¼ T �s; w ¼ W �X;

pf ¼ P �Pf : ð15Þ

Furthermore, in order to scale the equations, we introduce
the characteristic injection rate Q0 and the characteristic
stress r0 such that

Q ¼ Q0wðsÞ; r ¼ r0uðv; fÞ; ð16Þ

where wðsÞ and uðv; fÞ are known functions, which we have
already chosen to express in terms of the dimensionless
time s and space variables v and f.

By introducing the above relations in the governing
equations, it can readily be shown that four dimensionless
groups emerge

Gc ¼
C0L2

�

Q0T 1=2
�
; Ge ¼

L�P �
E0W �

; Gk ¼
K 0L1=2

�
E0W �

;

Gm ¼
l0Q0

P �W 3
�
; Gv ¼

Q0T �
L2
�W �

: ð17Þ

Then, setting Ge ¼ Gc ¼ Gm ¼ Gv ¼ 1 yields four condi-
tions to identify L�, T �, P �, and W �

L� ¼
Q5

0l
0

C08E0

� �1=7

; T � ¼
Q6

0l
04

C018E04

� �1=7

;

W � ¼
Q3

0l
02

C02E02

� �1=7

; P � ¼
C06E06l0

Q2
0

 !1=7

: ð18Þ

On the one hand, the condition Ge ¼ 1 simply means that
the average aperture scaled by the fracture dimension is
of the same order as the average net pressure scaled by
the elastic modulus, in accordance to elementary elasticity
considerations. On the other hand, the conditions
Gm ¼ Gc ¼ 1 (with Gm and Gc having the meaning of a
dimensionless viscosity and leak-off coefficient, respec-
tively) imply that T � reflects the time of transition between
a storage and a leak–off-dominated regime. Finally, the
condition Gv ¼ 1 guarantees that the length scale L� repre-
sents the characteristic dimension of the fracture at t ¼ T �.
Finally, the dimensionless group Gk is renamed K in view
of its meaning as the dimensionless toughness. The explicit
expression for K, in view of (18), is given by

K ¼ K 0
1

C02E011Q0l03

� �1=14

: ð19Þ

However, when C0 > 0, we will restrict our consideration to
the M eM -edge for which K ¼ 0, with the implication that
the tip aperture is no longer dominated by the LEFM sin-
gularity. Note that since the toughness K 0 does not appear
in the characteristic quantities L�, T �, P �, and W �, there is
no degeneracy of the scaled solution in the limit K 0 ¼ 0
in this particular scaling, which is referred to as the viscos-
ity scaling. (The storage scaling, summarized in Appendix
D, does not depend on the leak-off parameter C0, and can
therefore be used to investigate the limiting case of imper-
meable rocks, C0 ¼ 0.)

Finally, in the numerical scaling the governing equations
transform to the following:

Pf � R0uðv; fÞ ¼ �
1

8p

Z
AðsÞ

Xðv0; f0; sÞdAðv0; f0Þ
½ðv0 � vÞ2 þ ðf0 � fÞ2�3=2

; ð20Þ

oX
os
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� hÞs

p ¼ $ � ðX3$PfÞ þ wðsÞdðv; fÞ; ð21Þ

lim
n!0

X

n1=2
¼K; lim

n!0
X3 oPf

on
¼ 0; ð22Þ

where R0 is the scaled far-field stress r0=P � and hðv; fÞ is de-
fined as the dimensionless exposure time t0=t. Note that it is
advantageous to introduce the net pressure P ¼ Pf � R0, if
uðv; fÞ ¼ 1, i.e. if the far-field stress is homogeneous. The
characteristic dimension of the fracture (e.g., the fracture
radius) is cðsÞ ¼ L=L�.

It is also convenient to introduce a scaling factor Q� for
the flow rate q, i.e.

q ¼ Q�W: ð23Þ

By choosing

Q� ¼
W 3
�P �

l0L�
¼ Q0

L�
¼ C08E0Q2

0

l0

� �1=7

; ð24Þ

the scaled Poiseuille law can be written as

W ¼ �X3$Pf : ð25Þ

Finally, we note that the tip velocity V ðtÞ, the critical quan-
tity that legislates the asymptotic behavior of the solution,
is naturally scaled along the M eM -edge by V �

V � ¼
Q�
W �
¼ C010E03

Q0l03

� �1=7

: ð26Þ

As shown in the next section, the asymptotic solutions for
X and Pf depend only on the scaled distance n from the
fracture front CðtÞ, and on the scaled tip velocity v ¼ V =V �.

3. Tip asymptotic behavior

It can be shown (see Appendix B) that the equations
governing the aperture wðs; tÞ and the net pressure pðsÞ in
the vicinity of the fracture front reduce to

q̂ ¼ ŵ3

l0
dp̂
ds
; q̂ ¼ V ŵþ 2C0V 1=2s1=2;

p̂ ¼ E0

4p

Z 1

0

dŵ
dz

dz
s� z

; lim
s!0

ŵ
s1=2
¼ K 0

E0
; ð27Þ

where the propagation velocity V is given by the instanta-
neous local propagation velocity of the fracture front
(Fig. 3). Note that the spatial variation of the far-field



Fig. 4. Stationary solution bXðn̂Þ for a semi-infinite hydraulic fracture
propagating in the viscosity regime (m~m solution). The first terms of the
asymptotic expansions of the solution in the near-field and the far-field are
shown by dashed lines.

Fig. 3. Tip of an advancing fracture.
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stress can be ignored when viewed at the tip scale, unless
the stress field is discontinuous (in which case, the tip solu-
tion outlined here is not relevant). Eq. (27) are in fact
identical to the governing equations for the problem of a
semi-infinite fluid-driven fracture steadily propagating at
a constant velocity and characterized by zero lag [24,26].
In other words, the tip asymptotic solution is given at
any time by the solution of the stationary semi-infinite
crack problem with a constant tip velocity corresponding
to the current propagation speed of the finite fracture.
The tip solution is thus autonomous.
3.1. Tip asymptotics along the leak-off-viscosity edge

The tip opening and net pressure asymptotics can
advantageously be expressed as bXðn̂Þ and bPðn̂Þ where n̂
is a normalized distance from the tip. These new tip-scaled
quantities are defined as

s ¼ bL�n̂; ŵ ¼ bW � bX; bp ¼ bp� bP; ð28Þ

where the tip length scale bL�, the characteristic tip openingbW �, and the characteristic pressure bP � are given by

bL� ¼ 64C06E02

V 5l02
; bW � ¼

16C04E0

V 3l0
; bP � ¼ V 2l0

4C02
: ð29Þ

Through the tip scaling, the dependence of the asymptotic
solution upon the material parameters l0, E0, C0, as well as
on the tip velocity V is entirely captured in the scaling fac-
tors bL�, bW �, and bP �. In other words, the tip asymptotic
solution has a universal form bXðn̂Þ and bPðn̂Þ. Although
the complete tip solution has to be computed numerically,
its series expansions for small and large n̂ can be deter-
mined explicitly [48]. In particular, the series expansion
for bXðn̂Þ is given by

n̂! 0 : bX ¼ b~m0n̂
5=8 þ b~m1n̂

3=4 þOðn̂7=8Þ; ð30Þ
n̂!1 : bX ¼ bm0n̂

2=3 þ bm1n̂
1=2 þOðn̂1=3Þ ð31Þ

where b~m0 ’ 2:5336, b~m1 ’ 1:3016, bm0 ¼ 21=335=6, bm1 ¼
1=2. The complete semi-infinite tip solution is plotted in
Fig. 4. Within a 5% accuracy, the viscosity-leak-off asymp-
tote ðb~m0n̂
5=8Þ applies for n̂K n̂~m ’ 10�8 while the viscosity-

storage asymptote ðbm0n̂
2=3Þ applies for n̂J n̂m ’ 107.

From the relationship between the two scalings, the tip
asymptote can readily be expressed in terms of XðnÞ

bX ¼ W �bW �
X; n̂ ¼ L�bL� n; ð32Þ

which can be simplified as

bX ¼ v3

16
X; n̂ ¼ v5

64
n: ð33Þ

Thus the aperture X behaves according to the viscosity-
storage asymptote, X � bm0v1=3n2=3 if nJ nm ¼ 64n̂m=v5,
but according to the viscosity-leak-off asymptote
X � 21=4b~m0v1=8n5=8 if nK n~m ¼ 64n̂~m=v5.

Now consider a fracture for which the scaled extent is
c ¼ L=L� so that the size of the near-tip region is ec, where
e is a small number. Evidence from both plane strain and
the radial fractures suggest that this asymptotic umbrella
extends to e ¼ Oð10�1Þ. In light of the above analysis, the
relevance of either limiting asymptotic behavior, as far as
the global solution is concerned, depends on the compari-
son of the length nm or n~m with ec. Hence, the tip will be
locally dominated by the viscosity asymptote if ec J nm,
but by the leak-off asymptote if ec K n~m.

As discussed in Sections 4 and 5, our reference length for
the application of the tip asymptote will be the characteris-
tic dimension Ds of a grid element and the asymptote will
be imposed in a weak form – via the volume. The above
considerations show that the nature of the tip asymptote
to be imposed in a tip element depends critically on the
local tip velocity. Indeed, the aperture of the tip element
is dominated by the viscosity asymptote if the tip velocity
v J ð64n̂m=DsÞ1=5, but by the viscosity leak-off asymptote
if v K ð64n̂~m=DsÞ1=5.



Fig. 5. Stationary solution bXðn̂Þ for a semi-infinite hydraulic fracture
propagating in the storage regime (mk solution). The first terms of the
asymptotic expansions of the solution in the near-field and the far-field are
shown by dashed lines.
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3.1.1. Tip asymptotics along the viscosity-toughness edge

The corresponding tip asymptotic behavior along the
storage edge of phase space is summarized in Appendix
D. In this case the series expansion for bXðn̂Þ is given
by

n̂! 0 : bX ¼ n̂1=2 þ 4pn̂þ 128

3
n̂3=2 ln n̂þOðn̂3=2Þ; ð34Þ

n̂!1 : bX ¼ b0n̂
2=3 þ b1n̂

h þOðn̂hÞ; ð35Þ

where b0 ¼ bm0 ¼ 21=3 � 35=6, b1 ’ 0:0371887, and h ’
0:138673. The complete semi-infinite tip solution is plotted
in Fig. 5 where it can be seen that the LEFM behavior
ðn̂1=2Þ applies for n̂ K n̂k ’ 10�5 and the viscous dissipation
asymptote ðb0n̂

2=3Þ for n̂ J n̂m ’ 10�1.
4. Discrete equations

4.1. Preamble

In this section we describe the discretization of the equa-
tions governing the propagation of a hydraulic fracture on
a rectangular Eulerian mesh. While the numerical schemes
used to approximate the elasticity and lubrication equa-
tions are rather classical, the discrete equations for the ele-
ments containing the fracture front require special
attention, as they have to account for the tip asymptotic
behavior. The detailed presentation of the algorithm
devised to evolve the front is left to Section 5, and in this
section we deal with the formulation of the discrete equa-
tions that have to be solved for the opening and pressures
at the centers of the grid elements, assuming that the front
position has already been established.

A fixed uniform rectangular mesh with spacings Dv and
Df in the two coordinate directions is first selected so as to
encompass the region into which the fracture will grow.
The fracture surface A is therefore covered by rectangular
elements DAm;n such that A 	

S
m;nDAm;n. (The element

DAm;n is indexed on a two-dimensional lattice.) Further-
more, it is notionally profitable to decompose the fracture
footprint into two regions, the ‘‘channel region” Ac com-
prising the elements that are completely filled with fluid
and the ‘‘tip region” At consisting of those elements that
are partially filled. The elements within Ac that are on
the boundary with At (i.e., those elements of Ac that have
at least one north, south, east or west neighbor that is in
AtÞ form the ribbon of elements, which we denote by the
set oAc, on which the boundary values for the solution
to the Eikonal equation are defined. This solution is then
used to identify the location of the fracture front.

Given the actual (or trial) fracture front at time t and the
evolution of this front since the onset of injection, deter-
mining the aperture and pressure fields relies on the simul-
taneous solution of the elasticity Eq. (20) and the
lubrication Eq. (21), while taking into account the appro-
priate tip asymptotic behavior and the amount of fluid
injected into the fracture. The numerical solution of this
system of equations involves the displacement discontinu-
ity (DD) method [43] for discretizing the elasticity equa-
tion, a finite volume scheme for approximating the
lubrication equation, and a weak formulation of the tip
asymptotics that is implemented by computing both the
volume of fluid stored in a tip element in accordance with
the asymptotic field and the amount of fluid that has
leaked-off from a tip element.

This discretization process yields an extremely stiff sys-
tem of non-linear equations for the current fracture widths
in the channel elements and the pressures at the tip element
centers. We describe a fixed-point iterative scheme to com-
pute the mixed field variables comprising the channel width
increments and the tip pressures.

4.2. Discretized elasticity equation

The elasticity Eq. (20) is discretized by assuming that the
fracture opening Xðv; f; sÞ is piecewise constant over each
rectangular element DAm;n, i.e.

Xðv; f; sÞ ¼
X
m;n

Xm;nðsÞHm;nðv; fÞ; ð36Þ

in which

Hm;nðv; fÞ ¼
1 for ðv; fÞ 2 DAm;n;

0 for ðv; fÞ 62 DAm;n

�
ð37Þ

is the characteristic function for element ðm; nÞ. Substitut-
ing this expansion into the integral Eq. (20) and evaluating
the pressures at the collocation points located at the ele-
ment centers, yields a system of algebraic equations of
the form

Pk;lðsÞ ¼
X
m;n

Ck�m;l�nXm;nðsÞ; ð38Þ
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where

Ck�m;l�n ¼ �
1

8p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvk � vÞ2 þ ðfl � fÞ2

q
ðvk � vÞðfl � fÞ

24 35v¼vmþDv=2;f¼fnþDf=2

v¼vm�Dv=2;f¼fn�Df=2

:

It is also convenient to express the discretized elasticity Eq.
(38) in the following operator form

P ¼ CX: ð39Þ
Fig. 6. Tip element.
4.3. Discretized Reynolds equation

In order to smooth the singular leak-off term in (21) we
integrate with respect to s over the time interval ½s� Ds; s�
to obtain the following integral form

Xðv; f; s0Þjss�Ds þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
s� s0

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� Ds� s0

p� �
¼
Z s

s�Ds
$ � X3$Pf

� 	
ds0 þ dðv; fÞ

Z s

s�Ds
wðs0Þds0: ð40Þ

Consistent with the backward Euler scheme, we approxi-
mate the first integral on the right side of (40) by the
right-hand rule and integrate over an element DAi;j to ob-
tain the following approximationZ

DAi;j

XðsÞ � Xðs� DsÞdA

¼ Ds
Z

DCi;j

X3 oP
on

dC

" #
s

� 2

Z
DAi;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s0ðv; fÞ

p�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� Ds� s0ðv; fÞ

p �
dAþ di;0dj;0

Z s

s�Ds
wðs0Þds0; ð41Þ

where di;j is the Kronecker delta symbol. In the above, we
have assumed that the injection point is located at the cen-
ter of element DA0;0. In order to discretize the integral
form of the fluid flow Eq. (41) in a way that is compatible
with (38) we use the pressures Pk;lðsÞ and average widths
Xk;lðsÞ sampled at element centers along with central
difference approximations to the pressure gradients on
the boundaries of the elements, and divide by DvDf to
obtain

Xi;jðsÞ � Xi;jðs� DsÞ ¼ Ds½AðXÞP�i;j �
DLi;j

DvDf

þ di;0dj;0

DvDf

Z s

s�Ds
wðs0Þds0; ð42Þ

where AðXÞ is the difference operator defined by

½AðXÞP�k;l ¼
1

Dv
X3

kþ1
2;l

ðPkþ1;l �Pk;lÞ
Dv

� X3
k�1

2;l

ðPk;l �Pk�1;lÞ
Dv

� �
þ 1

Df
X3

k;lþ1
2

ðPk;lþ1 �Pk;lÞ
Df

� X3
k;l�1

2

ðPk;l �Pk;l�1Þ
Df

� �
ð43Þ

and DLi;j represents the volume of fluid that leaks from the
element ði; jÞ over the time-step Ds and is defined by
DLi;j ¼ 2

Z
DAi;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� s0ðv; fÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� Ds� s0ðv; fÞ

p� �
dA:

ð44Þ

Zero flux boundary conditions are implemented in tip ele-
ments by removing those terms associated with the element
faces having zero boundary fluxes from the difference
operator.

Various approximations to (44) are possible. For exam-
ple, a midpoint rule approximation along with the defini-
tion of the appropriate elemental trigger time sk;l, which is
an average time of first exposure for element ðk; lÞ, is rela-
tively accurate for internal elements. For tip elements, in
which the integrand in (44) varies more rapidly, a more pre-
cise approximation is discussed in the next subsection. Since
the allocation of the elemental trigger time should occur at
the moment that a tip element fills and therefore transitions
to the channel elements, we also discuss the capture of trig-
ger times in the next subsection dealing with tip elements.

It is convenient to express the discrete lubrication Eq.
(42) in the following operator form

DX ¼ DsAðXÞPþ DsC; ð45Þ

where AðXÞ is the second order difference operator defined
on the right side of (43) and C represents the vector of sink
and source terms.
4.4. Calculation of fluid volumes in tip elements

4.4.1. Tip quantities and notation

Fig. 6 illustrates a partially fluid-filled tip element with
the front labelled as MN. The flow domain DA‘ is the
region shown shaded in gray, which is bounded by the
closed contour DC‘ ¼ ABMNDA. The front segment
MN is orthogonal to the front velocity vector v, which is
inclined by an angle a to the v-axis. Let DC�‘ denote the
open contour NDABM (i.e. DC‘ minus the front segment
MN). Next consider the orthogonal system of axes ð�n; �gÞ
with the �n-axis parallel to v and with its origin at the point
of first entry of the front into the element (corner A for the
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case sketched in Fig. 6). The abscissa of the front in the
ð�n; �gÞ coordinates is given by �n ¼ ‘ and thus n ¼ ‘� �n.
We will refer to ‘ simply as the (relative) front position in
the tip element.

Evidently, given the element side lengths Dv and Df, the
geometry of the flow domain DA‘ is completely defined by
a and ‘. By simple projection, it can be shown that ‘ takes
the maximum value k given by

k ¼ Dv cos aþ Df sin a: ð46Þ

Thus the front is in the element if 0 < ‘ < k, and the ele-
ment is partially filled with fluid. We also introduce the
areal filling fraction Fð‘Þ ð0 <F < 1Þ defined as
�F ð‘Þ ¼

mF ð‘Þ; 0 6 ‘ 6 n0; m 6¼ 1;
m½F ð‘Þ � F ð‘� n0Þ�; n0 6 ‘ 6 k� n0; m 6¼ 1;
m½F ð‘Þ � F ð‘� n0Þ � F ð‘þ n0 � kÞ�; k� n0 6 ‘ 6 k; m 6¼ 1;
m½F ð‘Þ � F ð‘� n0Þ � F ð‘þ n0 � kÞ þ F ð‘� kÞ� k < ‘; m 6¼ 1
Dgf ð‘Þ; 0 6 ‘ 6 Dn; m ¼ 1;
Dg½f ð‘Þ � f ð‘� DnÞ� Dn < ‘; m ¼ 1

8>>>>>>>><>>>>>>>>:
ð54Þ
F ¼ DA‘

DvDf
: ð47Þ

The shape/geometry of the flow domain also depends on
the factor m defined as

m ¼ 1

cos a sin a
ð48Þ

and on the length n0 given by

n0 ¼
Df sin a; 0 < tan a 6 Dv

Df ;

Dv cos a; Dv
Df 6 tan a <1:

(
ð49Þ

Indeed, four different flow configurations arise depending
on ‘, k, n0, and m. If m ¼ 1, the front is parallel to one
of the fixed coordinate axes (v or f) and DA‘ is a rectangle.
If m 6¼ 1, DA‘ is either a triangle, quadrilateral, or a pen-
tagon depending on wether 0 < ‘ < n0, or n0 < ‘ < k� n0,
or k� n0 < ‘ < k, respectively.

Finally, it is convenient to define the power law function
NaðnÞ as

Na ¼ na; a > �1: ð50Þ
4.4.2. Integral over the flow domain

Formulation of the discrete equations that are required
to allocate fluid volume within a tip element relies on the
evaluation of surface integrals of the form

I ¼
Z

DA‘

df
dn

dA ¼
Z

DA‘

$ðn;gÞ � ðf ; 0ÞdA; ð51Þ
where the function f ðnÞ vanishes at n ¼ 0. Using the diver-
gence theorem, we can rewrite (51) as

I ¼
Z

DC‘

ðf ; 0Þ � ðnn; ngÞdC ¼ �
Z

DC‘

fn�ndC; ð52Þ

where n�n is the component of the external unit normal to
the contour DC‘ projected onto the �n-axis. The integration
contour can also be reduced from DC‘ to DC�‘ , since
f ð0Þ ¼ 0. It is shown in Appendix A, that the integral
Ið‘Þ can be expressed as

I ¼ �F ð‘Þ; ð53Þ
where �F ð‘Þ is defined as
and F ðnÞ is defined as

F ðnÞ ¼
Z n

0

f ðuÞdu: ð55Þ

It should be noted that the special case k < ‘ for interior
elements, in which the interval of integration is 0 6 n 6 k
(see the definition of Jð‘Þ in Appendix A), has been in-
cluded in the definition of the operator �F ð‘Þ. The lengths
ðDn, DgÞ that enter in the expressions of �F ð‘Þ for m ¼ 1
are equal to ðDf;DvÞ if a ¼ 
p=2 and to ðDv;DfÞ if
a ¼ 0; p.

As a simple application of these formulae, the surface
filling fraction Fð‘Þ defined in (47) can, using the notation
(50) for the power law function, be conveniently expressed
as

F ¼ 1

DvDf

Z
DA‘

dN1

dn
dA: ð56Þ

Hence, Fð‘Þ can simply be computed as

F ¼
�N2ð‘Þ

2DvDf
: ð57Þ
4.4.3. Leak-off volume in tip elements and trigger times

The leak-off volume DLi;j for a tip element is calculated
as follows. Defining se to be the time that the front first
enters the element, replacing s and s0 in the integral for
DLij by s ¼ se þ ‘=v and s0 ¼ se þ n=v respectively, and
applying (53) we obtain the following expression for
DLi;j for tip elements
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DLi;j ¼ 2v�1=2

Z
DAi;j

d

dn
2

3
N3

2

� �
 �s

s�Ds

dA

¼ 8

15
v�1=2 �N5

2
ð‘sÞ � �N5

2
ð‘s�DsÞ

h i
: ð58Þ

Following a similar procedure for interior elements in
which v is the velocity with which the front was moving
when it traversed element e, we obtain the same formula
as in (58), but in which ‘s is the total distance the front
would have moved at the velocity v since the fluid front first
entered the element, i.e. ‘s ¼ vðs� seÞ > k and ‘s�Ds is the
total distance the retarded front would have moved since
se, i.e. ‘s�Ds ¼ vðs� Ds� seÞ. This represents a more accu-
rate, but also more complex, alternative to the midpoint
approximation for interior elements discussed above.

We are now able to compute the leak-off trigger time si;j

for channel element ði; jÞ which is required for the calcula-
tion of the source-sink term Ci;j in (45). Let sx denote the
time at which the front leaves an element (i.e. the instant
the element transitions from the tip to the channel region)
which is given by sx ¼ s� ð‘s � kÞ=v. In order to implement
a midpoint approximation to the integrals in (44) we need
to estimate the time the fracture front reaches the midpoint
of an element, which is given by

si;j ¼
1

2
ðse þ sxÞ: ð59Þ
4.4.4. Volume of tip elements

The elemental volumes associated with the particular tip
asymptotes considered here are as follows

� Near the K-vertex, X � n1=2

Xi;jDvDf ¼
Z

DA‘

d

dn
2

3
N3

2

� �
dA ¼ 4

15
�N5

2
ð‘Þ:

� Near the M-vertex, X � bm0v1=3n2=3

Xi;jDvDf ¼ bm0v1=3

Z
DA‘

d

dn
3

5
N5

3

� �
dA ¼ 9

40
bm0v1=3 �N8

3
ð‘Þ:

� Near the eM -vertex, X � 21=4b~m0v1=8n5=8

Xi;jDvDf ¼ 21=4b~m0v1=8

Z
DA‘

d

dn
8

13
N13

8

� �
dA

¼ 225=4

273
b~m0v1=8 �N21

8
ð‘Þ:

Thus, once ‘ and n! are determined using the level
set algorithm discussed in Section 5 – see (79) and (80),
both Xi;jðsÞ and DLi;j in (42) are known. All that remains
to be determined is the pressure Pi;j within the tip elements,
as elaborated next.

4.5. Solution of the mixed-variable coupled equations

Once the front position in a tip element is defined, the
width profile within the element and the corresponding
tip fluid volume is determined by the applicable tip asymp-
totic solution as shown above. To conserve fluid volume,
average width values calculated from the tip fluid volumes
must then be allocated to the DD element tip width values
in a way that is consistent with the volume of fluid that has
flowed into the tip element minus the fluid volume lost due
to leak-off. Thus the primary unknowns within the tip ele-
ments become the fluid pressures, which are calculated in
such a way that mass balance is preserved. We now provide
details of the computation of the mixed field variables.

Since we treat the tip and channel variables differently,
we introduce a superscript c to represent a channel variable
and a superscript t to represent a tip variable. Thus Xc and
Pc represent the vectors containing the channel widths and
fluid pressures respectively, while Xt and Pt represent the
corresponding tip variables. From (39) the channel pres-
sures can be expressed as

Pc ¼ C ccXc þ C ctXt; ð60Þ
where C cc and C ct represent the channel-to-channel and
tip-to-channel Green’s function influence matrices. From
(45) the channel lubrication equation can be written in
the form

DXc ¼ Xc �Xc
0 ¼ DsðAccPc þ ActPtÞ þ DsCc; ð61Þ

where Xc
0 is the channel width at the previous time step. For

the tip, the lubrication Eq. (45) can be re-written as

DXt ¼ Xt �Xt
0 ¼ DsðAtcPc þ AttPtÞ þ DsCt: ð62Þ

Now using (60) to eliminate Pc from (61) and (62) and re-
arranging terms we obtain the following system of non-lin-
ear equations for the channel width increments and tip
pressures:

I � DsAccC cc �DsAct

�DsAtcC cc �DsAtt


 �
DXc

Pt


 �
¼

DsAccðC ccXc
0 þ C ctXtÞ þ DsCc

�DXt þ DsAtcðC ccXc
0 þ C ctXtÞ þ DsCt

" #
: ð63Þ

Since the front positions and therefore the tip widths Xt are
known, the solution to this system of equations yields the
channel widths Xc ¼ Xc

0 þ DXc and the tip pressures Pt.
By freezing the matrix coefficients and right hand side com-
ponents at the current trial solution, we obtain a linear sys-
tem for DXc and Pt. Efficient preconditioners for this
system of linear Eq. (63) can be found in [33,49]. The value
of DXc is then used to update the trial solution Xc and the
fixed-point iteration is continued until convergence is
achieved.

5. The implicit level set algorithm

In this section we present the implicit level set algorithm
that is used to update the position of the front given the
new estimate of the fracture width X associated with the
current footprint. The algorithm is based on the critical
assumption that the elements on the boundary of the chan-
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nel region oAc, i.e. those channel elements that have at
least one tip element as a neighbor are still under the
asymptotic umbrella.

5.1. Inverting the tip asymptotic relation

We first express the tip asymptotic relation in the gen-
eral form

X �Wðn; vÞ: ð64Þ

For each of the elements on the boundary of the channel
region oAc, we then invert the tip asymptotic relation to
determine the required boundary values for the crossing-
time map Tðv; fÞ as follows

Tðv; fÞ ¼ �n � �W�1ðX; vÞ for all ðv; fÞ 2 oAc: ð65Þ

We have assumed that Tðv; fÞ < 0 for points that are lo-
cated inside the front and that (65) is a local approximation
to the signed distance function. We now illustrate this pro-
cedure in the following three special cases.

5.1.1. Toughness-storage regime

In this case the asymptotic relation (64) reduces to the
form

X �n!0
n

1
2; ð66Þ

which can easily be inverted to yield

Tðv; fÞ ¼ �n � �X2 for all ðv; fÞ 2 oAc: ð67Þ

We observe that in this particular case the front location
does not involve the velocity field. This situation is similar
to that of the dry crack [38,39], in which Paris’ growth rule
is invoked in order to arrive at a pseudo-velocity field that
is required for the front evolution process via the classic le-
vel set algorithm. That the implicit level set algorithm that
we propose does not require the velocity field is an asset for
this problem.

5.1.2. Viscosity-storage regime

In this case the asymptotic relation (64) reduces to the
form

X �n!0
bm0v1=3n2=3: ð68Þ

Inverting this asymptotic relation we obtain

Tðv; fÞ ¼ �n � � X
bm0v1=3

� �3
2

for all ðv; fÞ 2 oAc: ð69Þ

Comparing (67)–(69) we observe that the latter case in-
volves the normal velocity v of the front. Determining the
normal velocity from (10) is undesirable as it involves an
indeterminate limit, so our approach is to determine the
velocity as part of the inversion process. To this end let
T0ðv; fÞ represent the crossing-time map associated with
the previous time s� Ds, which is already known. The
local normal velocity of the front can then be expressed
as

v ¼ �T�T0

Ds
: ð70Þ

Eliminating v from (69) using (70) we obtain the following
cubic equation for Tðv; fÞ
T3 �T0T

2 þ b ¼ 0; ð71Þ
where b ¼ Dsð X

bm0
Þ3 > 0. Applying Descartes’ sign rule we

observe that (71) has at most one negative real root. If
d ¼ b½b� 4ðT0

3
Þ3� > 0 then there is one real root, which is

given by

T ¼T0

3
� c

2
�

ffiffiffi
d
p

2

 !1
3

� c
2
þ

ffiffiffi
d
p

2

 !1
3

;

where c ¼ b� 2ðT0

3
Þ3. If d < 0 there are three real roots

and the desired negative root is given by

T ¼T0

3
� 2

jT0j
3

� �
sin

h
3
þ p

6

� �
where h ¼ tan�1

ffiffiffiffiffiffiffi
�d
p

�c

 !
; 0 6 h 6 p:
5.1.3. Viscosity-leak-off regime

In this case the asymptotic relation (64) reduces to the
form

X �n!0
21=4b~m0v1=8n5=8: ð72Þ

Inverting this asymptotic relation yields

Tðv; fÞ ¼ �n � � X

21=4b~m0v1=8

 !8
5

for all ðv; fÞ

2 oAc: ð73Þ

Proceeding as in the viscosity-dominated regime we obtain

T6 �T0T
5 � b ¼ 0; ð74Þ

where b ¼ Dsð X
21=4b~m0

Þ8 > 0. Although (74) does not have a

closed form solution, Descartes’ sign rule implies that the
polynomial has a maximum of one negative and one posi-
tive real root. Since the coefficients of (74) are real, so that
the roots must be real or appear in complex conjugate
pairs, there are either two real roots or no real roots at
all. The condition for transition from two real roots to
none occurs when the two real roots coalesce to form a sin-
gle root at a turning point given by

6T5 � 5T0T
4 ¼T4ð6T� 5T0Þ ¼ 0:

The two options are that T ¼ 0 which implies that b ¼ 0,
or T ¼ 5T0

6
, which, according to (74), implies that

b ¼ �55ðT0

6
Þ6 < 0 – both of which are impossible. Thus

(74) has only one negative root that can be determined
numerically.
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5.2. Locating the front using the FMM

Having determined the correct boundary conditions
Tðv; fÞ along the ribbon of channel elements oAc that bor-
der on the tip region, we are now in a position to locate the
free boundary by solving the Eikonal equation

jrTðv; fÞj ¼ 1: ð75Þ

This is perhaps the simplest Hamilton–Jacobi equation
which is often used in the level set literature to initialize
the signed distance function. We note that the normal
velocity function is not required here since any expressions
involving the velocity field have been accounted for implic-
itly in the process of inverting the tip asymptotic expansion
as described above.

There is an extensive literature, see for example [50,51],
on the solution of (75). Thus, for the sake of brevity, we
only outline the simplest first order scheme referring the
reader to the above texts and references therein. We con-
sider the following one-sided difference approximation to
(75)

max
Ti;j �Ti�1;j

Dv
;
Ti;j �Tiþ1;j

Dv
; 0

� �
 �2

þ max
Ti;j �Ti;j�1

Df
;
Ti;j �Ti;jþ1

Df
; 0

� �
 �2

¼ 1: ð76Þ

By defining

T1 ¼ minðTi�1;j;Tiþ1;jÞ and T2 ¼ minðTi;j�1;Ti;jþ1Þ;

the solution of (75) is equivalent to solving the following
quadratic equation for T3 ¼Ti;j

max
T3 �T1

Dv
; 0

� �
 �2

þ max
T3 �T2

Df
; 0

� �
 �2

¼ 1:

Now writing Dv ¼ bDf, and defining DT and H as

DT ¼T2 �T1; H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dv2ð1þ b2Þ � b2DT2

q
; ð77Þ

we deduce the following expression for T3

T3 ¼
T1 þ b2T2 þH

1þ b2
: ð78Þ

Starting with the boundary conditions (65) defined on oAc,
the crossing-time field Tðv; fÞ is now propagated to cover a
narrow band that contains all points ðv; fÞ 2At using the
fast marching method (FMM) (see [51] for a complete
description of the FMM).

Having determined T3, it is now possible to determine a
number of geometric and kinematic quantities that are
required to complete the implicit algorithm. In order to
determine the volume of fluid stored in a tip element (see
Section 4), it is important to establish the distance ‘
between between the front and the opposite vertex of the
tip element, which can conveniently be expressed in the
form

‘ ¼ � T1 þT2

2

� �
; ð79Þ

while the unit outward normal to the front is given by

~n ¼ ðcos a; sin aÞ

¼ 1

Dvð1þ b2Þ
ðHþ b2DT; bðH� DTÞÞ: ð80Þ

Finally, the local normal front velocity can be determined
from (70).
5.3. Geometric interpretation

The procedure for locating the front using the FMM
[51] can readily be interpreted geometrically by reference
to Fig. 7. Let us assume that both elements ði� 1; jÞ (with
central node A) and ði; j� 1Þ (with central node B) belong
to the ribbon of elements oAc at the periphery of the chan-
nel region. We seek to determine the position of the front
(given by the distance ‘ between the front and the opposite
vertex O of the tip element) and its orientation (given by
the angle a between the exterior normal to the front and
the v-axis), assuming that the front is currently in element
i; j (with central node C).

The signed distances between the front and nodes A and
B, respectively T1 and T2, are computed using (65), which
rely in general on the current crack width computed at
these nodes during the channel iterations, and the values
of the signed distance at the same nodes at the previous
time step. Assume that T1 is smaller than T2 (recalling
that both quantities are negative). Within the approxima-
tion of the numerical algorithm, the level sets of the field
Tðv; fÞ are parallel lines in the four element stencil
sketched in Fig. 7, which also shows in dashed lines the
four level sets of the field Tðv; fÞ passing through the cen-
tral nodes A, B and C, and through the vertex O. Since O is
equidistant from A and B, the value of the level set passing
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through O is simply ðT1 þT2Þ=2, which provides a simple
geometric explanation of expression (79) for the length ‘
(recall that T ¼ 0 at the front).

The inclination a of the normal to the front is calculated
as follows. From Fig. 7, it can be seen that a ¼ p=2� c� h,
where c is the angle dBAC , an attribute of the grid, and h is
the angle dBAD, with D denoting the intersection of the level
set T1 with the normal to the front passing through node
B. These two angles can be determined from simple trigo-
nometric and geometric considerations. Indeed, tan c ¼
Df=Dv and tan h ¼ kBDk=kADk. The distance kBDk is the
distance between the two level sets T1 and T2, i.e.
kBDk ¼ DT using (77). Since kABk ¼ ð1þ b2Þ1=2Dv=b,
the distance kADk is given by

kADk ¼ ½ð1þ b2ÞDv2 � b2DT2�1=2
=b

or kADk ¼ H=b, using the definition (77). Hence,
tan c ¼ 1=b and tan h ¼ bDT=H. It then follows that

tan a ¼ bðH� DTÞ
Hþ b2T

from which (80) is easily recovered.
Finally the signed distance T3 of node C from the front

is calculated as T3 ¼T1 þ kCEk where E denotes the
intersection of the level set T1 with the normal to the front
passing through the central node C. Since kCEk ¼ Dv cos a,
we find in view of (80) that

T3 ¼T1 þ
Hþ b2DT

1þ b2
;

which is equivalent to (78).

5.4. Summary of the implicit level set algorithm

To close, we briefly summarize the components of the
algorithm, which starts from an initial solution that typi-
cally corresponds to one of the analytic solutions provided
in Appendix C

Implicit level set algorithm for HF

Advance time step: s sþ Ds
Start front iteration loop k ¼ 1 : Nf

Solve (63) for DXcðsÞ and PtðsÞ
(starting with the old footprint Aðs� DsÞÞ.

Set BC for T along oAc using (65) and
use FMM to solve jrTj ¼ 1.

Use Tðv; fÞ field to locate front position and
to compute ‘, n!, and v.

Use ‘, n!; v to evaluate new estimate for the
average
tip widths XtðsÞ and the tip leak-off term DLt

Check for convergence kFk �Fk�1k < tol �F1,
break

end front iteration loop
end time step loop
6. Numerical results

In this section we demonstrate the performance of the
new implicit level set algorithm (ILSA) by comparing the
numerical results to a number of analytic solutions that
have been derived for radially symmetric fractures. The
first class of problems deals with a crack driven either by
a uniform internal pressure field or by a uniform far-field
tensile stress. This problem is chosen to demonstrate that
the current algorithm also works for crack problems with
no fluid coupling, which probably form the vast majority
of fracture growth modeling simulations [39]. The remain-
ing examples consider fluid-driven fractures propagating in
three very different regimes: toughness-storage dominated,
viscosity-storage dominated, and viscosity dominated with
leak-off. These specific problems have been chosen as they
encapsulate some extremes of physical behavior that are
encountered during hydraulic fracture propagation. Except
for a particular case that deals with a far-field stress with a
constant gradient, all the numerical simulations were con-
ducted by assuming that the far-field stress is homogeneous
so as to enforce an axisymmetric geometry and to enable
comparison of the ILSA results either with available
closed-form analytic solutions (summarized in Appendix
C) or with a one-dimensional numerical solution that
assumes radial symmetry.

6.1. Equilibrium solution of a penny-shaped crack

We apply the new front location algorithm to two
related problems involving the propagation of a crack sub-
ject to a uniform net pressure field given by the classical
limit equilibrium solution [52]. The first physical situation
involves an unpressurized penny-shaped fracture in an infi-
nite elastic medium, subject to a far-field tensile stress �r0

normal to the crack plane. For a given far-field stress there
exists a critical radius c� below which the crack will not
propagate and beyond which the crack will grow unstably,
see for example [45]. This boundary condition is the same
as that considered in [38,39], except that in that model fati-
gue growth due to a pulsating load was considered and
growth, restricted to N loading cycles, was assumed to be
governed by Paris’ law. The other related problem involves
the injection of a fixed volume of fluid � 0 of a sufficient
magnitude to induce a starter crack to propagate. Without
the addition of any more fluid, the crack reaches the critical
radius c� at which the declining fluid pressure is such that
the stress intensity KI is in equilibrium with the fracture
toughness KIc. It should be noted that this is in fact the
solution on the K-vertex in which the fluid pressure is
assumed to be hydrostatic. While the critical radius in each
situation is algebraically identical, in the first situation
(referred to as super-critical), the crack will propagate for
any radius larger than c� while in the second situation
(referred to as sub-critical), the crack will expand and ter-
minate at the critical radius from any smaller initial
crack.
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The equations governing this class of problems are sum-
marized in Appendix C in a form that is compatible with
the scaling for fractures propagating in impermeable rocks,
as described in Appendix D. Assuming a uniform net pres-
sure field P, the crack opening displacement XðqÞ and the
fracture volume � corresponding to a crack radius c are
given by

X ¼ 8Pc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q

c

� �2
s

; � ¼ 24Pc3

3
ð81Þ

noting also that the critical radius c� at which the crack is in
limit equilibrium (i.e., KI ¼ KIc) is given by

c� ¼
p2

27P2
: ð82Þ

For the first problem, the crack surfaces are stress-free
ðPf ¼ 0Þ while the tensile stress is prescribed to be
u ¼ �1, so that only the elasticity Eq. (39) needs to be
solved for X at each new fracture footprint. For the second
problem characterized by u ¼ 0, the hydrostatic fluid pres-
sure PfðsÞ, which decreases as the fracture grows, also
needs to be determined. In this case the lubrication equa-
tion, because the viscous term vanishes, reduces to the fol-
lowing simple volume balance equation eT XDA ¼ � 0,
where e ¼ ½1 . . . 1�T and DA ¼ DvDf is the area of an ele-
ment. Thus the coupled equations in this case are

C �e

eT 0


 �
X

Pf


 �
¼

0

� 0=DA


 �
ð83Þ

To demonstrate the performance of the algorithm for the
super-critical fracture propagation of a dry crack, in
Fig. 8 we plot a sequence of fracture footprints starting
Fig. 8. Sequence of fracture footprints starting with a square fracture of
half-length 0.09 units indicated by the shaded region, which exceeds the
critical radius c� ¼ 0:0771 (supercritical case).
with a square fracture of half-length 0.09, which exceeds
the critical radius c ¼ 0:0771. For the numerical solution
a mesh with Dv ¼ Df ¼ 0:02 was used. We observe that
the initial square shape, which is indicated by the gray
shaded elements, rapidly evolves to the appropriate radial
shape. In the first time-step, the algorithm pulls the fracture
front location in the corner elements of the initial square
region closer to the center of the fracture in order to best
approximate the current circular front – whence the appar-
ent clustering of nodes. The circle with the solid boundary
is at the critical radius c�.

To demonstrate the subcritical propagation, we choose
the critical radius to be c� ¼ 8 and inject the corresponding
fluid volume � 0 ¼ 21=2pc5=2

� =3 (obtained by eliminating P
between the expression for � in (81) and the expression
for c� in (82) with � ¼ � 0 and c ¼ c�) into a sub-critical
starter crack and allow the fracture to propagate until it
reaches equilibrium. This experiment tests the accuracy
with which the free boundary location algorithm is able
to locate the critical radius. In order to improve the accu-
racy provided by the piecewise constant displacement dis-
continuity elements, we used the edge correction
procedure described in [53]. In Fig. 9 we superimpose the
circular analytic solution at the critical radius with the
numerical fracture footprint using Dv ¼ Df ¼ 1

2
. The foot-

print of the starter crack is shown in the interior of the crit-
ical fracture footprint.

6.2. Toughness-dominated hydraulic fracture propagation

In this example we consider a circular hydraulic fracture
propagating close to the K-vertex in an impermeable med-
ium so that C0 ¼ 0.
Fig. 9. Comparison between the penny-shaped fracture at the critical
radius c� ¼ 8 with the numerical fracture footprint using Dv ¼ Df ¼ 1

2
. The

subcritical starter crack is also shown.
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6.2.1. Comparison with analytical solution

For the first simulation we assume that Dv ¼ Df ¼ 3:14,
and start with a crack of radius c ¼ 13:52, which corre-
sponds to a dimensionless time s ¼ 1135:44 according to
the analytical solution summarized in Appendix C. The
time step Ds ¼ 223:15 was chosen to correspond to an ini-
tial front advance of approximately one element at a time.
In Fig. 10 we superimpose on the square computational
grid the first quadrant portions of the fracture footprints
corresponding to a selection of times s ranging from
1135.44 to 23003.90. The intersection points between the
numerical fronts and the grid lines are indicated by open
circles. The close agreement between the numerical and
analytic fronts clearly demonstrates the accuracy with
which the implicit level set algorithm locates the front posi-
Exact
Numerical

Fig. 10. First quadrant projections of the fracture footprints that
correspond to times s = [1135.44, 5152.10, 9615.05, 14078.00, 18540.95,
23003.90] along with the square grid that was used in the computations.

Fig. 11. Comparison between the time evolution of the average numerical
fracture radius over all the tip elements and the analytic solution cðsÞ.
tions. In Fig. 11 we compare the time evolution of the aver-
age numerical fracture radius over all the tip elements with
the analytic solution cðsÞ. We compare the numerical and
analytic width profiles for the last time step of the compu-
tation s ¼ 23003:90 in Fig. 12 and the numerical and ana-
lytic pressure profiles at the same time horizon in Fig. 13.
There is remarkably good agreement between these numer-
ical and analytic solutions given the coarseness of the mesh.

6.2.2. Convergence study

In order to explore the convergence properties of the
implicit level set algorithm, we evolve a starter crack having
an initial radius c ¼ 68:04 at time s ¼ 58106:52 for only 20
time steps of magnitude Ds ¼ 4220:60, using three different
mesh sizes Dv ¼ 4, 8 and 16. From Fig. 14 it can be seen that
average radii of the three numerical approximations clearly
converge to the exact solution as the mesh is refined. The
asymptotic convergence rate of the mean tip radius over this
time period is given by kcaveðsÞ � cexðsÞk2 ¼ OðDvpÞ where
p ’ 1:3 as can be seen from Fig. 15. In Fig. 16 we illustrate
Fig. 12. Comparison between the numerical and analytic width profiles
for the last time step of the computation s ¼ 23003:90.

Fig. 13. Comparison between the numerical and analytic pressure profiles
for the last time step of the computation s ¼ 23003:90.



Fig. 14. Plot showing convergence of the average radii of three numerical
approximations to the exact solution.

Fig. 15. Plot showing convergence rate of the mean tip radius to the exact
radius.

Fig. 16. Plot showing convergence of the fracture width to the exact
solution.
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the convergence of the numerical fracture widths X evalu-
ated at the last time step to the exact solution as the mesh
Dv is refined. The average convergence rate of the weighted
l2 norm of the width, defined by kXðsÞ �XexðsÞk2

2 ¼
1
N

PN
k¼1ðXkðsÞ � Xex

k ðsÞÞ
2, over all the time steps in the simu-

lation is 1.1. It should be noted that piecewise constant dis-
placement discontinuity approximation has been shown to
be only first order accurate [53], so we could not expect this
convergence rate to be any better than unity.
6.3. Viscosity-dominated hydraulic fracture propagation

Here we consider a hydraulic fracture propagating in an
impermeable medium which has no toughness so that
C0 ¼ 0 and K 0 ¼ 0. Two situations are analyzed with regard
to the far-field stress: (i) a homogeneous in situ stress lead-
ing to the development of a radially symmetric fracture; (ii)
an in situ stress characterized by a constant gradient.
6.3.1. Homogeneous in situ stress
This situation corresponds to a radial hydraulic fracture

propagating at the M-vertex, for which there is an analyt-
ical solution [54], see Appendix C.

In the first experiment, we assume that Dv ¼ Df ¼ 1 and
start with a crack of radius c ¼ 4:5, which corresponds to a
dimensionless time s ¼ 66:32 according to the power law
solution for the M-vertex. A time step Ds ¼ 18:92 was cho-
sen so that the initial front advances approximately one ele-
ment per step. In Fig. 17 we superimpose on the
computational grid the first quadrant projections of the
fracture footprints that correspond to a selection of times
s ranging from 85.24 to 1958.56. The intersection points
between the numerical fronts and the grid lines are indi-
Fig. 17. M-vertex solution. First quadrant projections of the fracture
footprints that correspond to times s = [85.24, 444.76, 823.21, 1201.66,
580.11, 1958.56] along with the square grid that was used in the
computations.



Fig. 18. Comparison between the time evolution of the average numerical
fracture radius over all the tip elements and the analytic solution cðsÞ. Fig. 20. Comparison between the numerical and analytic width profiles

for the last time step of the computation s ¼ 1958:56.
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cated by open circles. The close agreement between the
numerical and analytic fronts, which improves as time
evolves, clearly demonstrates the accuracy with which the
implicit level set algorithm locates the front positions. In
Fig. 18 we compare the time evolution of the average
numerical fracture radius over all the tip elements with
the analytic solution cðsÞ. The numerical solution underes-
timates the exact solution, which a convergence study (not
presented) demonstrates is due to the spatial discretization
error.

The normal velocity of the front can be determined by
the implicit level set algorithm using (70). In Fig. 19 we pro-
vide a trace of the computed front speed for the tip element
located at ðv; fÞ ’ ðc; 0Þ, the average normal front velocity
over all the tip elements, and the exact normal velocity of
the front. The oscillations about the analytic velocity for
the individual tip element trace can be explained by the
fluctuations in the approximation introduced by the fixed
Fig. 19. The exact normal velocity of the front, the trace of the computed
front speed for the tip element located at ðv; fÞ ’ ðc; 0Þ, and the average
normal front velocity over all the tip elements.

Fig. 21. Comparison between the numerical and analytic pressure profiles
for the last time step of the computation s ¼ 1958:56.
Eulerian mesh. The smoother average front velocity is to
be expected due to the fact that volume balance is main-
tained for each step of the computation. We compare the
numerical and analytic width profiles for the last time step
of the computation s ¼ 1958:56 in Fig. 20 and the corre-
sponding numerical and analytic pressure profiles in
Fig. 21 There is remarkably good agreement between the
numerical and analytic solutions given the coarseness of
the mesh.
6.3.2. Linear variation of the in situ stress

In this case we consider the propagation of a viscosity-
dominated hydraulic fracture in a medium subject to an
in situ stress field r, assumed to vary linearly with f accord-
ing to



Fig. 22. Successive footprints of a hydraulic fracture propagating in the
storage-viscosity regime ðK 0 ¼ C0 ¼ 0Þ, in the presence of an in situ stress
field r characterized by a constant vertical stress gradient.

Fig. 23. Fracture propagation along the M eM edge. First quadrant
projections of the fracture footprints that correspond to times s = [0.0173,
0.1563, 0.2980, 0.4397, 0.5815, 0.7232] along with the square grid used in
the computations and comparison with radius obtained with the algorithm
EMMA.
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uðv; fÞ ¼ ðfM � fÞ
ðfM � fmÞ

;

where fm ¼ 0:25 and fM ¼ 32:25 are the minimum and max-
imum f coordinates on the Eulerian mesh and u is defined in
(16). We use a mesh with Dv ¼ Df ¼ 1

2
, a time step Ds ¼ 3:18,

and assume a pumping rate defined by wðsÞ ¼ 1. In Fig. 22
we plot successive fracture footprints starting from an initial
fracture that is given by the M-vertex radially symmetric
solution. The fracture grows preferentially upward into the
regions of lower resistance while the downward growth is
virtually halted by the increase in confinement. It is interest-
ing to note that this situation is equivalent to the growth of a
buoyancy-driven hydraulic fracture [55,56].
Fig. 24. Comparison between the time evolution of the average numerical
fracture radius over all the tip elements and the one-dimensional
numerical EMMA solution cðsÞ. The large time eM -solution is also plotted
in this figure.
6.4. Hydraulic fracture propagation along the M eM -edge

Finally we simulate the propagation of an axisymmetric
hydraulic fracture under conditions where K 0 ¼ 0 and
C0 > 0. Evolution of such a fracture corresponds to a
transition along the M eM -edge of phase space, from the
small-time M-vertex asymptotics towards the large-timeeM -vertex asymptotics. Since an analytic solution to this
problem is not yet available, we compare the numerical
solution obtained using the implicit level set algorithm with
a one-dimensional numerical solution EMMA that exploits
radial symmetry [29]. Both the small and large time
asymptotics are listed in Appendix C.

For this simulation, we have assumed that the opening
in the tip element always corresponds to the ~m solution,
i.e., X � 21=4b~m0v1=8n5=8 as n! 0, as the generalized m~m
asymptote presented in Section 3 has not yet been imple-
mented. This approximation introduces an error in the
magnitude of tip opening, which can reach about 25% at
early time. Indeed, the tip velocity must drop below the
critical value v~m given by (see Section 3)

v~m ¼
64n~m

Df

� �1=5

ð84Þ

for the tip element to be fully within the ~m-asymptotic
umbrella (assuming a square grid). For the grid size



Fig. 26. Comparison between the ILSA and EMMA width profiles for
s ¼ 0:7232.

Fig. 27. Comparison between the ILSA and EMMA pressure profiles for
s ¼ 0:7232.
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Dv ¼ Df ¼ 0:02 used in this simulation, v~m ’ 0:13, which is
only reached near the end of this simulation.

The numerical simulation starts with a crack of radius
c ¼ 0:09, which corresponds to a dimensionless time
s ¼ 0:0145 according to the M-vertex solution, and uses a
time step Ds ¼ 0:0028. In Fig. 23 we compare the footprints
corresponding to sample times s in the range [0.0173,0.7232]
generated by the implicit level set algorithm ILSA with
those obtained using EMMA. As with the other propaga-
tion regimes, there is close agreement between the two solu-
tions. In Fig. 24 we plot the fracture radius cðsÞ obtained
using EMMA (solid), which shows close agreement to the
average fracture radius calculated by ILSA (dashed line).
Also plotted in this figure is the fracture radius for the eM -
vertex solution to which the above two solutions will tend
for s� 1. In Fig. 25 we compare the tip velocity calculated
using EMMA with the ILSA velocity for a single tip ele-
ment (dashed) as well as the normal velocity averaged over
all tip elements (solid circles). Initially ILSA over-estimates
the tip velocity, but this value rapidly converges to that
obtained using EMMA. We observe minor fluctuations in
the ILSA velocity trace of the individual tip element, which
are correlated to the times at which the front transitions
from one rectangular element to the next, but these fluctu-
ations are smoothed out in the normal velocities that are
averaged over all the tip elements. There is good agreement
between the two algorithms for both the fracture width and
the net pressure, as evidenced in Figs. 26 and 27.

As a global measure of the amount of leak-off that has
occurred over the evolution of a fracture, it is common
to define the efficiency as follows

EðsÞ ¼
R
A

Xðv; f; sÞdAR s
0 wðs0Þds0

:

In Fig. 28 we compare the efficiency EðsÞ (expressed as a
percentage) calculated using ILSA to that obtained with
Fig. 25. The normal velocity of the front computed with EMMA, the
trace of the computed front speed for the tip element located at
ðv; fÞ ’ ðc; 0Þ, and the average normal front velocity over all the tip
elements.

Fig. 28. Comparison between the evolution of the fracture efficiency
computed with ILSA and EMMA.
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EMMA. Since the integrands in (44) both have negative
curvatures, the midpoint rule used in ILSA will over-esti-
mate these integrals, which will lead to leak-off terms in
C that are slightly too large. As a result the implicit level
set algorithm ILSA will allow slightly too much fluid to
leak into the surrounding medium, resulting in estimates
of the efficiency that are slightly lower than those given
by EMMA.

7. Conclusions

In this paper we have presented a novel implicit level
set algorithm for resolving the free boundary problem asso-
ciated with the propagation of hydraulic fractures. A num-
ber of characteristics of the HF governing equations and
their coupling present considerable challenges for numeri-
cal modeling, namely: the degenerate lubrication equation,
the hypersingular non-local elasticity equation, and the
indeterminate form of the velocity of the unknown fracture
front. An implicit algorithm is necessary for the efficient
solution of the stiff evolution equations that involve fully
populated matrices associated with the coupled non-local
elasticity and degenerate lubrication equations. Recent
asymptotic analyses have identified the multi-scale struc-
ture of the HF propagation problem with different length
and time scales corresponding to competing physical pro-
cesses such as: the competition between the energy loss
due to viscous dissipation and the energy released in break-
ing the rock; and the competition between storage of fluid
in the fracture and leak-off of fluid. In this paper, we dem-
onstrate that close to the tip of an arbitrarily shaped frac-
ture with a smooth front, the governing equations reduce
to those for a semi-infinite hydraulic fracture propagating
at a constant speed. Thus, in the vicinity of the tip, the
form of the solution even for an arbitrarily shaped fracture
is given by one of the similarity solutions that can be
obtained by asymptotic analysis.

This observation presents the opportunity to substan-
tially improve the accuracy of numerical HF approxima-
tions, while consuming modest computational resources,
by incorporating the asymptotic behavior of the solution
close to the tip. Achieving this objective has hitherto
proved elusive due to the difficulty of implementing arbi-
trary power law tip shape functions in the approximation
of the elasticity equation and the fact that determining
the velocity field requires the evaluation of an indetermi-
nate form. The implicit level set algorithm described in this
paper makes it possible to use the tip asymptotic solution
to locate the evolving free boundary without requiring that
the tip velocity be specified a priori or evaluated using pres-
sure gradients. Indeed, the front velocity is determined as a
by-product of the implicit level set algorithm. The tip
asymptotic solution is implemented in a weak form involv-
ing average widths at the centres of piecewise constant DD
elements, while the corresponding tip pressures, consistent
with mass balance, are determined by solving a mixed-var-
iable system of non-linear equations by fixed-point itera-
tion. The accuracy of this approach is due to the fact
that only the fracture width field, which is continuous, is
used to locate the free boundary. By contrast, alternative
methods involve first evaluating the velocity field using
the singular pressure gradients and then using an existing
method for locating the free boundary such as front track-
ing, the VOF method, or the standard level set algorithm.

The implicit level set algorithm described in this paper
involves a boundary value problem for the Eikonal equa-
tion in which the boundary values for the crossing-time
function Tðv; fÞ are established by inverting the tip asymp-
totic relation. This formulation differs from the standard
boundary value level set algorithm in the following
respects: the velocity field is not required; it is not necessary
to update the signed distance function periodically; it is not
necessary to determine an extension velocity field; and the
method will apply to advancing or receding fractures, pro-
vided the appropriate tip asymptotic solution has been
determined. Finally, we note that the precision with which
we are able to locate the fracture front has a critical effect
on the accuracy of the numerical solution. Indeed,
associated with each fracture footprint that is a small per-
turbation of the actual footprint, there is a pair of equili-
brating and volume preserving widths and pressures.
Thus among this multiplicity of solutions, it is imperative
that the free boundary location algorithm select the appro-
priate footprint that matches the propagation condition,
and which corresponds to a solution to the elastic force
equilibrium equation and the lubrication volume balance
equation.

In this paper we provide a number of numerical compar-
isons with radially symmetric analytical solutions that have
been derived for spatially homogeneous problems under a
variety of propagation regimes: a fracture subjected to a
constant pressure field; toughness-storage-dominated prop-
agation; viscosity-storage-dominated propagation; and vis-
cosity-dominated propagation with leak-off. The numerical
solutions obtained using the novel implicit level set algo-
rithm show close agreement with the reference solutions.
The algorithm is able to locate the free boundary with first
order accuracy, while the corresponding width field is
approximated with the first order accuracy expected of
the piecewise constant displacement discontinuity method.
As an illustration, the algorithm is also applied to a sym-
metry-breaking in situ confinement field, which is equiva-
lent to a buoyancy-driven fracture. These examples
clearly establish the accuracy and robustness of the novel
implicit level set algorithm in the numerical solution of
hydraulic fractures in a variety of regimes.
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Appendix A. Particular integral over the tip region

We are interested in computing the integral Ið‘Þ defined
as

Ið‘Þ ¼
Z

DA‘

gdA; ðA:1Þ

where DA‘ is the fluid-filled part of a tip element (repre-
sented by the gray fill in Fig. 6). The domain DA‘ is
bounded by edges or part of edges of the tip element and
by the (straight) fluid front with external unit normal
ðcos a; sin aÞ. The peculiarity of the integral Ið‘Þ, which
we exploit in this calculation, is that the integrand g is only
a function of the distance from the front.

Let ‘ denote the distance the front has propagated into
the element from its point of entry (the vertex at the intersec-
tion of edges 1 and 4 in the example shown in Fig. 6), and let
n denote the coordinate along an axis perpendicular to the
front and with its origin on the front; n is positive for points
located inside the flow domain. The integrand gðnÞ, defined
over 0 6 n 6 ‘, is assumed to be continuous for n > 0 and to
be at most weakly singular at n ¼ 0. Under these conditions,
we show that the integral Ið‘Þ can be evaluated simply.

Let GðnÞ denote the definite integral of g

GðnÞ ¼
Z n

0

gðuÞdu; ðA:2Þ

then Ið‘Þ can be rewritten as

Ið‘Þ ¼
Z

DA‘

dG
dn

; dA ðA:3Þ

which, after application of Gauss theorem as in (52), can be
expressed as

Ið‘Þ ¼
Z

DC‘

GnndC; ðA:4Þ

where nn denotes the component along the n-axis of the
unit normal to the contour DC‘ enclosing the flow domain
A‘. Since Gð0Þ ¼ 0, Ið‘Þ can also be expressed as

Ið‘Þ ¼
Z

DC�
‘

GnndC; ðA:5Þ

where DC�‘ is DC‘ minus the front.
Table A.1
Evaluation of nndC for each side of the element

Edge nn dC nndC

1 sin a �dn= cos a �dn tan a
2 � cos a �dn= sin a dn cot a
3 � sin a dn= cos a �dn tan a
4 cos a dn= sin a dn cot a
The expression for nndC corresponding to each edge of
the rectangular element as a function of dn and a, assuming
counterclockwise traversal of the element boundary is tab-
ulated in Table A.1 (see Fig. 6 for the numbering of edges).

There are three possible cases which depend on the com-
parison between ‘ and the two lengths, k and n0, which are
both functions of a. The length k represents the maximum
value of ‘; i.e., k is the maximum distance that can be trav-
elled by the front within the element if its direction of prop-
agation remains unchanged. By simple projection, it can be
shown that

k ¼ Dv cos aþ Df sin a: ðA:6Þ

The geometrical meaning of n0, given by

n0 ¼
Df sin a; 0 6 tan a 6 Dv=Df;

Dv cos a; Dv=Df 6 tan a <1

�
ðA:7Þ

is illustrated in Fig. 6. The three generic cases that lead to
different expressions for Ið‘Þ are described below.

(1) 0 6 ‘ 6 n0 (the front intersects edges 1 and 4). In this
case
Ið‘Þ ¼ ðcot aþ tan aÞ
Z ‘

0

GðnÞdn ðA:8Þ

or

Ið‘Þ ¼ mCð‘Þ; ðA:9Þ

where

CðnÞ ¼
Z n

0

GðuÞdu; m ¼ 1

cos a sin a
: ðA:10Þ
(2) n0 6 ‘ 6 k� n0 (the front intersects edges 1 and 3). In
this case
Ið‘Þ ¼ m½Cð‘Þ � Cð‘� n0Þ�: ðA:11Þ
(3) k� n0 6 ‘ 6 k (the front intersects edges 2 and 3). In
this case
Ið‘Þ ¼ m½Cð‘Þ � Cð‘� n0Þ � Cð‘þ n0 � kÞ�: ðA:12Þ
(4) m ¼ 1. In this case
Ið‘Þ ¼ DgGð‘Þ; ðA:13Þ

where Dg is equal to Dv if a ¼ 
p=2 and to Df if
a ¼ 0; p.
This procedure can be repeated for an interior element
for which the fluid front as already passed, i.e. for which
‘ > k. In this case the corresponding integral:

Jð‘Þ ¼ ðcot aþ tan aÞ
Z k

0

GðnÞdn

can be expressed in the following form:

Jð‘Þ ¼ m½Cð‘Þ � Cð‘� n0Þ � Cð‘þ n0 � kÞ þ Cð‘� kÞ�:
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Appendix B. Expansion of elasticity and lubrication

equations near the tip

In this appendix, we show that, in the vicinity of the
fracture edge, the general elasticity Eq. (3) and the lubrica-
tion Eqs. (4)–(6) degenerate to (27). However, we perform
the expansion of the equations directly in terms of the
dimensionless variables and quantities. For the expansion,
we introduce the system of coordinates ðn; gÞ centered at
point O on the fracture edge C, with the n-axis normal to
C and pointing inside the fracture domain, see Fig. 29.
Since the fracture front C is evolving, the point O is moving
at a velocity v, which is pointing in the same direction as
the outward normal to C at O, i.e., in opposite direction
to n. (In this paper we consider only the case where the
fracture is growing, i.e., the front C at time s encompasses
all previous configurations of the front.)
B.1. Elasticity

First we rewrite the elasticity integral on the right-hand
side of (20) in terms of a system of coordinates ðn; gÞ; thus

Iðn; gÞ ¼
Z a

0

Z guðn0Þ

glðn0Þ

Xðn0; g0Þdg0dn0

½ðn0 � nÞ2 þ ðg0 � gÞ2�3=2
; ðB:1Þ

where the bounds a, gl, gu, which implicity describe the
geometry of the fracture edge C, depend on the position
of the origin O of the coordinate system on C. We are
interested in determining the asymptotic expansion I0ðnÞ
of the integral Iðn; gÞ when n! 0 and g ¼ 0, i.e.,

I0ðnÞ �
n!0

Iðn; 0Þ: ðB:2Þ

In the neighbourhood of O, the front C has a local radius
of curvature q; hence C in the vicinity of O is described by

ðn� qÞ2 þ g2 ¼ q2; n=q! 0; g=q! 0: ðB:3Þ

It follows therefore that for n=q! 0, the two inner bounds
glðnÞ and guðnÞ of the integral Iðn; gÞ can be simplified as

glðnÞ � �
ffiffiffiffiffiffiffiffi
2nq

p
; guðnÞ �

ffiffiffiffiffiffiffiffi
2nq

p
; n=q! 0: ðB:4Þ
Fig. 29. Details of the fracture front for the tip asymptotics.
Now consider the asymptotic form of the inner integral
iðn; n0Þ in (B.1)

iðn; n0Þ ¼
Z guðn0Þ

glðn0Þ

Xðn0; g0Þdg0

½ðn0 � nÞ2 þ ðg0 � gÞ2�3=2
; ðB:5Þ

when n=q! 0. After first expressing the integration vari-
ables n0 and g0 as

n0 ¼ un; g0 ¼ vn; ðB:6Þ
iðn; n0Þ can be rewritten as

iðn; n0Þ ¼ n�2gðn; n0Þ; ðB:7Þ
where

gðn; n0Þ ¼
Z guðunÞ=n

glðunÞ=n

Xðun; vnÞdv

½ðu� 1Þ2 þ v2�3=2
: ðB:8Þ

Hence, in view of (B.4),

gðn; n0Þ �n=q!0
Z ffiffiffiffiffiffiffiffi

2uq=n
p

�
ffiffiffiffiffiffiffiffi
2uq=n
p

Xðun; vnÞdv

½ðu� 1Þ2 þ v2�3=2
: ðB:9Þ

Since the crack front is a level set of the function X, i.e,
X ¼ 0, any variation of the function X in the close vicinity
to the crack front takes place in the direction normal to the
front. In other words,

Xðun; vnÞ � XsðunÞ; n! 0; ðB:10Þ
where Xs is used to denote an asymptotic form of the func-
tion X. Hence, recalling Eq. (B.4), we can write that

gðn; unÞ �n=q!0
XsðunÞ

Z 1

�1

dv

½ðu� 1Þ2 þ v2�3=2

¼ 2XsðunÞ
ðu� 1Þ2

; ðB:11Þ

which leads to

I0ðnÞ �
n=q!0

2

Z a

0

Xsðn0Þdn0

ðn0 � nÞ2
: ðB:12Þ

Therefore, by taking the limit for n! 0, we have effectively
reduced the planar integral elasticity equation to the corre-
sponding plane strain equation. After an integration by
parts and noting that Xsð0Þ ¼ XsðaÞ ¼ 0, we obtain

I0ðnÞ �
n=q!0

2

Z a

0

dbXðn0Þ
dn0

dn0

n0 � n
; ðB:13Þ

which can readily be rewritten as

I0ðnÞ �
n=q!0

2

Z a=n

0

dbXðzÞ
dz

dz
nðz� 1Þ

� 2

Z 1

0

dbXðn0Þ
dn0

dn0

n0 � n
: ðB:14Þ

Hence, the elasticity equation (20) for a field point close to
the crack edge degenerates to

PsðnÞ ¼
1

4p

Z 1

0

dXsðn0Þ
dn0

dn0

n� n0
: ðB:15Þ
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B.2. Lubrication

Consider first Poiseuille’s law (4) expressed in dimen-
sionless form as

W ¼ �X3$P; ðB:16Þ
where we have assumed the far-field stress to be uniform at
the scale at which the asymptotic analysis is carried out. In
the vicinity of the crack front, n! 0, g ¼ 0, the net pres-
sure P depends only on n, according to the elasticity Eq.
(4). Hence, near the crack front the Poiseuille law (B.16)
simplifies to

WsnðnÞ ¼ �X3
s

dPs

dn
; Wsg ¼ 0; n� 1: ðB:17Þ

Thus the asymptotic functions Wsn, Ps, and Xs depend only
on n, near the crack front C. Also, it is convenient to use
the modulus of the flux vector Ws ¼ �Wsn in the asymptotic
form of the lubrication equations.

Consider next the volume conservation law (5) without a
source term. Acknowledging now that the front is moving
at a normal velocity �v, parallel to n, and thus that the
coordinate n is moving at velocity v, we can rewrite (5) near
the crack front as

DXs

Ds
þ v

oXs

on
� dWs

dn
þ

ffiffiffi
v
n

r
¼ 0; n! 0; ðB:18Þ

where we have taken advantage of the asymptotic form of
the solution, and noting that o=os� vo=on ¼ D=Ds de-
notes the time derivative in the moving coordinate system
n. Also, we have used the fact that s� s0ðnÞ � n=v as
n! 0.

Since asymptotic considerations of the elasticity Eq.
(B.15) indicate that [57]

Xs � na; 0 < a < 1; n� 1; ðB:19Þ
in (B.18) the convective term dominates the time derivative
as n! 0. After integration and taking into account the
boundary conditions Xsð0Þ ¼ Wsð0Þ ¼ 0, near the tip the
continuity Eq. (B.18) simplifies to

Ws ¼ vXs þ 2
ffiffiffiffiffi
vn

p
; n� 1: ðB:20Þ
Appendix C. Analytic solutions for radial fractures

For convenience in this appendix, we summarize four
analytical solutions that are available for a radial hydraulic
fracture. We will make reference to the M eM K eK parameter
space introduced in the main text and shown in Fig. 2.

The first solution (Section C.1) is not restricted, how-
ever, to fluid-driven fractures, as it pertains to a radial frac-
ture subjected to a far-field tensile stress and a uniform
pressure [52]. However this solution can also be interpreted
as the K-vertex solution ðl0 ¼ C0 ¼ 0Þ.

The solution at the M-vertex is summarized in Section
C.2 [54]. This similarity solution can either be interpreted
as the solution for a fracture propagating in a medium
characterized by K 0 ¼ C0 ¼ 0, or as the early time solution
if K 0 6¼ 0 and/or C0 6¼ 0.

The (zero efficiency) similarity solution at the eM -vertex
is given in Section C.3 [29]. This solution represents the
large-time asymptote for a hydraulic fracture propagating
in a zero toughness permeable elastic medium.

Finally, the large toughness solution for a radial fracture
propagating in an impermeable medium is summarized in
Section C.4 [54]. This solution represents a perturbation
from the K-vertex, which thus accounts for viscous flow
in the fracture (in contrast to the inviscid flow at the K-ver-
tex). The K-vertex solution is retrieved when the dimen-
sionless viscosity M vanishes.
C.1. Radial dry fracture in a tensile stress field

Consider a radial ‘‘dry” fracture in an infinite elastic
body, with a far-field uniform tensile stress field r normal
to the fracture plane. The fracture may also be internally
pressurized by a uniform pressure pf . First we introduce
the scaling x ¼ L�v, y ¼ L�f, w ¼ W �X, pf ¼ r0Pf , and
r ¼ r0uðv; fÞ, where r0 is a characteristic stress. We also
define the two characteristic lengths, L� and W �

L� ¼
K 0

r0

� �2

; W � ¼
K 02

r0E0
ðC:1Þ

to scale the spatial coordinates and the crack aperture
respectively. Under this scaling, the elasticity Eq. (3)
becomes

Pf � uðv; fÞ ¼ � 1

8p

Z
A

Xðv0; f0ÞdSðv0; f0Þ
½ðv0 � vÞ2 þ ðf0 � fÞ2�3=2

: ðC:2Þ

Assuming a uniform net pressure P ¼ Pf � 1 (i.e.,
uðv; fÞ ¼ 1), the opening displacement and fracture volume
for a radial crack of radius c are given by

X ¼ 8Pc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q

c

� �2
s

; V ¼ 24Pc3

3
; ðC:3Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ f2

q
.

There exists a critical radius c� for which the stress inten-
sity factor KI is equal to the toughness KIc; this condition
can be expressed as

X � ðc� � qÞ1=2 as q! c�: ðC:4Þ

For c < c� the crack does not propagate ðKI < KIcÞ, while
for c > c� the fracture propagates unstably ðKI > KIcÞ.
For a uniform net pressure P, the critical radius c� and
the corresponding fracture opening are given by

c� ¼
p2

27P2
; X ¼ p

24P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q

c�

� �2
s

: ðC:5Þ
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C.2. M-solution

The M-solution Fmo ¼ fcðsÞ;Xðq; sÞ;Pðq; sÞg is given
by

c ¼ cmos
4=9; X ¼ XmoðqÞs1=9; P ¼ PmoðqÞs�1=3; ðC:6Þ

where a first order approximation to the self-similar solu-
tion cmo, XmoðqÞ, PmoðqÞ is given by

cmo ’ 0:6955 ðC:7Þ
Xmo ’ ðC1 þ C2qÞð1� qÞ2=3 þ B1½ð1� q2Þ1=2 � q arccos q�;

ðC:8Þ

Pmo ’ A1 x1 �
2

3ð1� qÞ1=3

" #
� B2 ln

q
2
þ 1

� �
; ðC:9Þ

with C1 ’ 1:034, C2 ’ 0:6378, B1 ’ 0:1642, A1 ’ 0:3581,
B2 ’ 0:09269, x1 ’ 2:479.
C.3. eM -solution

The eM -solution F~mo ¼ fcðsÞ;Xðq; sÞ;Pðq; sÞg is given
by

c ¼ c~mos
1=4; X ¼ X~moðqÞs1=16;

P ¼ P~moðqÞs�3=16; ðC:10Þ

where a first order approximation to the self-similar solu-
tion c~mo, X~moðqÞ, P~moðqÞ is given by

c~mo ¼
ffiffiffi
2
p

p

X~mo ¼ D1ð1� q2Þ3=2 þ D2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� q arccos q

� �
þ D3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
4�

Z 1

0
2F 1

3

8
; 1;

3

2
; 1� q2
� 	

s2 þ q2

� �
ds


 �
;

P~mo ¼ D4½4� ð1� q2Þ�3=8� � D5½3ð2q2 � 1Þ � 1�

þ D6 log
2

q

� �
� 1


 �
ðC:11Þ

where D1 ¼ 0:05159, D2 ¼ 0:1608, D3 ¼ 0:2976, D4 ¼
0:2596, D5 ¼ 0:01688, D6 ¼ 0:1403. Here 2F 1ðÞ denotes
Gauss hypergeometric function.
C.4. Near K-solution

The large toughness solution Fk ¼ fcðsÞ;Xðq; sÞ;
Pðq; sÞg is given by

c ¼ ckos
2=5 þ ck1;

X ¼ XkoðqÞs1=5 þ Xk1ðqÞs�1=5;

P ¼ Pkos
�1=5 þPk1ðqÞs�3=5; ðC:12Þ

where cko ’ 0:8546, ck1 ’ �0:7349, and
Xko ¼
3

8p

� �1=5

ð1� q2Þ1=2
; ðC:13Þ

Xk1 ¼ Bkð1� q2Þ1=2 � 8

3p
Akcko ln 2� 4

5

� �

ð1� q2Þ1=2 þ q arccos q� 6

5
I�ðqÞ

�
; ðC:14Þ

Pk1 ¼ P�k1 � Ak
1

3
ln q� 1

5
lnð1� q2Þ


 �
; ðC:15Þ

with P�k1 ’ 0:6380, Ak ’ 1:709, Bk ’ 0:8264 and

I�ðqÞ ¼
Z 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

n2 � q2

s
arcsin ndn: ðC:16Þ
Appendix D. Viscosity-toughness scaling

By setting Gk ¼ 1 (rather than Gc ¼ 1), besides imposing
Ge ¼ Gm ¼ Gv ¼ 1 for the dimensionless groups defined in
(18), leads to the so-called viscosity-toughness scaling
where the characteristic quantities are now given by

L� ¼
Q0l

0E03

K 04
; T � ¼

Q3
0l
05E013

K 018

� �1=2

;

W � ¼
Q0l

0E0

K 02

� �1=2

; P � ¼
K 06

Q0l0E
03

� �1=2

: ðD:1Þ

Furthermore, the dimensionless leak-off coefficient Gc is
given by

Gc ¼ C0
Q0E011l03

K 014

� �1=4

: ðD:2Þ

Since none of the characteristic quantities depend on the
leak-off coefficient, this scaling is appropriate to analyze
the limiting case of impermeable rocks ðC0 ¼ 0Þ. The scal-
ing factor V � for the tip velocity is then given by

V � ¼
K 010

Q0l03E07

� �1=2

: ðD:3Þ

The scaled tip velocity v ¼ V =V � corresponds to
v ¼ limŝ!0q̂=ŵ when C0 ¼ 0.

The corresponding viscosity-toughness scaling for the
tip asymptotics yields the following tip length scale bL� as
well as the characteristic tip opening bW � and pressure bP �.
bL� ¼ K 06

E04l02V 2
; bW � ¼

K 04

E03l0V
; bP � ¼ E02l0V

K 02
: ðD:4Þ

In the absence of leak-off, the asymptotic tip solution has a
universal form bXðn̂Þ and bPðn̂Þ. Although the complete tip
solution has to be computed numerically, its series expan-
sion for small and large n̂ is known explicitly, see (34)
and (35).

The tip asymptote can readily be expressed in terms of
ŵðŝÞ from the relationship between the numerical and the
tip scaling,
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bX ¼ W �bW �
X; n̂ ¼ L�bL� n; ðD:5Þ

which according to (D.1) and (D.4) simplifies tobX ¼ vX; n̂ ¼ v2n: ðD:6Þ
Thus X behaves according to the viscosity asymptote,
X � b0v1=3n2=3 if nJ n̂mv�2, but according to the toughness
asymptote X � n1=2 if nK n̂kv�2. Obviously, the relevance
of either limiting asymptotic behaviour as far as the global
solution is concerned depends on the comparison of the
length n̂mv�2 or n̂kv�2 with the fracture characteristic
dimension c ¼ L=L�. For example, if n̂mv�2 is comparable
to ec where e is a small number of order Oð10�2 � 10�1Þ,
the tip is locally dominated by the viscosity asymptote;
however if n̂kv�2 is comparable to ec then the tip behaves,
at the global scale, according to the LEFM asymptote.
As discussed in the main text, our reference length for
the application of the tip asymptote will be the characteris-
tic dimension Ds of a grid element and the asymptote will
be imposed in a weak form, via the volume.
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