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SUMMARY

In this paper we introduce a method to reduce the solution cost for Boundary Element (BE) models from
O(N?) operations to O(N*log N) operations (where N is the number of elements in the model). Previous
attempts to achieve such an improvement in efficiency have been restricted in their applicability to problems
with regular geometries defined on a uniform mesh. We have developed the Spectral Multipole Method
{SMM) which can be used not only for problems with arbitrary geometries but also with a variety of element
types. The memory necessary to store the required influence coefficients for the spectral multipole method is
O(N) whereas the memory required for the traditional Boundary Element method is O(N3?) . We demon-
strate the savings in computational speed and fast memory requirements in some numerical examples. We
have established that the break-even point for the method can be as low as 500 elements, which implies that
the method is not only suitable for extremely large-scale problems, but that it also provides a useful bridge
between the small-scale and large-scale problems. We also demonstrate the performance of the multipole
algorithm on the solution of large-scale granular assembly models. The large-scale BE capacity provided by
this algorithm will not only prove to be useful in large macroscopic models but it will also make it possible to
model microscopic damage processes that form the fundamental mechanisms in plastic flow and brittle
fracture.
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1. INTRODUCTION

The Boundary Element (BE) method is very efficient for modelling linear problems with small
surface to volume ratios because it only requires discretization on the boundary of the domain,
which effectively reduces the dimension of the problem by one. This is particularly true for
cavities in infinite domains. In contrast, domain discretization techniques (such as Finite Differ-
ence (FD) and Finite Element (FE) methods) require that the whole volume of the problem be
discretized and for infinite domains that mapped elements, special boundary conditions, or
Hybrid BE-FE! and BE-FD? methods need to be employed. Typically the domain discretization
methods reduce to solving systems of equations with large sparse matrices whereas the BE
methods involve smaller fully populated matrices.

From both a fundamental and an engineering point of view, it is important to understand
fracture growth that can take place on many different length scalecs—from the mining-induced
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fractures that occur on the scale of tens of metres to the growth of micro-fractures in laboratory
tests.>~® FD and FE models of fracture growth require that the domain be remeshed at each
growth increment. One form of BE method, known as the Displacement Discontinuity (DD)
method,®® can alleviate this remeshing problem as it provides a boundary surface representation
of cracks, fractures, fault planes, natural partings between geological strata, and even tabular
mining excavations. Recently, DDs have been used to track fracture initiation paths and
inter-actions.®-? In such fracture inter-action models large numbers of DD elements are required
to represent these fractures and grain boundaries on a realistic scale. For such problems the DD
method becomes more domain-like in the sense that the network of DD elements start to span
substantial volumes. Because of the fully populated influence matrices, the memory requirements
and computational costs for such problems with large numbers of DD elements rapidly become
prohibitive. The objective of this paper is to develop a technique to make it feasible to model with
large numbers of DD elements with relatively modest memory requirements and acceptable run
times.

The solution algorithm we describe reduces the memory requirements from O(N?) to O(N)
words and the computational costs from O(N?3) to O(N?log N) opecrations, where N is the number
of DD elements in the model. Previous algorithms to reduce the memory and computational
costs of BE algorithms include: ‘lumping™*® '! which exploits the rapid far-field decay of the BE
kernels and the spectral BEM,'%!? which exploits the translational invariance of element-to-
element influences. Both these techniques have been restricted to elements that are distributed
uniformly in space. The technique presented in this paper combines the essential features of
both these algorithms to obtain an algorithm that can reduce the memory requirements and
computational costs for arbitrarily distributed BE. The far-field decay properties of the BE
influences are used to expand the element-to-element influences of arbitrarily distributed remote
BE in terms of an equivalent set of field variables (the so-called multipole moments) that are
defined on a regular grid. Since the multipole moments are defined on a regular multipole grid,
multipole-to-multipole influences are translationally invariant, so that they can be stored effi-
ciently and can be evaluated rapidly using the FFT. The influences of BE that are close to one
another are evaluated directly.

Multipole expansion methods have been used to speed up the evaluation of convolution
influences in many-particle systems'*'> and in vortex methods for fluid mechanical calcu-
lations.'®~'® The particle algorithms rely on repeated asymptotic expansions of up to 30 terms
which are feasible due to the simplicity of the influence kernels which can be expressed in terms of
derivatives of the harmonic potential V(x) = — log({x|) = Re( — log(|z|), where z = x, + ix,. The
required multipole moments can be represented succinctly in terms of powers z* of the complex
variable z, so that only O(S) moments are required for an Sth order expansion.

Since a constant coefficient representation (nccessary for calculating multipole moment
influences) of the elastostatic kernels is only possible in terms of derivatives of a biharmonic
potential, there is no simple representation of the potential in terms of a complex analytic
function. Thus we are constrained to a real representation of the kernels so that the number of
multipole moment combinations x%~'x}, will grow at a rate of O(S?). Our approach is therefore to
use only the finest level of multipole grid and relatively low-order expansions (up to § = 5). The
FFT is then used to determine the multipole-to-multipole cross influences rather than having to
introduce further multipole expansions on coarser grids. We compensate for the lower-order
expansions by using a somewhat larger region within which influences are computed directly.
This increased buffer region ensures that multipoles are only used to transmit remote influences,
which means that they are smooth and can be interpolated to obtain influences at off-grid points
rather than introducing further local expansions.
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In Section 2, we summarize the governing equations of elastostatics, formulate the BE in
a general framework that includes both direct and indirect formulations as well as the representa-
tion of the kernels in terms of a biharmonic potential, and describe the typical procedures used to
discretize the boundary integral equations into a system of algebraic equations. In Section 3, we
give a detailed description of the proposed spectral multipole algorithm. In Section 4, we derive
estimates for the errors introduced by the multipole algorithm and show how these estimates can
be used to decide between various sets of multipole parameters. We also develop an operation
count model to analyse the computational efficiency and memory savings of the spectral
multipole method. In Section 5 we present some numerical results comparing the performance of
the spectral multipole algorithm with the direct algorithm and also provide the results of some
large-scale DD computations. In Section 6 we summarize the results presented in the paper and
provide some concluding remarks.

2. GOVERNING EQUATIONS

2.1. Eguations of elastostatics and the BE formulation

Consider a region B in R” bounded by ¢B and let B be that part of R” exterior to B. Assume that
B and B are occupied by homogeneous, isotropic clastic media. Let a; j» i and &, iT; be the stresses
and displacements in B and B, respectively. The stresses in body B satisfy the equilibrium
equations of elastostatics:

Ulj.j"'];:o

and the stresses are related to the strains according to Hooke's law:

Gij = E 2 dijen + 26
T+ 1= 2T T

where E is the Young’s modulus, v the Poisson’s ratio for the elastic medium, and the definition of
the strain tensor &;; in terms of the displacement field is:

BU = %(“i.j + “j.l')

The stress and displacement fields in B satisfy the same system of partial differential equations.
An application of Green's thcorem to the above equations’® %° yields the following integral
equations for u, and o,

w(p) = J’B {9(qi, ) Ti(q) = Glgi;, PNy (@) Dilg) } ds(g) (1)

ou(p) = J“B {)’(‘Ii» pa) Tilq) — r(‘lu- P ni(q) Di(q) } ds(q) (2

where n; are the components of the normal pointing towards the interior of region B,
Ti(q) = (6i;(@) — 0:;(q))n;(q) is the traction discontinuity, and D;(g) = #;(q) — ui(q) is the displace-
ment discontinuity between the regions B and B. The kernels are defined as follows: g(q;, pi) is the
kth displacement component at point p due to the i th traction discontinuity component at g;
G(qi ;i) n;(q) is the kth displacement component at point p due to the ith displacement
discontinuity component at ¢; 7(q;, px) is the klth stress component at point p due to the ith
traction discontinuity component at g; I'(q;;, pu) 1;(q) is the kith stress component at point p due
to the ith displacement discontinuity component at q. It is important to note that the kernel
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functions g, G, 3, and I" depend on the relative distance between the points p and g and not on
their absolute positions.

Equations (1) and (2) are quite general in that all the direct and indirect BE formulations can be
obtained from these equations. For example, if we remove the exterior body B and set the stresses
and displacements &;; = ii; = 0 then (1) reduces to the classical direct BE formulation. If we
assume that the tractions (alternatively displacements) across 9B are continuous then cquations
(1) and (2) reduce to the indirect BE formulation known as the Displacement Discontinuity (DD)
method (alternatively the force discontinuity method). The DD method can be expressed in the form:

oulp, Dulp)) = — J

@

Br(qU, pu)nj(q@) Di(q)ds(q) 3

where p € B and the boundary stress at point p in general depends non-linearly on the DD
components at the point p. Note that this non-linear dependence of the stress components on the
DD components might be an expression of the local physical model of fault-slip for example, and
is distinct from the linear ‘self-effect’ stresses which form part of the integral on the right hand side
of (3). We see, therefore, that the BE method in this context leads naturally to a large linear system
that needs to be solved subject to some non-linear boundary conditions.

The BE technique for a linear elastic medium can be extended'?: 2° to include inelastic material
behavior within the region B. This extension involves augmenting (1) and (2) by the following
volume integrals representing the influence of the inelastic strain & throughout the body B:

(1) + j Glgip POEP(g) dvlq) @
8

(2)+ L C(qi PP (q)dr(q) 9

As was the case with boundary non-linearities, the BE models of inelastic behaviour lead to large
linear systems that need to be solved subject to some localized non-linear conditions, which
represent the constitutive law of the inelastic material.

2.2. Potential representation of the fundamental solutions

The kernels g(q;, i), G(g4jo pi), ¥(dis Pia) and T'(gy;, prr) can be expressed in the following constant
coefficient expansion in terms of derivatives with respect to ¢; of a biharmonic potential ¥ (see
Reference 12):

l+v

(g ;) = m[z(l — WY+ Ody — ¥ il (]
1 . .
G(qij i) = m[ — W+ 005+ (L — 0 i + 0aY )] (7)
i . . .
(g P) = m[q’.iu =0 i — (1 = 0¥ + Ou'¥ )] 8

E .
Cgij pua) = m[q’.uu = v(0uY si; + 0¥ o)

1 R . .
- 5(1 - \')(()iu‘*’.ssﬂ"i' Oa¥ ssjix + OuY it + 0¥ i) 9)
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In three dimensions the fundamental solution to the biharmonic equation V*¥ = 0 is given by
¥ =r where C =0, while for two-dimensional plane strain the fundamental solution is
W = 4(r? — r*logr?) where C = 2. In both cases r is the distance between points p and gq.

2.3. The discrete BE equations

In order to discretize (1) or (2), the surface 8B is divided into discrete ‘patches’ or ‘clements’ and
the unknown DD (or FD) .components are typically expanded in terms of local polynomial
functions within cach clement. The requisite number of equations are obtained by assuming that
the resulting equations arce satisfied exactly at a defined set of collocation points (sec for example
Reference 7). This procedure reduces the problem to that of solving a system of algebraic
equations of the form:

Ax + b = o(x) (10)

where x is a vector comprising the DD components, A is the fully populated influence matrix, b is
the vector of prescribed displacements or stresses and o(x) are the material reactions within the
DD elements.

Since a(x) is often nonlinear, iterative methods are typically used to solve the large
system of algebraic equations (10). The use of iterative methods opens up the possibility of
exploiting the rapid decay of influences for elements that are far away from one another as well as
translational invariance of influences that are defined on a regular geometry. It is these two
properties-~the rapid decay of influences and the so-called convolution property—that will form
the essential ingredients for the spectral multipole algorithm that we develop in this paper. The
expensive component in all iterative schemes to solve (10) is the matrix-vector product Ax that
has to be performed at least once for cach iteration. This product is a symbolic representation of
the calculation in which the influence of each DD element on every other clement is evaluated.
Since the effect of each degree of freedom at each collocation point has to be communicated to
every other point, a direct evaluation of this matrix-vector product.involves O(N?) opera-
tions—wherc N is the total number of degrees of freedom in the system. Iterative methods
typically requirc O(N) iterations to solve an N degree of freedom system. Therefore, the solution
of (10) can be expected to require O(N*) operations. In addition to the computational burden of
solving the system of equations, the memory can also become prohibitive for large problems:
storing the matrix 4 requires sufficient memory to store O(N?) real variables. As an example of
the growth in memory requirements with N, a problem involving 400 quadratic DD ¢lements
requires approximately 23 Mb to store A, whereas a problem involving 4000 elements will require
approximately 2:3 Gb of memory!

1.21.22

3. THE SPECTRAL MULTIPOLE METHOD

The algorithm we propose exploits the rapid decay of the far-field effects of the influence kernels
as well as the translational invariance of the kernels for regular geometries. Although these two
properties of BE influence kernels have been exploited previously,'%!! the novel aspect of the
algorithm that we propose is that it enables problems with arbitrary geometries and arbitrarily
sized planar elements to be analysed. The key device of the algorithm is to approximate the
influence of the arbitrarily oriented BE by multipole moments that are defined on a regular grid.
The basis of the approximation is an asymptotic expansion of the kernels in the far-field limit.
A substantially reduced number of direct element-to-element transmissions are calculated to
determine the near-neighbour effects, while the majority of the influences for remote elements are
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determined using the far-field approximation. We use the Fast Fourier Transform (FFT) to
automate the exploitation of the translational invariance (convolution) property of the multipole
moment kernels that are defined on a regular grid. The asymptotic operation count for the
matrix-vector product is reduced from O(N?) to O(N log N) while the memory requirements are
reduced from O(N?) to O(N) real variables. Although the SMM can be applied to any BE
algorithm in 2D or 3D, for the purposes of this paper we restrict ourselves to the 2D plane strain
DD method. .

3.1. Multipole expansion of the potential function

The starting point of the multipole method is the far-field expansion of the potential function
W(p — q) . Since all the BE influences can be expressed (6)-(9) in terms of derivatives of ‘P, the
desired multipole expansions for the displacement or stress kernels can be obtained by taking the
appropriate derivatives of the far-field expansion for ‘Y. We regard p as the receiving point and
q as the sending point and let g, be the point about which we perform the multipole expansion.
We assume that |q — qo] < |p — g0l and expand ¥ in the following Taylor series:

Yip—qg)=¥Y(p—qo+4d0—9)
=Y(p— qo) + (g0 — @) ¥ (P — go) + 3(g0 — ulgo — ¥ .s(p — @o) + - -+ (11)

where ¥ i, = (0%/0p:dp,)¥ and (p — go )i represents the kth component of the vector (p — go). The
total potential W (p) due to a density N(q) of point DD distributed along the boundary 4B of the
region B is given by:

¥o= [ ¥ -aNad
= ¥(p— a0 [ N@dlo) + ¥.alp = a0) || N@ao - ahdle

#3¥ulp = a0) [ N0 — ahlao - i)+

=¥(p—qo)H°+Y¥..(p— qo) M} + $V¥ s(p— qo) ME + -+ (12)

where

ao= [ Nod@ and iy, =
¢

&

BN @ I1 (o — gk, di(q) (13)
m=1

are the moment tensors associated with the sequence multipoles involved in the expansion (12).

3.2. The moment calculation for an arbitrarily orienied DD

In this section we demonstrate the calculation of the various multipole moments associated
with an arbitrarily oriented DD element. Assume that the DD element is centered at ( y,, z.) and is
inclined at an angle 0 with respect to the global coordinate system (y, z) (see Figure 1). For
convenience we assume that the multipole expansion point lies at the centre of the global
co-ordinate system (i.e. go = (0, 0)). For the integration process it is convenient to define a local
co-ordinate system ( 7, Z) which is related to the global co-ordinate system by the following linear
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Figure |. Co-ordinate systems used in the multipole expansion of a DD element centred at (.. z.) and inclined at an angle
# with respect to the global co-ordinate system (y, z)

transformation:

Y=Y cos@ —sinf ||y

= 14
[z - ze] [sin() cosﬂ][z‘] (14)
In order to represent the DD components defined with respect to the local co-ordinates (7, Z) in

terms of convenient quantities defined in terms of the global co-ordinate system, we make use of
the rotation matrix R defined in (14) and the relation (see (2)):

8‘7 = D,-n,- (15)
to obtain the relation:
[:l'j = Rikl—)kﬁj (16)

We observe that the tensor &; defined above is not symmetric. However, since the influence
tensors G, and I, are symmetric in the first two indices ij, products of the form I";€;; involve
only the symmetric part of ¢; i.c..

FCijusi; = ruu[é(cu + &) + ey —e)) = Tiju $(Din; + Dyny) (17

Having expressed the local DD components D, in terms of the global strain tensor g;;, we are
now in a position to determine the appropriate strain moment tensors at the multipole point
go that can be used to represent the influence of the inclined DD element. The calculation of the
sth order strain moments proceeds as follows:

MG = J;B (0 = x))™(0 — x2)* " "ey;(xu) dl(x,)

=(- 1)’J:B (Xe.1 + Ry X ()™ (xe,2 + Rzlfl)s_ml:sf-?) + 5,8 + %'4-}’](12. (18)

where éB, represents the current boundary element, the global and local co-ordinates have been
indexed as follows: (x,, X3) = (¥, 2), (%;, X3) = (¥, £), and R, is the rotation matrix defined in (14).
The quantity .4 [-*~ ™ represents the sth order moment y™z*~" of the ijth component of the strain
field wherem =0,...,sands=0,.. ., c0. If the DD field is assumed to vary quadratically over
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the element, the strain field &;; also varies quadratically and we represent by £, &!1’, and £’ the

function value and the first two derivatives of ¢;; at the centre of the element.

3.3. Multipole kernels in terms of derivatives of ¥

By setting T;(g) = 0 in (1) and performing the discretization procedure defined in Section 2.3,
the displacements u? due to the N DD components distributed along 0B can be written as follows:

ul= — Z GreniD? (19
The displacement influence uf?= — GFZniD{ at point p due to the gth DD element can be

approximated by the fol]owmg mulupole series expansnon centered at-the closest multipole
point go:

3

z1 s
upl=y 3 Y, ( )Gijk.lmzs'm(l’s qo) A 77" "(q0) (20)
s=05 m=0 \M

where Gij 1mas m(p, q) are the sth order derivatives of the point displacement kernel
Gl'jk defined by:

13

é
Gijp.1mas-m(p, @) = P Gix(p, 9)
1

Similarly by discretizing (4), the DD equation for the stresses aj, can be written in the form:

N
Tl = rniDf (21)
q=1
The stress influence aff = I'} ,,,‘,n"D" due to the gth DD element can be approximated by the
following multipole series expansion centered at the closest multipole point gg:

g 1 3
Z 3 z (;)rijkl.lmzs'"(l’, do)} M 7" (go) (22)
s=0 m=0 )

where [y 1=-~(p, q) are the sth order derivatives of the point stress kernel I';, defined by:

5

é
Tt 1m2s-m(p, q) = W Cia(ps 9)

Comparing the expansions (20) and (22) with (19) and (21) it would seem that we have replaced
a fairly simple finite summation process with a far more complex infinite sum. However, since:

lp—al—x 1 lp—ql—x 1
G ik, 1m2s-m{f, = O EE———— and r," L Im2a-m y & = 0(_—5—)
ijk,1m2 (p q) (|P_ q|s+l) kb 1m2 (p I) Ip — ql +2

23)

we observe that for remote influences the series (20) and (22) can be truncated after only a small
number of terms. The remainder of our description of the SMM will be devoted essentially to the
efficient evaluation of the terms of this series.

Rather than storing the 6(s + 1) displacement multipole influence coefficients Gy, ymzs-= and
the 5(s + 1) stress influences I, 1m2s-= at each multipole level s = 0, 1, . . ., it is more efficient to
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use (7) and (9) to express the required influences in terms of the derivatives of the biharmonic
potential function . The multipole displacement kernels assume the form:

G.‘j“_ gm2s m =

|
87(l — ) [ — Wi + v s + (1 — WORY s + 0uY )] am2e » (24)

Equation (24) itself does not result in any memory saving. However, if we make use of the fact
that, except for the case p=gq, V¥ satisfies the biharmonic equation: Wy, + 2¥ 2,
+ W,,,, =0, then it is possible to show that at each order we only nced four independent
derivatives of W to be able to obtain all the influence functions. The set of derivatives
(W 1320, W g22001, W og12003, W 503} forms a complete set for displacements at the sth order. Using
this new set of influences reduces the number of influence coefficients that need to be stored from
6Ym-om+1=3(s+1)(s+2)tod(s+ 1)
The multipole stress kernels assume the form:

(_ 1)i+j+k+lE
_m AR M2

(25)

rijkz, Im2s m =

where 1'’=2 and 2'=1. For the multipole stress influences the set {¥ jszee1, ¥ 22543,
W 113543, W, 5.4} forms a complete set of derivatives at the sth order. Using this new set of
influences reduces the number of influence coefficients that need to be stored from
5Y5-om+1=5(+1)(s+2) /2 to 4(s + 1) . Comparing (24) and (25) we observe that the
required displacement and stress influences use the same set of derivatives for all but the lowest
order derivatives for displacements and the highest-order derivatives for stresses. Therefore the
sth order SMM requires that only 4(s + 2) derivatives need to be stored.

3.4. The speciral evaluation of the multipole influences

One of our strategies to evaluate the expansions in (20) and (22) efficiently using the least
memory, is to define a regular rectangular grid of multipole expansion points which is superim-
posed over the region containing the interacting DD elements. Influences such as those in (20) and
(22) are then determined between a multipole point g, close to the sending element located at
¢ and another multipole point p, which is close to the desired receiving point p (see Figure 2). As
a result the influence between g and p is transmitted via the multipole grid using the points go and
po- This process is stream-lined even further by first collecting all the multipole strains due to the
current distribution of DD elements then communicating all the multipole-to-multipole influen-
ces simultaneously.

The potential function ¥ (p — q) (and hence all the influence kernels that are derived from it) is
translationally invariant in that the potential is only dependent on the relative distance |p — g|
between the sending point g and the receiving point p. For a general DD model with arbitrarily
oriented elements very few pairs of elements are likely to share the same relative coordinates,
so the translational invariance property is of very little use in simplifying the problem. However,
for a regular grid, there are multiple pairs of points that share the same relative coordinates.
This means that for a mesh with N,.N. points, rather than storing the (N,.N.)? influence
coefficients it is only necessary to store (2N, — 1) (2N — 1) influences. Thus the mutual influences
of a regular grid of multipole points can be stored in a very efficient form. We shall now sce
that the convolution property of the kernels can also be exploited to reduce the computational
costs. ,
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w° 7

i

Po

Figure 2. Sending point ¢ and the associated sending point go on the multipole grid and receiving point p and the
associaled multipole receiving point p,

Combining (19) and (20), choosing the receiving point py to lie on the regular multipole grid,
and retaining up to Sth order multipoles, we obtain:

s 1 = s N
up = g‘o s! Z:o( s) Y Gijpamas m(Po — qo) A T5* " ™(qo) (26)

mj a2,

We observe that, for a given multipole moment, the spatial sum over the sending multipole
points go

N
Y. Gijut.ymas m(Po = 4o} A * ™ (qo) 27)

=1
is in the form of a convolution sum. We also note that the discrete Fourier transform pair:

| NotN

R o~ 2Ri(mjINg +nkiN )
NN Z Z gine > *
»i¥: j=o k=0

Ny-t N -1

TEID YD M (28)

m=0 n=0

DFT{gu} = Gmn =

for a doubly periodic grid function g has the convolution property:

Ny- 1N~

PIp) a"""-nﬁ”ik} = b (29)

i=0 j=0

DFT {(a*b)pn }us = DFT{

Therefore if we know the DFTs d;, and I;,‘, then the DFT of the convolution sum can be evaluated
by merely multiplying the frequency components together—a process that involves only N,. N,
operations. The FFT (see for example Reference 23) can be used to calculate the DFT of doubly
periodic function sampled on a regular 2D mesh in O(N,.. N.log(N,. N.)) operations. The total
process of transforming these two grid-defined functions into the frequency domain, calculating
the convolution, and then inverting the result requires O(3N, N.log(N,.N.)) operations. To
evaluate the same convolution sum directly in the spatial domain requires O((N,. N.)%).
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Figure 3. Neighbourhood of the receiving multipole po within which the multipoles arc oo closc to give accurate
influences—in this case direct influences are used

Our strategy is therefore to use the FFT to evaluate each of the convolution sums of the form
(27), which is why we refer to the algorithm as the spectral multipole method. Typically these
convolution sums need to be evaluated many times within an iterative solution algorithm, so the
FFTs of the potential derivatives

\l‘|321,lp 1:‘!,‘!’ 1:02,W|0 -‘Jf:o
. 122 12 . 102

are evaluated and stored before the iteration loop begins. Thus only the FFTs of 3(S + 1)(S + 2)/2
strain moments need to be evaluated in each iteration loop, where S is the highest order of
multipoles retained in the approximation. In general, the kernels and moment functions are not
doubly periodic. Thus in order to be able to perform the convolutions for such functions without
introducing wrap-around errors (see Reference 12) we need to consider a multipole grid that is
four times larger (in 2D) than the actual region in which the DD elements are distributed.

3.5. Calculating the local influences

3.5.1. Undoing the inaccurate local influences. Unfortunately, by following the procedure
outlined in Section 3.4, the received influences at the multipole points include both the accurate
multipole influences of remote multipoles as well as the influences of multipoles close to the
receiving points, which are inaccurate because too few terms in the expansions (20} and (22) have
been retained. In order that these near-field inaccurate influences do not corrupt the solution, we
identify a neighbourhood of the receiving multipole po within which the multipoles are too close
to give accurate influences—see the shaded region in Figure 3. We then strip off influences on the
receiving multipole from those multipoles that fall within the designated neighbourhood. If we are
considering a single receiving multipole, this stripping process need not be performed explicitly as
the unwanted multipole influences can be blanked out of the influence tables containing the
derivatives of .

3.5.2. Interpolation of far-field influences. Our ultimate objective is to determine the influence
of the DD elements on the collocation points of other DD elements by transmitting their
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Figure 4. Clusters of multipole points within which influences are interpolated. The inaccurate local influences due to the
nearby multipoles are stripped from the influences evaluated by the FFT

influences through the multipole grid. One way to achieve this is to expand further each of the
terms in (11) about the nearest multipole point p, to the desired receiving point p. The element
stresses at the receiving point p can then be determined using the stress values and their spatial
gradients that have been evaluated at the closest point p, on the regular multipole grid. However,
because of the high number of multipole components involved in the elasticity formulation, we
prefer to use the interpolation scheme described below.

Consider the remote influences from the same set of remote muitipoles at clusters of receiving
multipole points (denoted by solid circles in Figure 4) and interpolate to obtain the desired
influences at the off-grid collocation points. The multipole points (designated by squares in
Figure 4) are those whose influences are stripped from the spectrally generated influences
evaluated at the cluster multipoles. Once the inaccurate multipole influences have been stripped
from the influences evaluated at the cluster points, all the points in the same cluster give different
spatial samples of the stress (or displacement) field generated by all the remote multipole
influences that fall outside the strip window. These influence fields can now be interpolated to give
the desired remote influences at the collocation points (see the empty circles in Figure 4). For the
clusters of multipoles, it is not possible to perform the entire stripping process implicitly by
zeroing the appropriate local influences from the kernel table. For example, for multipole point
po in Figure 4 the solid squares represent those multipole influences. that have to be stripped
explicitly while the empty squares represent the multipole points whose influences can be stripped
implicitly. The actual interpolation process is performed using Lagrange interpolation in each of
the co-ordinate directions.

The interpolation process assumes that the remote influence fields are sufficiently smooth that
low-order polynomial interpolation is possible. We observe from (23) that the higher kernel
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gradients decay more rapidly in the limit |p — ¢| — 00 . Thus from the expansions in (20) and (22)
we see that remote influences (i.e. those for which |p — o is large) are smooth since they have
very small high-order gradients. However, the near-field multipole influences (i.e. those for which
|p — gol is small) have significant high-order gradients and are therefore not smooth. If we choose
to use very high-order multipoles in the evaluation of the remote influences, then we could shrink
the strip-boundary to include only the nearest-neighbour multipoles for example. This would
save on the number of costly direct element-to-element calculations that need to be performed.
However, even though the next-nearest neighbour influences that are now regarded as remote
multipoles may be accurate to the desired precision, the influence fields evaluated at the cluster
points will vary too rapidly for the interpolation process to be accurate. There is thus a compro-
mise between the size of the strip region and the error in the interpolation process as well as
between the order of the multipoles and the increase in the computation time required to evaluate
the multipole influences. This issue will be discussed further in Section 4 under the analysis of
errors involved in the multipole approximation. '

3.5.3. Direct calculation of local influences. The final step in the evaluation of the local
influences is to revert to the standard integrated DD kernel functions (19) and (21) to evaluate
the effects of all the elements that fall within the strip region (see for example the elements
marked with arrows in Figure 4) on those elements that fall within the multipole cluster.
Depending on the density of DD elements within the multipole grid and the size of the
strip region, this can be the most expensive part of the calculation. As we will see in the
operation count model a compromise has to be reached between the cost of retaining higher-
order multipoles which allows one to shrink the strip region, the interpolation errors,
and the cost of performing the direct element-to-element influence calculations at the local
level.

3.6. Summary of the spectral multipole algorithm
The entire spectral multipole algorithm is summarized in the following chart:

THE SPECTRAL MULTIPOLE ALGORITHM
Set up parameters of MP grid: ymin» Zmins Hy Hz Ny N, Ny, Ny and N,
Evaluate potential derivatives ‘¥ jjuymzs m $=0,...,N,on MP grid
Determine FFTs of the potential derivatives: ‘¥ jjuyymas-={wp,)

Start iteration loop:

Calculate stresses and displacements on all DD
Zero MP moment tensors #{j*~"™ = 0 throughout the MP grid
. . 16 18 _
Determine the MP moment tensors in the first quadrant: Df LR n?,-:» M ™(qo)
Pre-strip local displacements and stresses: of"™(po) and u{™"™(po)
FFT =

Take FFT of MP moment tensors: #7}° ™ "— A1 ° ™" (w,)
Perform spectral convolutions: -

TP (Wpg) = Gijt 12 (W) M T} "7 (W)

P (Wpg) = Tt 1=2-~(@pg) AT ™™ ()
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Take inverse FFT to get spatial fields:

- FFT-)
P (@,) — U (po, m.n) and

- FFT-!
G W) — 1 (Po. mn)

Strip off local influences:
U (po) = upP*(po) — ul*"®(p,) and
"™ po) = U™ (po) ~ u** (po)
Interpolate remote influences:

p.remote Inteepolate
u |

u(*remo!e)(po) and

Inteepolate
r—

O'fi"mo" a,;‘t'emole)(po)

Superimpose local direct influences:

P — yPrremoOle —_— g Q q
u? = uf Y GHiniDfand
¢= Local DD

p __ p.cemote rq q q
Oy =0, + Z ruk:" D}
q=Local DD

End iteration loop

4. ACCURACY AND EFFICIENCY OF THE SMM

4.1. The errors in the multipole approximation

In this section we consider the errors that are made in the MP approximation.
4.1.1. The truncation error. The first approximation is made when the series (20) and (22) are
truncated after S terms. The truncation error for the displacement influences is given by:

Exp(u) =

S 1 8 s
uf? — Z s Z( )Guk 1mae-m{(p, Go) M 7™ (qo)

(h s+1
= \;
Sade 3 g Kol + Ka(o)] (30)

where r = |p — go] and h is the width of a single multipole cell. We have also used the estimates

h

A 4 s+1
(Gu. 1m2e-m (P o) € <57 and A "'(Qo)lSH_—sl(i) (Kol®) + K.(s)
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where Sup, .. 1€i(q)] = &. The term corresponding to constant strain variation is Kg(s)
=1+ ﬁ)’” — 1 and that corresponding to linear strain variation is

1 2+ /2 N-n+1
K5 = LV (\s/;(s2+) J+1

Similarly for the stress influences we have the estimate:

s 1 3
o=t~ 3. 5 5, (o) o 000437
h )s+l
2B & r
N [K"(’)*K'(s)] (31

It is useful to consider these error estimates in the limit 2/r < 1 in which case the series (20) and
(22) are asymptotic series and the first neglected term serves as an estimate of the truncation error.
The asymptotic behaviour of the displacement error bound in (30) is:

(h)s+z
En(u)?il4,48 d

S+ 2)!

and that of the stress error bound in (31) is:

[+ /25 -1] (32)

(h)S+2
v q 124\ r .
Sralof 2 S [0+ 2% = 1) (33)

where we have assumed that the strain variation across an element is constant. The notation
&1r () and &g (0) is used to distinguish between the actual truncation error and the error bound.

These error bounds are useful in determining the appropriate multipole grid parameters
required for a given problem. Let ! be the number of multipoles between a receiving multipole
point and the closest sending multipole (see Figure 3 in which / = 2). From the definition of ! it
follows that r = (! + 1)4 so that:

C" S+2
SmulhS) < iy [ V2T -1 (34)
and
Ca S+2
Ern.ath5) S T g [0+ V25— 1] (35)

It is interesting to note that &g, is independent of h while &1, , will increase if a smaller
multipole grid size h is used. The following ratios illustrate how (34) and (35) can be used to
distinguish between the truncation errors of various multipole parameters:

h
é’m.c(i.l.S) 5 gm_,(h,z,S)~

N\ 7 Err.0(1,2,5)
o 1S) 7 Ewm.(h3.8) "

h
Er.a (Z’ 3,S )

gTR.c(ho 2» S) _

10, —
Err.0(h, 3,4)

= 25, 21
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4.1.2. The interpolation error. For a function of two variables f(y, z) the quadratic interpola-
tion error is given by

e 3
Enxt < 3 (W A% (36)

For far-field displacements G"=" a/r and far-ficld stresses ', =" b/r?. Now assuming that

the displacement and stress fields that arc being interpolated are remote from the sending
multipoles, we obtain the following interpolation error estimates:

ah? B’
Entl) < 55 and  Enr(o) < 35

37

As before let I be the number of multipoles between a receiving multipole point and the closest
sending multipole so that r > (/ + 1)h. The interpolation errors can now be written in the form:

a
Ih(I+ 1P

b
3+ 1P

Ene) < = &inr.u(h, 1)

Entlo) € = Eint.o (M 1) (38)

The following ratios illustrate how (38) can be used to distinguish between the interpolation
errors of various multipole parameters:

h
Ent.al =0 1
~ (2 )_ 5 il 2) 4y SEwre2) o Ewrllh2)

Ewt.ol) — 7 Gy 3T R\ h
INT. ( ) INT ( ) glNT.a(iv 3) glNT.a(Zs 5)

=2

4.2. Operation count model

In this section we describe a model to compare the computational cost of evaluating the
influence of N DD elements on one another when the multipole algorithm is used with the cost of
evaluating the influences directly (assuming that there is enough fast memory to store all the
influence coefficients in main memory). We refer to this calculation as a model because the DD
elements are assumed to be uniformly distributed throughout the multipole region. We define the
following variables:

N = the number of DD elements present in the current problem,

N = the number of collocation points per DD clement,

# = the average number of multipole cells intersected by a DD element,

M = the total number of multipole cells (including the three replicated quadrants (see Sec-
tion 3.4))

N, = the order of multipoles used,

N, = the width of the multipole cluster {see Figure 4. N, = 2,3 for linear and quadratic
interpolation),

N, = the width of the direct influence region (see Figure 4).
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The number of operations required to evaluate the influences of N DD elements on one another
using a multipole grid with M multipoles is given by the formula:

M-8 /M+16 8 16 N?
Tu=o,N + xMlog(M) + 2. M + a,(———+——) + ai<l - —=+ —)N + Ag—.

16 VA M

(39)
where
% = 10+ 6N, + F{40 + (N, — 1)2Vet2 NPZNP'“ + Nc(Nf. + 9N, + 6)}
(Np + D(Np +2)
+
2
N 1 2
o, = 15( p+ )2(Np+ )

5

otf=3

(Ng+ (N, +2)

A = 15N3|(N¢|‘— l)(zN(_Ncl'l' l) 2

%= '157 Ne(Ng - 1)2N§1

%y = 16N2 N}

Here «, represents the determination of the strain moments in (18), a; represents taking the FFT of
the strain moments and the inverse FFTs of the stress and displacement fields, «. represents the
spectral convolutions, &, represents the process of stripping off the local influences, «; represents
the interpolation of the remote influences, and oy represents the evaluation of the local direct
influences. We note that in (39) we have chosen to separate the larger, more global, parameters
N and M from the smaller parameters N, #, N,, Ny, and N,.

The number of operations required to determine the same set of element-to-element cross-
influences as those represented by the model (39) directly is given by:

Tp=4NIN? (40)

In Figure 5 the speed-up factor T/ T is plotted against the multipole mesh parameter \/M for
a number of values of the multipole order N, and N,. In cach of the plots we assumed that
Ny =3and J = 4. When N = 1000 and N, = 7 we observe that the speed-up factor ranges from
175 when N, = 5 to 3-6 when N, = I (it is assumed that /M = 32 to allow a standard FFT
algorithm to be used). When N = 4000 and N, = 7 the specd-up factor increases to 6-2 when
N, = 5 and to 14 when N, = 1. Naturally the lower-order values of the multipoles would have
a penalty of a much larger error (see (32) and (33)).

4.3. Memory requirements

Using the same set of variables that were defined in Section 4.2 for the operation count model,
the number of real variables required to evaluate the influence of N DD elements on one another
using a multipole grid with M multipoles is:

2
Ma = [+ Bt B + /M) + i LM+ B @
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Figure 5. The speed-up factor Tp/ Ty is plotied against the multipole mesh parameter \/ M for the cases N = 1000 and
N = 4000 for a number of values of the multipole order N,.

where
B =4(N, +2)
g = 3Wet 1)2(N,, +2)

Bc=5
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Bu=4(Ny+2)(Ns— Ny + 1)
=35
Ba=16N2N}

Here the term involving B represents the number of floating point variables required to store the
potential derivatives ‘¥ ;jisym2s-= that are needed to determine the stress and displacement kernels

N =1000, Ncl =3, Ni =9

T T

Memory saving

5 55 6 6.5 7 75 8 8.5
log2(VA)
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T T Y T
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:NP=1

701

50

Memory saving
8

i

7.5 8 8.5 9

(=]

5 5.5 6 6.5

4
logy(vVM)

Figure 6. The memory saving Mp/M,, is plotted against the multipole mesh parameter /M for the cases N = 1000 and
N = 4000 for a number of values of the multipole order N,.
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Table 1. Run times with and without multipole grid influences (bracketed entries are inferred by extrapola-
tion)

Kernel table size (words) Run time (s)
Number Number of  Multipole grid size
of cracks elements N M = NyNz/4 multipole direct multipole direct
3 186 64 x4 153674 831050 838 600
4 248 64 x8 272866 1477090 192-8 90-5
7 434 64x8 800 362 4522282 2851 2717
8 496 64x 16 987522 5906370 5240 3539
15 930 64 x 16 2297642 (20757 600) 8308 (1245)
16 992 64 x 32 2484802 {23 600000) 11839 (1416)

Fijir.imas m and Gyjy ymzs-m, f, represents the number of variables required to store the strain
moments, fi. represents number floating point variables required to store the displacement and
stress arrays that are required for the spectral convolution, §,, represents the amount of storage
required 1o store the influence kernels for stripping, 8, represents the memory required to store
the stripped stress and displacement influences, and f, represents the memory required 1o store
the local direct influences.

The number of real variables required to store the full set of element-to-clement cross-
influences that are needed to evaluate the influences represented by the model (41) directly is
given by

M, =4NIN? 42)

In Figure 6 the memory saving M p/M , is plotted against the multipole mesh parameter \/IT/I_ for
a number of values of the multipole order N,. In each of the plots we assumed that N, = 3,
N, =9. For the case N = 1000 the memory savings can range from 11 when N, = 5 to almost 20
when N = | while for the case N = 4000 memory saving increases to 44 when N, = 5 and to 80
when Ny, = |. Naturally, the lower-order values of the multipoles would have a penalty of a much
larger error (see (32) and (33)).

5. NUMERICAL RESULTS

The Spectral Multipole Method described in the previous sections has been implemented in
a computer code named DIGSMP. (This acronym stands for Discontinuity Interaction and
Growth Simulation—MultiPole version). This program provides the plane strain solution to the
boundary element equations (1) and (2) in discretized form, where the discontinuity surfaces 0B
are divided into straight-line scgments termed ‘elements’. The displacement discontinuity vector
components D; are assumed to vary linearly along each element and boundary conditions are
matched at two collocation points within ecach element. The user is required to select the start and
end co-ordinates of the multipole grid, to define the grid size and to specify the multipole order
N, the cluster size, N, and the pad region size, N,. In order to provide some indication of the
performance of the multipole algorithm as implemented in DIGSMP, a series of six special
problems, comprising different numbers of parallel cracks, was chosen for analysis. The run time
and memory statistics for these problems are summarized in Table L. In each case the problem run
was terminated after 30 iterative cycles to provide a uniform comparison.
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Figure 7. Run times for fully and partially occupicd multipole grids compared to the run times when no multipole grid is

used. Parity between the multipole and the direct influence scheme occurs for problems comprising 500 to 750 elements,
depending on the smallest size of multipole grid that is needed to span the problem region.

[t can be seen from Table I that each crack comprises 62 elements. This is the limiting size to fill
the closest power of two used in one direction of the two-dimensional Fast Fourier convolution
scheme. It is interesting to observe that the multipole run time increases unevenly as the number
of rows occupy successively higher powers of two in the second direction as indicated by the
Multipole grid size column. Consequently, it should be noted that the most efficient results are
obtained when the multipole grid is fully occupied. This is illustrated more clearly in Figure 7
where the multipole run times are plotted as two lines labelled MP1 and MP2, representing the
fully and partially occupied grids, respectively. The observed run times when no multipole grid is
used are shown in the last column of Table 1. These increase approximately in proportion to the
square of the number of elements as noted in Section 4. This trend is plotted in Figure 7 as curve
D and shows that the multipole algorithm achieves parity with the direct influence computation
scheme for problems comprising 500 to 750 elements, depending on the smallest size of multipole
grid that is needed to span the problem region. Clearly some intelligent automatic scheme could
be devised to optimize the grid efficiency while maintaining desired accuracy bounds. These
possibilities are not pursued further in this paper.

An additional point of interest from the results of Table I is the number of memory positions
used to store the direct kernel influences. It can be inferred that the table size that is required
without multipoles is proportional to the square of the number of elements in each problem.
Conversely, it can be demonstrated empirically from the results of Table I that the memory usage
of the larger problems in Table I increases approximately to the 1:37th power of the number of
elements. This is most dramatically illustrated in the last line of Table I where the size of the
kernel table is nearly ten times smaller when the multipole scheme is used. It must be noted
though that additional space is also required to accommodate the multipole influences which is
proportional to the total number of multipoles (see equation (41)). The PC machine used to
implement the DIGSMP code reported here is equipped with 32 M bytes of main memory.
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Figure 8. The geometry and multipole grid for a punch applied to a granular assembly in which the sides of the grains are
defined by Voronoi polygons

Maximum problem sizes that can be solved with the multipole scheme are of the order of 1800
elements whereas problems are limited to 500 elements if direct kernel tables are used.

As a further illustration of the potential application of the multipole algorithm, consider the
problem of a punch that is pressed into the free surface of a body that is confined on three sides by
a container that permits no movement normal to the surfaces of the container. Free sliding
against the confining surfaces is permitted. In addition, the material in the container is allowed to
fail on a fixed set of cracks defined by the edges of a set of convex polyhedra (Voronoi polygons).
The geometry of the problem is shown in Figure 8 together with the Voronoi polygons covering
the contained material. The material is assigned a Young’s modulus of 70000 MPa and a
Poisson’s ratio of 0-2. Each edge of the Voronoi polygons comprises one or more elements joined
end to end and is considered to define a potential crack that can slide or open when the local
stress state reaches the limiting strength of the crack. In this example, the crack strength is defined
by a linear Mohr-Coulomb relation with a cohesion of 15 MPa and a friction angle of 45°. When
the crack is mobilized, the cohesion is assumed to fall to zero and the friction angle is reduced to
30°. The direct tensile strength of the cracks is limited to 1 MPa implying a tension cut-off to the
Mohr-Coulomb strength envelope. It is also assumed that a frictional interface exists between the
punch and the upper surface of the material. This interface is assigned a zero cohesion and
a friction angle of 30°.

A multipole grid comprising 128 by 64 active elements was erected to span the problem
geometry as shown in Figure 8. The problem simulation comprised the application of four equal
displacement increments normal to the upper surface of the punch. The magnitude of each
increment, divided by the vertical dimension of the container, was equal to 0-625x 104,
Following the application of each displacement increment, out of balance stresses are initially
generated at the boundary surfaces and are reduced in a series of iterative steps. During each
iterative pass, the stress state is determined at each collocation point of all internal crack
elements. If the strength of the crack is reached, the crack is allowed to slide or to open. This
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Figure 9. The magnified displacements (by a factor of 240) of the mobilized granular interfaces for four successive load
increments applied to the punch

procedure is repeated until both the surface boundary conditions and the out of balance forces at
all crack collocation points fall within a specified solution tolerance.

Figure 9 depicts the cracks that are mobilized following each successive loading increment. For
additional clarity, the displaced positions of each crack are plotted with the the magnitude of the
displacement magnified by a factor of 240. This shows clearly the opening in tension of cracks
subparallel to the free surface as well as the formation of more steeply inclined regions of damage.
Due to the lateral extent of the punch surface normal to the loading direction and to the lateral
confinement provided by the container, no failure is observed directly below the punch.

It is important to note that the failure pattern that is observed is very sensitive to the manner in
which the loading increments are simulated. For example, different patterns can arise if the punch
is displaced in a single large increment or if, within each loading step, surface boundary
increments are allowed to equilibrate before internal crack equilibration is carried out. Investiga-
tion of these phenomena is beyond the scope of this paper.

To illustrate the effect of changing the loading conditions, the same Voronoi assembly was
analysed with the same boundary conditions on the vertical and lower edges of the container.
However, the upper surface was specified to be stress free except for a segment marked A-B in
Figure 10.

The same material and strength properties were used as in the first example. A series of five
displacement increments were applied in the normal direction to the segment A-B shown in
Figure 10. The horizontal displacement along A-B was set to zero in each case. This simulates the
displacement of a rigid punch with infinite friction between the punch and the surface of the
material. The size of the displacement increment, divided by the dimension of the container in the
direction of the punch movement, was again equal to 0:625 x 10~ *. This effectively simulates the
movement of a rigid punch into the material. The vertical side B-C in Figure 10 is not permitted
1o move horizontally although vertical movements are permitted. This defines essentially the



4032 A. P. PEIRCE AND J. A. L. NAPIER

C

Figure 10. The geometry for a rigid punch applied to a granular assembly in which the sides of the grains are defined by
Yoronoi polygons
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Figure 11. The magnificd displacements (by a factor of 240) of the mobilized granular inteefaces for four successive load
increments applied to the rigid punch

conditions for a line of symmetry for the regions to the left and to the right of line B-C. The
observed fracture mobilizations arising as a result of several loading increments are shown in
Figure 11. These illustrate an initial damage mechanism which is similar to that observed in
Figure 9. However, at the later stages of loading it is apparent that some damage is initiated
beneath the punch. The magnification of all movements is again set to 240 to reveal the
deformation mechanisms. The detailed treatment of crack initiation and iterative solution policy
for this example is the same as for the first example.
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The series of four loading steps in the problem illustrated in Figure 11 comprised 1588 elements
and were solved to a nominal out of balance error of five per cent in each step. The total run time
was 14014 seconds on a 50 MHz PC 486 desktop computer. The corresponding number of
elements and run time for the five loading steps of the last problem were 1562 and 17191 s
respectively. :

6. CONCLUSIONS

We have presented a spectral multipole algorithm that substantially enhances the number of
elements that can be used in BE models. The memory requirements are reduced from O(N?) to
O(N) words and the computational costs are reduced from O(N 2) to O(N log N) operations that
are required to evaluate the element-to-element cross influences. The algorithm can be used with
arbitrarily oriented boundary elements with no restriction on the type of variation of the field
variables along the boundary clement or on the shape of the element. Curved elements and
volumetric elements to model plasticity can easily be incorporated within the same paradigm by
merely including a routine to evaluate the strain moments due to the new elements. This
algorithm will not be cost-eflective for models with small numbers of elements (N < 1000) but can
lead to memory savings of 50 times and computational savings of 14 times when N = 4000
elements.

The spectral multipole algorithm differs in a substantial way from the previous multipole
algorithms that have been used in the context of many-particle systems and vortex models of fluid
flow. Because of the complicated form of the elastostatic influence functions, we have adopted
a relatively low-order multipole expansion at the finest grid level and used the FFT to determine
the multipole-to-multipole cross influences rather than having to introduce further multipole
expansions on coarser grids. We compensate for the lower-order expansions by using a somewhat
larger region within which influences are computed directly. This increased buffer region ensures
that multipoles are only used to transmit the more remote influences, which means that they are
smooth and can be interpolated to obtain influences at off-grid points rather than introducing
further local expansions.

We have presented some numerical tests of the efficiency of the SMM which demonstrate that
the technique is faster than the direct method for problems in which the number of elements
exceeds 500 to 700 elements. We also presented numerical results for some crack mobilization for
large-scale granular assemblies.

The SMM opens new possibilities for exploring fundamental questions in the physics of
the initiation and propagation of fracture processes. Both macroscopic and microscopic
phenomena can be represented within the same model allowing explicit damage modelling
and the calibration of damage mechanics models. The method can also be extended to
speed up BE models of 3D fracture interaction and elastodynamic models for which the memory
and computational constraints are all the more pressing. Rather than being superceded by
the anticipated rapid development of computer hardware it is expected that the SMM will
show even greater gains over direct solution methods and open new avenues for numerical
modelling.
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