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The poor performance of the rational Runge-Kutta (RRK) schemes of Hairer [2, 3] are investi-
gated. By considering two simple model problems, it is demonstrated that this poor performance is in
fact due to a lack of convergence. A conceptual model of an unconditionally stable implicit-explicit
time-integration scheme is also considered. With the aid of this model, it is possible to establish
necessary bounds on the extent of the explicit region for convergence. This demonstrates the limited
applicability of such hybrid time-integration schemes.

1. Introduction

Wambecq [1] developed stable rational Runge—Kutta schemes for solving systems of
ordinary differential equations (ODEs). These schemes have been adapted to construct
unconditionally stable explicit [3] and implicit-explicit {4, 5] time-integration methods for
parabolic partial differential equations (PDEs). Hairer [2, 3] investigated the stability proper-
ties of these rational Runge-Kutta (RRK) schemes for systems of ODEs. In particular,
Hairer established conditions on the parameters of a two-parameter family of RRK schemes
for A,- and I-stability. The A,-stability suggests that these RRK schemes can be applied to
parabolic equations, while the I-stability suggests that RRK schemes can be applied to
hyperbolic equations.

The RRK schemes have been implemented for explicit [3] and implicit-explicit [4] time
integration of parabolic PDEs. These explicit RRK schemes have also been used in implicit-
explicit time integrators for hyperbolic equations [5].

There have been reports of poor performance of the RRK schemes [4, 6], in spite of the
fact that the RRK scheme used was second-order accurate, consistent, and unconditionaily
stable. In this paper, we investigate this poor performance by considering the following simple
PDEs: ’

u,— Cu,=0, a model hyperbolic equation; _ (1.1)
u,—Du, =0, a model parabolic equation. (1.2)
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By using domain of dependence and region of influence arguments, we establish that the
poor performance is, in fact, due to a lack of convergence.

In addition, a simple model of an unconditionally stable implicit-explicit time integrator is
considered. With the aid of this model, we establish a necessary bound on the extent of the
explicit region for convergence to still be possible. This demonstrates the limited applicability
of such hybrid time-integration schemes.

2. The RRK scheme

The two-stage RRK scheme investigated by Hairer [3] for the numerical solution of the
system of differential equations

Y=Ay), ¥to) =Y, (2.1)

is as follows:

y* =yt Atelb'-b, (2.2)
where

e=2(g -b)g, — (g, -8)b, (2.3)

b=pg +(1-8)sg,, (2.4)

g =), (2.5)

g2=f(yi+aAtgl), (2.6)

and a, B are the parameters of the two-parameter family of RRK schemes investigated by
Hairer [3]. All of the quantities on the right-hand side of (2.2) are known at the jth time step,
so the method is explicit. Wambecq [1] showed that if

(I—B)a':_%’

then algorithm (2.2) is second-order accurate.

3. Model hyperbolic equation

3.1. Equation and exact solution

In this section, we consider the application of the RRK scheme (2.2) to perform the
time-integration of a space semidiscretization of the model hyperbolic equation

aU/dt=CaUlax, —-»<x<w, t>0. 3.1)

Applying the method of characteristics to (3.1), we obtain the exact solution:



A. Peirce, J.H. Prevost, Unconditionally stable explicit Runge—Kutta schemes 173
Ux, )= U(x + C1,0). (3.2)

3.2. Semidiscretization of the model hyperbolic equation

Consider the central difference spatial discretization of (3.1):

dun _ (un+l_un—l)_ (E_E—l). —_ 4.
P TR =C T u,=A-u,, 3.3)

where u,(t)=U(x,, t), x, =nh, n=0, +1 ...is a umform division of the x-axis, E - u,
u,,, is the spatial shift operator, and A-:= (C/ 2h) (E - E™")-is a Toeplitz operator (see e.g.

[7D-

3.3. Spectral function of the spatial difference operator A -

In order to determine the stability of the RRK scheme (2.2), when applied to the time
integration of (3.3), we use the discrete Fourier transform (DFT) pair

hand nlh
(¢ t)=nh ,,Zm u,(f)e ', u ()= f_m a( &, t) e’ g_f: . (3.4)

to determine the spectral function A(£) of the operator A - (see e.g. [7]). Applying the DFT to
(3.3), we obtain

(di (& 1)/ d) = A(£)a(€, 1) or (£, 1) = a(¢,0)e e, (3.52)

where )
A(&) = (Ci/h)sin(&h) (3.5b)

is the spectral function of the operator A-.

3.4. Stability

We use the stability definitions and results given by Hairer [3]. In order to ensure stability
of the RRK scheme (2.2) applied to the time integration of the semidiscretization (3.3), we
require that A(¢) At€ D, where DCC is a stability region of method (2.2). Hairer [3] has
shown that the scheme (2.2) is I-stable, i.e., D = {iy | y € R} is a stability region, if and only
if

(1-Blas-1. (3.6)

If we choose B8 =2 and & = 1, then the scheme is I-stable. In this case, it follows from (3.5b)
that A(£) At€ {iy | y ER} for all A¢, so the scheme is unconditionally stable when applied to
(3-3).

3.5. Consistency

By Taylor expansion about the (n, j)th mesh point, it can be shown that with f(s) = A - u in
(2.2):
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j+l _
n

Uy _ &

At b

u

au,’; 2
b =C x + O(h*; Ar) .

Consider a sequence of calculations with an increasingly finer mesh. Assume the following
relation

h=g@ln, g(0)=0, 3.7

which specifies how the space increment h approaches zero as the time increment At
approaches zero. It follows that

J*¥1_ i i
u, U, _ c du,

= 2, = 2 } Ar—0
At 5 = O(h"; Ar) = O(g*(Ar); A)—> 0.

Thus the scheme (2.2) yields a consistent time-integration algorithm for (3.3) [8].

3.6. Convergence of the approximate solution

The following convergence argument is similar to that used by Vichnevetsky [9] to prove
stability theorems for one-step methods applied to ODEs. This is essentially an application of
the Courant-Friedrichs—Lewy condition for the convergence of finite difference schemes.

Consider the advancement of the solution from the jth time step to the (j + 1)th time step
(see Fig. 1). From (2.5), (2.6) it can be seen that the RRK scheme (2.2) uses two stages to
advance one step. This means that the right-hand side of (2.1) is evaluated twice, so the
domain of computational dependence of the value u/" at (x,, tiyy) is:

[x, —2h, x, +2h], (3.8)
(see Fig. 1).

The analytic solution (3.2) at (x,,¢,,) can be expressed in terms of the values at the
previous time-step as follows:

U(x,, t.,) = Ux, + CAL 1) 3.9)

jor
: | : at
j —

Fig. 1. Domain of computational dependence for the two-stage one-step scheme (2.2). To evaluate u"' (denoted
by O), the values u/,,, with |r] <2 (denoted by @) are used.
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From (3.8) and (3.9) it can be seen that if
CAt>2h,

then the analytic solution at (x,,, ¢;.,) will depend on those values from the previous time step
which lie completely outside the region used by the numerical scheme to compute AR
It may be argued that «/"' is in fact affected by all the values in the vector u’ through the

scalar factor (b'-b)~". However, consider a special case in which

Joo—i —pd =y =g =
w_,=u,_=ul=ul,,=u,,=0,

while U(x,,s, t;) = 1, and where C Ar=5h. The numerical scheme would then yield u/*' =0,
whereas U(x,,, ;,,) = 1. This situation will persist for any sequence of calculations in which
At—0 and A—0 in such a way that

Atth=const>2/C.

We therefore conclude that the numerical scheme (2.2) does not converge for At/h>2/C in
spite of the fact that it is unconditionally consistent and stable.

4, Model parabolic equation

4.1. Equation and exact solution

In this section we consider the application of the RRK scheme (2.2) to perform the time
integration of a space semidiscretization of the pure initial value problem for the heat
equation:

aU/at= D a*Ulax?, —o<x<w, t>0, D>0,

U(x, 0) = Uy(x), —o<x<o, t=0. (4.1)
A formal solution of (4.1) obtained by Fourier transform [10] is:
® 1 —(x—x")% 1] ’ N
U(x, t)=f_m{m e )MD}Uo(x )dx'. (4.2)

We see that U(x, f) for >0, no matter how small, depends on the values of Uy(x) at all
points. Thus effects travel with an infinite speed.

4.2. Semidiscretization of the model parabolic equation

Consider the central difference spatial discretization of (4.1):

du, (u,,+,—2u,,+u,,_l)_ (E—21+E“) _
ar =D X =D 7 u,=B-u

(4.3)

n ?
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where B-:= D(E —2I+ E~')/h*-. Otherwise, the notation used here is identical to that
defined below (3.3).
4.3. Spectral function of the spatial difference operator B -
Applying the DFT defined in (3.4) to (4.3), we obtain
(£, 1) = a(€,0) ™", (44

where )
B(¢)=2D(cos ¢h — 1)/h* (4.4b)

is the spectral function of the operator B -.

4.4. Stability

Hairer [3] has shown that the scheme (2.2) is A,-stable, i.e., D={xER|x=<0} is a
stability region, if and only if

(1-Bla<-

Thus, if we choose 8 =2 and & = 1, then the scheme is A -stable. In this case, it follows from
(4.4b) that B(¢) At€ {x ER| x <0} for all Ay, so the scheme (2.2) with the above choice of
and B is unconditionally stable when applied to the time integration of (4.3).

4.5. Consistency

By Taylor expansion about the (n, j)th mesh point, it can be shown that with f{u) = B - u in
(2.2):

W -ul e, dul
A =y =D S oW An.

Again, consider a sequence of calculations with an increasingly finer mesh defined by (3.7). It
follows that

wtt—y! D azuf,
At ax’

Ar—0

= O(h?; A1) = O(g*(Ar); A)—> 0.

Thus the scheme (2.2) yields a consistent time-integration algorithm for (4.3) [8].

4.6. Convergence of the approximate solution

In this section we use a region of influence argument to analyze the convergence of the
RRK scheme when used in the time integration of (4.3).

Consider the advancement of the solution from the jth time-step to the (j + 1)th time step
(see Fig. 2). Since the RRK scheme (2. 2) uses two stages to advance one step, the region of
computational influence of the value u; at (x,, ;) is (see Fig. 2):
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in

) X

Nt
n-2 n-1 N nel ne2

Fig. 2. Region of computational influence for the two-stage one-step scheme (2.2). The value of #, (denoted by O)
affects the values of #/*! with |r| <2 (denoted by @) during the course of the calculation.

n+tr

[x, — 2k, x, +2h] . | (4.5)

- As mentioned in the discussion below (4.2), all the values of the analytic solution U at time
step j + 1 are affected by the value of the analytic solution at the single node (x,, ;). Consider
the special case in which

: 1, m=n,
u,{,=U(xm,t,-)={0 m#n.

The computational scheme yields

w'=0 for|lm—n|>2,
whereas
U(x, ;41) #0 form <o,

This situation will persist for any sequence of calculations in which A¢— 0 and 2— 0 in such
a way that

h/At = const.

In fact, the region of computational influence of the point (x,, £;) grows at a speed of 2h/Az,
whereas the region of influence of the analytic solution grows at an infinite speed.
If we consider a sequence of calculations in which

At=0(h'**), £>0 asAt,h—0, (4.6)
then the speed at which the region of computational influence grows will be
2(W/A)=0(h™°)—> > asAt,h—0.

So convergence is now possible. The restriction (4.6) limits the magnitude of the time step Az,
so the scheme (2.2) is conditionally convergent in spite of the fact that it is unconditionally
consistent and stable.

The above argument can be generalized to any K-stage method in which case the region of
computational dependence grows at a rate K(#/At). For example, the one-step Euler method
applied to the time integration of (4.3) has the well-known time-step restriction
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At k2D,

which is compatible with the restriction (4.6). It should be noted that (4.6) is a necessary
condition for convergence, but not sufficient.

4.7. Convergence of an implicit-explicit algorithm applied to the model parabolic equation

Liu et al. [4] have advocated the use of an implicit-explicit time-integration algorithm to
solve the problem of poor performance of the explicit RRK scheme (2.2). In this section we
present a conceptual model of such an algorithm. We demonstrate that convergence is
conditional on restricting the size of that part of the mesh which is treated by an explicit
unconditionally stable and consistent time-integration scheme. An example of such a scheme
is (2.2). We show that the extent of the region which can be treated explicitly without
restricting the time step depends on the number of function evaluations used by the algorithm.

We consider a time-integration algorithm in which the numerical solution for the nodes
n+r, where |r| < M, r €Z, is advanced using a K-stage explicit scheme, while the remaining
nodes n + r, where |r|> M, r €Z, are advanced by some implicit scheme, e.g., the Crank-
Nicholson method (see Fig. 3). Both schemes are assumed unconditionally stable and
consistent.

By employing a similar argument to that in the previous section, we establish a necessary
condition for convergence of the implicit-explicit scheme. Consider the special case in which

: 1, m=n,
u',"=U(x""ti)={0 m#n.

The computational scheme (2.2) yields
W=0 for|m-n|>2,

whereas
Ux,, 4.,)#0 form<ow.

t
IMPLICIT EXPLICIT .  IMPLICIT

jor

n-5 n-4{ n-3 n-2 n-l N nel ne2 ned ned I h l x

Fig. 3. Conceptual model of an implicit-explicit algorithm. The solution for the nodes n + r with |r|<3=M
(denoted by () is advanced by the explicit RRK scheme (2.2), while the solution for the nodes n + r with || >3
(denoted by O) is advanced by some implicit scheme. The region of computational influence of the node (n, j)
(denoted by M) for the RRK scheme (2.2) (K =2) is [x, — 2h, x, + 2h]—see the shaded section.
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Agam this situation will not improve for any sequence of calculations for which A¢—0 and
h— 0 in such a way that

hiAtr = const .

The reglon of computational influence of the point (x,, ;) grows at a speed Kh/At, whereas
the region of influence of the analytic solution grows at an infinite speed. Therefore, we have
the same lack of convergence of the scheme as before.

However, if the extent of the explicit region is such that it falls within the region of
computational influence, then convergence is possible as the region of computational influence
for an implicit scheme grows at an infinite speed. Recall K denotes the number of function
evaluations of the explicit integrator. Therefore, if

M=K, -convergence ispossible,
M > K, convergence is not possible .

In fact, by considering a disturbance propagating from one side of the explicit region to the
other, it is possible to derive the more stringent necessary condition for convergence

IM<K. 4.7)

The result (4.7) agrees with the numerical experiments of Liu et al. [4, Example 3], in
which convergence was observed for a problem in which 2M =2 and K =2. (Note that the
problem they considered is effectively one-dimensional, due to axial symmetry.)

5. Conclusions

We have demonstrated two model problems in which the RRK scheme yields a time
integrator which is not convergent, in spite of the fact that it is unconditionally consistent and
stable. This would seem to contradict Lax’s equivalence theorem ([8]. However, Lax’s
equivalence theorem has only been proved for linear difference schemes and therefore does
not guarantee convergence of the RRK difference scheme (2.2), which is nonlinear. In fact,
these two model problems provide counterexamples to a conjecture that Lax’s theorem could
be applied without modification to nonlinear difference schemes.

This paper establishes that the poor performance of the RRK scheme, which has been
described as “a loss of accuracy” by Liu et al. [4], is in fact due to a lack of convergence. Since
the method is unconditionally stable, the loss of accuracy does not manifest itself in a blow-up
of the solution or wild oscillations. Instead, the numerical solution just does not converge to
the exact solution. There is evidence (see e.g. [4]) that the RRK scheme does give reasonable
results for small time steps—A¢ of the order required to stabilize the explicit Euler method.
This can be explained by the fact that the RRK scheme for small At is approximately linear
and so convergence is to be expected by Lax’s theorem. Just how small At should be in this
case is not considered in this paper, although it will almost certainly be problem-dependent.

For an unconditionally stable implicit-explicit algorithm, we were able to establish bounds
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on the extent of the explicit region in order for convergence to still be possible. Whether this
restriction on the explicit region will render such an algorithm impracticable, depends on the
particular problem. However, it should be emphasized that we have only established a
necessary, not a sufficient, condition for convergence. Thus the algorithm may or may not
converge even if a condition such as (4.7) has been established. Therefore, researchers are
advised to proceed with caution in view of the fact that it has been demonstrated that Lax’s
theorem does not hold for nonlinear difference schemes such as (2.2).
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