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ABSTRACT: The injection of slick-water at the high rates used to fracture unconventional shale-gas reservoirs results in flows that
are turbulent - particularly near the wellbore. In this paper we consider the effect of turbulence on the simultaneous propagation of
multiple hydraulic fractures that are constrained to evolve in parallel planes. The effect of turbulence is captured using a modification
of the Darcy-Weisbach fluid-flow model with an adaptation of Churchill’s friction factor approximation to fracture flow geometries
that is able to capture the transition from laminar to fully turbulent flow. Since the Reynlods number is proportional to the fracture
width, the flow transitions to laminar close to the tip where the fracture width approaches zero. The model used in this paper is
therefore able to exploit the multi-scale laminar tip asymptotic behaviour in order to use the Implicit Level Set Scheme (ILSA)
to locate the fracture free boundary and to identify the propagation regime. We provide a numerical example for an array of five
uniformly distributed planar fractures in which the laminar model exhibits significant stress shadowing while the turbulent model
predicts substantially less. This reduction in stress shadowing in the turbulent flow model is due to the significantly larger pressure
drop near the well-bore compared to the laminar case that dominates the mutual stress interactions between the fractures in the array.

1. INTRODUCTION

Hydraulic fractures are tensile fractures induced in a rock for-
mation by the injection of a pressurized fluid. This technique
is used to stimulate oil and gas wells Economides and Nolte
(2000), for waste disposal Abou-Sayed et al. (1989), to en-
hance rock mining Jeffrey and Mills (2000), for CO2 seques-
tration, and for geothermal energy extraction Brown (2000).
To increase the treatment efficiency in unconventional tight-
gas reservoirs multiple hydraulic fractures from different per-
forations are often generated simultaneously from one well-
bore. In this situation, outer fractures induce additional com-
pressive stresses on inner fractures and cause non-uniform frac-
ture growth. This phenomenon is called stress shadowing and
has been addressed in numerous studies Olson (2008); Singh
and Miskimins (2010); McClure and Zoback (2013); Kresse
et al. (2013); Peirce and Bunger (2014); Daneshy (2014); Wu
et al. (2015); Skomorowski et al. (2015); Kumar and Ghassemi
(2015); Manchanda et al. (2016); Dontsov and Peirce (2016)
and can significantly affect the fracture geometry and the asso-
ciated production rate. For this reason, it is important to develop
numerical models that are able to predict simultaneous growth
of multiple hydraulic fractures and that can be used to design
more efficient hydraulic fracture stimulations.

The past decade has seen a shift from the use of high
viscosity cross-linked gels in conventional hydraulic fracture
treatments to the deployment of slick-water driven hydraulic
fractures at high injection rates in the stimulation of imper-
meable shale gas deposits. For the conventional, high viscos-
ity, moderate-injection treatments the modeling assumption of a

predominantly laminar flow within the fracture has been used to
good effect. However, for typical treatments in unconventional
reservoirs the viscosity decrease of the water-based injection
fluids and the increased injection rates result in flows within the
fracture for which the Reynolds numbers, particularly near the
wellbore, are in the turbulent regime. At the same time, the
Reynolds number is proportional to the fracture width, which
implies that there is always a region near the fracture tip where
the flow is laminar. It is therefore important to use a model that
is able to capture the laminar flow, the turbulent flow, and the
laminar-to-turbulent transition.

In this paper we explore the effect of the turbulence asso-
ciated with these high Reynolds numbers on the simultaneous
propagation of multiple hydraulic fractures in distinct paral-
lel planes. The turbulence model uses the approximate phe-
nomenological Darcy-Weisbach fluid-flow equation in which
Churchill’s approximation of the dimensionless friction factor
for circular pipes has been adapted to fracture flow geometries,
and which is able to capture laminar, laminar-to-turbulent, and
turbulent regimes. In the regions near the tip the Reynolds num-
ber is assumed to be sufficiently small, due to the reduced frac-
ture width, that the flow is laminar. In this case the tip asymp-
totic behaviour, established for laminar flows, can still be used
to determine the location of the free boundary using the Im-
plicit Level Set Algorithm (ILSA). This algorithm is able to
capture multiscale tip asymptotic behaviour that results when
multiple physical processes compete to determine the location
of the fracture boundary. In the examples considered the evolv-
ing fracture footprints for turbulent flows are compared to mod-
els in which the flow is assumed to be laminar.



2. MATHEMATICAL MODEL

2.1. ASSUMPTIONS

To formulate the mathematical model to describe the simulta-
neous growth of multiple parallel hydraulic fractures, it is first
necessary to outline a list of assumptions that are used in the
model. In particular, it is assumed that:

• All the fractures are planar and perpendicular to the well-
bore, see Fig. 1. Five fractures are considered in this pa-
per, but the methodology can be easily extended to any
number of fractures.

• Linear elastic fracture mechanics (LEFM) applies for de-
scribing the fracture growth, see e.g. Rice (1968).

• The rock is linearly elastic and poroelastic effects are ig-
nored.

• The fluid is assumed to be incompressible and New-
tonian with a dynamic viscosity µ. The fluid flow
is governed by the Darcy-Weisbach equation in which
we use an adaptation to hydraulic fracture geome-
tries of Churchill’s approximation of the friction fac-
tor (Churchill, 1977) that applies over a wide range of
Reynolds numbers.

• The leak-off is described by Carter’s model Carter
(1957), which assumes a one-dimensional diffusion in
the direction perpendicular to the fracture surface, and is
quantified by the leak-off coefficient CL.

• The rock is homogeneous (i.e. the fracture toughness
KIc, Young’s modulus E, Poisson’s ratio ν, and leak-off
coefficient CL all have uniform values).

• All fractures are always in limit equilibrium, in which
case the stress intensity factor is always equal to the frac-
ture toughness at the crack tip.

• The effect of gravity is neglected.

• The fluid front coincides with the crack front, since
the lag between the two fronts is negligible under typi-
cal high confinement conditions encountered in reservoir
stimulation Garagash and Detournay (2000); Detournay
and Peirce (2014).

• The effect of perforation friction is not considered.

• The pay zone layer with height H is surrounded by two
other layers, in which an additional compressive stress
∆σ is applied, see Fig. 1. Only two symmetric stress bar-
riers are considered in this study for the purpose of nu-
merical examples. The approach can be extended to arbi-
trary spatial variation of the compressive stresses. Note
that the all layers have the same elastic constants. Cap-
turing spatial variation of elastic properties requires sub-
stantial modification of the algorithm that is used in this
study.

2.2. GOVERNING EQUATIONS

This section outlines the governing equations for multiple par-
allel hydraulic fractures. With the reference to Fig. 1, it is noted
that the z coordinate lies along the wellbore, while each frac-
ture is contained in the (x, y) plane. The source (wellbore) with

total volumetric injection rate Q(t) is located at the origin of
each (x, y) plane that contains a fracture, i.e. (0, 0, zl), where
zl is the location of the perforation and l = 1...np is the frac-
ture number (np = 5 is the total number of fractures). In this
setting, the primary quantities of interest in a hydraulic fracture
problem are the time histories of the fracture displacement dis-
continuity components Dj,l(x, y, t) j = 1, 2, 3, the fluid pres-
sure pl(x, y, t), the fluid flux entering each fracture Ql(t), and
the position of the front Cl(t). Here l = 1...np, in which case
all the above quantities are calculated for each hydraulic frac-
ture. The fracture width is determined from the displacement
discontinuity values as wl = Dz,l(x, y, t). The solution de-
pends on the injection rateQ(t), the far-field compressive stress
σzz , (perpendicular to the fracture planes), and four material pa-
rameters µ′, E′, K ′, and C ′ defined as

µ′ = 12µ, E′ =
E

1− ν2
,

K ′ = 4

(
2

π

)1/2

KIc, C ′ = 2CL. (1)

Here E′ is the plane strain modulus, and µ′ is the scaled fluid
viscosity, while K ′ and C ′ the scaled fracture toughness and
leak-off coefficient. These scaled quantities are introduced to
keep equations uncluttered by numerical factors.

2.2.1. ELASTICITY

Given the assumptions that the rock is homogeneous and lin-
ear elastic, the equations relating the displacement disconti-
nuity component and induced stress fields in the solid can
be condensed into the following hypersingular integral equa-
tions Crouch and Starfield (1983); Hills et al. (1996):

σiz(x, y, zk) =

np∑
l=1

∫
Al(t)

Cizj(x− χ, y − η, zk − zl)

× Dj,l(χ, η)dχdη, (2)

where Al(t) denotes the fracture footprint of lth fracture,
Cizj(x − χ, y − η, zk − zl) represents the the izth stress com-
ponent at point (x, y, zk) due to a unit displacement discon-
tinuity at point (χ, η, zl) in the jth coordinate direction (the
expressions for Cizj are omitted for brevity). The total stress
field is a sum of the hydraulic fracture induced stress whose
ij components are σij and the geological stress with the ij
components σgij . Since the fractures typically grow in planes
that are perpendicular to the minimum principal stress, then
σgxz(x, y) = σgyz(x, y) = 0. To include the effects of stress
barriers, the zz component of the geological stress is assumed
to vary according to

σgzz = σ0
zz + ∆σH(y − 1

2H) + ∆σH(−y − 1
2H), (3)

whereH denotes Heaviside step function, while H is the thick-
ness of the reservoir layer. Since the fluid cannot sustain shear
stresses, the boundary conditions at fracture surfaces are

σxz(x, y, zl) = 0, σyz(x, y, zl) = 0, (4)

while the fluid pressure in lth fracture is calculated based on

pl(x, y) = σzz(x, y, zl) + σgzz(x, y), (5)

where the expression for the geological stress σgzz is given in (3).
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Figure 1: Schematics of simultaneously growing multiple parallel hydraulic fractures.

2.2.2. TURBULENT LUBRICATION THEORY

The continuity equation for each fracture is

∂wl
∂t

+ ∇ · ql +
C ′√

t−t0,l(x, y)
= Ql(t)δ(x, y), (6)

where ∇ = (∂/∂x, ∂/∂y), the last term on the left hand side
captures the fluid leak-off according to the Carter’s model, and
t0,l(x, y) signifies time instant at which the fracture front of lth
fracture was located at the point (x, y). Turbulent fluid low is in-
corporated using the phenomenological Darcy-Weisbach equa-
tion, which relates the pressure drop along the flow to the fluid
velocity as

−∇pl = fD(Rel, εl)
ρ

2

U2
l

Dl

Ul

Ul
, Rel =

ρUlDl

µ
, ε =

rl
Dl
,

(7)
where ρ is the mass density of the fluid, U = (Ux, Uy) is the

average fluid velocity vector and U =
√
U2
x + U2

y is its magni-
tude,D is the hydraulic diameter of the channel, and the dimen-
sionless friction factor fD depends on the Reynolds number Re
and the relative roughness ε is defined in terms of the absolute
wall roughness r.

We adopt Churchill’s (Churchill, 1977) empirical approxi-
mation for fD that was derived for circular pipes, adapted by
Dontsov (Dontsov, 2016) to flow geometries in hydraulic frac-
tures with hydraulic diameterD = 2w, which has the following
form:

fD =
96

Re
f̃D, f̃D(Re, r) =

(
1 + (Ã+B̃)−1.5

)1/12
, (8)

where fD has been scaled by the factor
96

Re
associated with lam-

inar flow to define f̃D and the remaining parameters are given
by

Ã =

[
8.511

Re1/2
f0(Re, r)

]16
, B̃ =

(2566

Re

)24
,

Re =
24ρUw

µ′
, r =

ε

2w
. (9)

where f0(Re, r) =

∣∣∣∣log
((

7
Re

)0.9
+0.27r

)∣∣∣∣. We note that (8) is

able to capture laminar (Re . 2000), transition (2000 . Re .
3000), and turbulent (Re & 3000) regimes.

Combining (7) and (8), the flux can be expressed in the
form

ql = Ulwl = − w3
l

µ′f̃D(Rel, rl)
∇pl. (10)

We note that this expression for the flux is in the same form
as that for the classic Poiseuille law for laminar flow in which
the additional factor factor f̃D(Rel, rl) ≥ 1 automatically in-
creases the the viscosity as the flow velocity increases into the
turbulent regime. Laminar Poiseuille flow is obtained by setting
f̃D(Rel, rl) = 1 and when the effect of turbulence is important
the factor f̃D(Rel, rl) > 1.

Combining (10) and (6) yields the Reynolds equation for
the lth fracture

∂wl
∂t

=
1

µ′
∇ ·

(
w3
l

f̃D(Rel, rl)
∇pl

)
− C ′√

t−t0,l(x, y)
+Ql(t)δ(x, y), (11)

Assuming no fluid-lag, the governing equation (11) applies
within the whole fracture for all l = 1...np. The fluid fluxes
that enter each of the fracture may be different, but the total flux
in the wellbore is prescribed, so that

np∑
l=1

Ql(t) = Q0(t), pi(0, 0, t) = pj(0, 0, t). (12)

Here the second equation states that the fluid pressure is the
same along the whole wellbore (i.e. for every fracture), while
i = 1...np, j = 1...np, and i 6= j.

2.2.3. BOUNDARY CONDITIONS AT THE MOVING
FRONT

Due to the assumption that the fracture propagation is deter-
mined by LEFM, growth of the mode I crack can be described
by Rice (1968):

lim
s→0

wl
s1/2

=
K ′

E′
, (13)



where s is the distance to the fracture front. Assuming that there
is no lag a zero flux boundary condition Detournay and Peirce
(2014) should be imposed at the fracture tip:

lim
s→0

w3
l

∂pl
∂s

= 0. (14)

The evolution of the fracture front Cl(t) (and the associ-
ated normal velocity V ) is implicitly determined by the equa-
tions (2), (11), (13) and (14), which apply for all fractures
l = 1...np.

2.2.4. LOCATING THE MOVING FRONT USING A MUL-
TISCALE UNIVERSAL TIP ASYMPTOTIC SOLU-
TION

From the second equation in (9) we observe that the Reynolds
number is proportional to the fracture width. Thus, as we ap-
proach the fracture tip, the Reynolds number decreases. In this
study we assume the we are sufficiently close to the tip that the
Reynolds number has been reduced sufficiently for the flow in
the near-tip region to be considered laminar. Analysis of the
near tip behavior of hydraulic fractures indicates that the va-
lidity region of the propagation condition (13) is often limited
to the immediate vicinity of the tip (see e.g. Garagash et al.
(2011)). Resolving the square root behaviour at the length scale
at which it applies would require an extremely fine mesh, which
is computationally prohibitive. To obtain accurate solutions on
a relatively coarse mesh the propagation condition (13) can be
replaced by an asymptotic solution wa that has a much larger
region of validity

wl(s) ≈ wa(s), s = o(L), (15)

where L is the characteristic length of the fracture. The univer-
sal asymptotic solution wa can be calculated by considering a
semi-infinite hydraulic fracture that propagates steadily with a
velocity V under plane strain elastic conditions Garagash et al.
(2011); Peirce and Detournay (2008).

By considering a non-singular formulation Dontsov and
Peirce (2015) of the steadily propagating semi-infinite hydraulic
fracture problem it has been possible to express the asymptotic
solution (15) in the following implicit form:

s2V µ′

E′w3
a

= gδ

(K ′s1/2
E′wa

,
2s1/2C ′

waV 1/2

)
, (16)

where gδ is relatively simple function that can be evaluated
efficiently. This solution captures all the multiscale behavior
associated with the competing processes of viscous dissipa-
tion, toughness energy release, and fluid leak-off, reduces to all
the so-called vertex limiting solutions, and captures all possi-
ble transition regions, see Dontsov and Peirce (2015, 2017) for
more details.

The role of the uniform asymptotic solution (16) in locating
the fracture free boundary and capturing the multiscale behavior
on a coarse mesh is two-fold. Firstly, given trial fracture widths
wl at selected sample points in the vicinity of the tips the corre-
sponding distances s to the fracture tips are determined. Given
this distance information the free boundary for the lth fracture is
determined as the zero level set Tl(x, y) = 0 of the solution to
the eikonal equation |∇Tl| = 1. Secondly, having established
the location of the free boundary, the zeroth and first moments
of the width defined in (16) are used to impose the multiscale
asymptotic solutions in a weak sense. These are the two es-
sential steps used by the so-called Implicit Level Set Algorithm

(ILSA) to locate the fracture free boundaries and to capture the
multiscale mutiprocess solution on a relatively coarse mesh.
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Figure 2: Results of the numerical simulations for the lam-
inar case at times t = 5 s (top), t = 15 s (middle), and
t = 30 s (bottom).

3. NUMERICAL RESULTS

In this section we provide results in which the ILSA scheme
Peirce and Bunger (2014); Peirce (2015); Peirce and Detournay
(2008); Dontsov and Peirce (2017) is used to obtain the numer-
ical solution of (2)–(5), (11), (12) along with the propagation
condition (15) that is implemented using the approximate so-
lution (16). The following material parameters are used in the



examples:

E = 9.5 GPa, ν = 0.2, KIc = 0.5 MPa·m1/2,(17)

Q0 = 0.5 m3/s, µ = 0.002 Pa·s, C ′ = 0 m/s1/2,
H = 20 m, ρ = 1000 kg/m3, r = 10−4 m.

In the case of laminar flow either we could use Poiseuille’s law
directly or enforce it by setting ρ = 0 in which case Re = 0
and f̃D(Rel, rl) = 1.

The confining stresses in (3) are assumed to be

σ0
zz = 7 MPa, ∆σ = 0.75 MPa. (18)

The spacing between perforations is selected to be uniform and
equal to 20 m, i.e. zk+1 − zk = 20 m for k = 1...np − 1. This
study focuses on the case of five parallel fractures, i.e. np = 5.
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Figure 3: Results of the numerical simulations for the tur-
bulent case at times t = 5 s (top), t = 15 s (middle), and
t = 30 s (bottom). Grey lines indicate contour levels at
which f̃D = {1.1, 2, 4, 8}.

Fig. 2 shows the results of the numerical simulations at
times t = 5 s (top), t = 15 s (middle), and t = 30 s (bottom)
for the laminar case for which f̃D = 1. Color filling is used
to indicate the fracture width according to the colorbar. The
fracture boundaries (footprints) are highlighted by solid black
lines, the locations of the stress barriers are shown by thicker
solid lines (at y = 10 m and y = −10 m), while the thickest
black line passing through x = 0, y = 0 represents the well-
bore. The total surface area, A(t), of all five fractures at time
t is shown on each picture. At t = 5 s all the fractures have
entered the regions of higher confining stress and though the
middle three fractures are slightly smaller than the outer two,
there has not been significant stress shadowing by this stage. At
time t = 15 s the effect of stress shadowing is noticeable, while
by time t = 30 s the stress shadowing has resulted in outer frac-
tures that have grown significantly compared to the inner three
fractures.

Fig. 3 shows the results of the numerical simulations at
times t = 5 s (top), t = 15 s (middle), and t = 30 s (bottom)
using the turbulent flow model (10). As before color filling is
used to indicate the fracture width, fracture boundaries (foot-
prints) are highlighted by solid black lines, the locations of the
stress barriers are shown by thicker solid lines (at y = 10 m and
y = −10 m), and the thickest black line passing through x = 0,
y = 0 represents the wellbore. The total surface area, A(t), of
all five fractures at time t is shown on each picture. Within each
of the fractures contours of the viscosity factor f̃D are plotted by
the grey lines at levels f̃D = {1.1, 2, 4, 8} that increase toward
the wellbore. For the contour encompassing the largest region
f̃D = 1.1, which implies that the viscosity at all points along
this curve has only increased by 10 %. Thus this outer contour
can be regarded as the transition curve outside of which there is
laminar flow and inside of which there is turbulent flow. From
this figure it can be seen that the results are consistent with the
assumption that close to the tip the flow is laminar - so that the
universal asymptotic solution (15), which was derived for lami-
nar flows, can be used in this situation. In addition, the fact that
the flow within the fracture is part laminar and part turbulent
emphasizes the need for a flow model that is able to capture not
only the laminar and the turbulent regimes but also the transition
form laminar to turbulent regimes. The contour f̃D = 2, encap-
sulating the second largest region, indicates the points at which
the viscosity is doubled due to the effect of turbulence. As is
to be expected the contours of highest turbulence are clustered
around the wellbore. At t = 5 s all the fractures have entered the
regions of higher confining stress, however there has not been
a noticeable stress shadow effect. The less pronounced stress
shadowing when turbulent effects are included can also be seen
from the solutions provided at later times. Indeed, comparing
the laminar solutions from Fig. 2 to the turbulent solutions in
Fig. 3 at corresponding times we observe that the turbulent so-
lutions exhibit significantly less stress shadowing.

This reduction in stress shadowing can be explained by the
significantly larger pressure drop at the wellbore for the turbu-
lent case compared to the laminar case. This can be demon-
strated by estimating the asymptotic behaviour of the pressure
gradient field near the wellbore. Due to the point source rep-
resented by the δ-function, it can be shown that close to the
well bore the flux behaves as q ∼ 1/r. For laminar flow
Poiseuille’s law implies that ∂p/∂r ∼ q ∼ 1/r. For turbu-
lent flow near the wellbore consider the limitRe� 1 in (8) and
(9) from which it follows that f̃D ∼ Re . Thus (10) implies that
∂p/∂r ∼ q2 ∼ 1/r2. Because the near-wellbore pressure gradi-
ent in the turbulent case is more singular than that in the laminar



case, the turbulent pressure drop near the well-bore dominates
the mutual stress interactions between the fractures in the array
to a much greater extent than in the laminar case. Therefore,
including the the effect of turbulence near the wellbore leads
the model to predict significantly less stress shadowing than the
laminar case.
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Figure 4: Time histories of fracture area (top left), width
at the wellbore (top right), and wellbore flux (bottom left)
for all the fracture planes for both the laminar and the tur-
bulent cases.

To quantify the effect of the transition to turbulence on the
propagation of multiple hydraulic fractures, Fig. 4 shows the
time histories of the fracture area (top left), the fracture width
at the wellbore, i.e. at x = 0 and y = 0 (top right), and the
fluid flux (bottom left) for every fracture for both laminar and
turbulent flows. Results for planes 1 and 5 (located at z = 0
and z = 80 m) are identical due to symmetry and are indicated
by black lines. Results for planes 2 and 4 (located at z = 20
and z = 60 m) are also identical due to symmetry and are in-
dicated by blue lines. Results for the middle plane 3 (located at
z = 40 m) are indicated by red lines. The results for laminar
flow are represented by dashed lines while those for turbulent
flow are represented by solid lines. The laminar case shows
significantly more stress shadowing as is evidenced by the sig-
nificant differences in the areas, widths, and fluxes associated
with plane 1 compared to planes 2 and 3. For the turbulent
case the areas, widths, and fluxes for plane 1 are much closer to
those for planes 2 and 3. While the fracture area time history
for plane 1 (respectively planes 2 & 3) in the laminar case is
significantly larger (respectively significantly smaller) than the
turbulent case, the total fractured areas of all the planes in the
array are slightly larger for the turbulent case than in the laminar
case.

4. SUMMARY

The primary goal of this paper is to describe the implemen-
tation of a turbulent flow model into a multiplanar hydraulic
fracture simulator that is able to capture laminar, turbulent,
and the transition from laminar to turbulent regimes. Since
the Reynolds number is proportional to the fracture width and
therefore decays close to the fracture tip the flow reduces to the
laminar regime near the fracture tip. This makes it possible to
use the universal tip asymptotic solution that has been derived
for laminar flows in order to establish a scheme to locate the
fracture free boundary. The ILSA scheme Peirce and Bunger

(2014); Peirce (2015); Peirce and Detournay (2008); Dontsov
and Peirce (2017) is used to implement the uniform asymptotic
solution into the hydraulic fracturing simulator that is able to
capture the multiscale behaviour associated with the competing
processes of viscous dissipation, toughness energy release, and
fluid leak-off.

The numerical experiments present results for five simulta-
neously propagating pseudo-3D-like fractures evolving in uni-
formly distributed planes.The laminar flow model yields a solu-
tion with significant stress shadowing as the fractures evolve
whereas the the turbulent model for the same parameter set
yields a solution with significantly less stress shadowing. The
explanation for this difference stems from the much larger stress
drop near the wellbore in the turbulent case to which the mutual
stress interactions between the fractures (that are responsible
for stress shadowing) are subdominant compared to the laminar
case.
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