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The boundary element (BE) technique is used to analyze the effect of defects on one-dimen-
sional chemically active surfaces. The standard BE algorithm for diffusion is modified to include
the effects of bulk desorption by making use of an asymptotic expansion technique to evaluate
influences near boundaries and defect sites. An explicit time evolution scheme is proposed to treat
the non-linear equations associated with defect sites. The proposed BE algorithm is shown to
provide an efficient and convergent algorithm for modelling localized non-linear behavior. Since it
exploits the actual Green’s function of the lincar diffusion-desorption process that takes place on
the surface, the BE algorithm is extremely stable.

The BE algorithm is applied to a number of interesting physical problems in which non-linear
reactions occur at localized defects. The Lotka-Volterra system is considered in which the source,
sink and predator-prey interaction terms are distributed at different defect sites in the domain
and in which the defects are coupled by diffusion. This example provides a stringent test of the
stability of the numerical algorithm. Marginal stability oscillations are analyzed for the
Prigogine-Lefever reaction that occurs on a lattice of defects. Dissipative effects are observed for
large perturbations to the marginal stability state, and rapid spatial reorganization of uniformly
distributed initial perturbations is seen to take place. In another series of examples the effect of
defect locations on the balance between desorptive processes on chemically active surfaces is
considered. The effect of dynamic pulsing at various time-scales is considered for a one species
reactive trapping model. Similar competitive behavior between neighboring defects previously
obscrved for static adsorption levels is shown to persist for dynamic loading of the surface. The
analysis of a more complex three species reaction process also provides evidence of competitive
behavior between neighboring defect sites. The proposed BE algorithm is shown to provide a
useful technique for analyzing the effect of defect sites on chemically active surfaces.

1. Introduction

The need to understand the influence of surface defect structures on
catalytic phenomena is a topic of considerable importance. Practical catalytic
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reactors are likely to contain active surfaces with high coverages of defect
structures due to faulting or foreign substances.

A number of different theoretical analyses of the effect of defect structures
in an environment of diffusion, adsorption, and desorption have been consid-
ered. Serri et al. [1] have used a discrete step approach to analyze the effect of
defect structures on desorption kinetics. A more macroscopic analysis of the
effect of defect structures assumes that the number of inter-defect sites is
sufficiently large for a continuum approximation to be valid. The current
authors [2] have demonstrated that the continuum assumption is remarkably
good even when the number of inter-defect sites is as low as 20. Analyses
based on the continuum assumption include a linear boundary-condition-reac-
tion model that was used to consider the effect of a single defect [3], an
effective medium approach that was used to consider the reaction between a
single species and a set of randomly distributed reaction sites [4], far from
equilibrium phenomena that have been investigated for a single active site in
an infinite medium [5], and cooperative instability phenomena that have been
investigated for arrays of catalytic sites [6).

Numerical studies of continuum models of defect structures include the use
of the multigrid finite difference method with elongated Gaussian representa-
tions of defect structures to determine the steady states of a system involving
diffusion, adsorption, and many species [7]; as well as the use of an alternating
direction implicit (ADI) finite element method for the time dependent analysis
of defect structures represented by elongated Gaussians [8]. In both of these
analyses the representation of defects at arbitrary locations in the domain
without significant mesh deformations is difficult. The method outlined in the
present paper may be applied to the latter problem, and such an application
will be considered in a following paper [13].

In this paper we consider the use of the boundary element (BE) method to
represent the effect of defect structures at arbitrary locations on catalytic
surfaces. We assume that the bulk diffusion, adsorption, and desorption
processes are linear while non-linear reactions occur at arbitrarily located
defects. The BE technique enables one to invert analytically the linear dif-
ferential operator that describes bulk diffusion and desorption processes. The
resulting integral equation, which involves the Green’s function for the diffus-
ing—desorbing bulk, provides an elegant representation of the localized non-
linear reaction.

The numerical algorithm described here differs from the standard BE
technique [9-11] in two essential features. Firstly, the effect of bulk desorption
has to be incorporated into the Green’s function. This necessitates the use of
an asymptotic expansion technique to calculate accurately the solution near
boundaries and active sites. Secondly, the non-linear localized reactions at
defects result in an additional integral being added to the standard boundary
integral equation for heat conduction [9]. This separation of linear and
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non-linear effects enables the effects of localized sites at arbitrary locations to
be incorporated without having to disturb the mesh used to evolve the linear
part of the solution. This overlay feature is particularly useful if the effects of
randomly distributed defects are to be included (7). In addition, the BE
technique is shown to provide an extremely stable algorithm as it exploits the
actual Green’s function of the stable linear diffusion—desorption process
taking place in the bulk medium. The integral representation of the localized
non-linear effects also allows the solution to be evolved explicitly without
requiring the solution of a system of non-linear equations at each time-step. In
another work [12] the convergence properties of the BE technique are investi-
gated with and without localized non-linear reactions. The results of this
analysis are summarized here. This paper focuses exclusively on one-dimen-
sional problems. The extension to two-dimensional surfaces is considered in
another paper {13].

This paper is organized as follows: Section 2 introduces the governing
equations of the continuum defect model. In section 3 we discuss the boundary
integral formulation of the problem, the discretization of the boundary in-
tegral equations, the explicit treatment of non-linear localized reaction terms,
and the convergence properties of the algorithm. In section 4 we apply the BE
technique to four physical problems that demonstrate both the stability of the
numerical technique and a number of interesting cooperative/competitive
phenomena associated with defect structures. In section 5 we summarize the
results and make some concluding remarks.

2. Governing equations

2.1. Initial-boundary value problem for linear diffusion and localized non-linear
reaction

The equations governing the diffusion, adsorption-desorption and localized
reaction are taken to be [5,6]
95—082—"—9 +)Ii‘,R()8( -x;)+ € ( ) (2.1)
= Poe u lﬁl,u x=x;)+f, x, x,€(xy, Xxn). .
Here u(x, t)€R*S is a vector with positive valued components representing
the concentrations of the S different species, D is a matrix of diffusion
coefficients, € is a matrix representing desorption or linear bulk reaction, R,
are the rate terms due to reactions taking place at the active site x,, and
f(x, 1) is the incident flux due to adsorption. We assume that the bulk is
homogeneous so that D and @ are constant and that the bulk processes are
decoupled so that D and @ are diagonal. In addition, coverage is taken as
sufficiently low that f is not dependent on the local concentrations.
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In order to be able to determine the solution u of (2.1) we prescribe an
initial condition

u(x, 0) =u’(x) (2.2a)

and appropriate boundary conditions of the general form:

(u,%-*-ﬂ,-)"(xn 1)=g(1),i=0, N. (2.2b)

Here g; is a specified function. As was the case with the bulk, we assume that
the boundary conditions are decoupled so that «; and B, are diagonal. Hence
the only coupling in the equations governing the various species occurs
through the, in general, non-linear reaction term R,.

Physically these equations represent localized reactions that occur on a
number of parallel chemically active *“lines” or steps on a two-dimensional
surface in which linear diffusion and adsorption-desorption are taking place.
Egs. (2.1) and (2.2) also provide a .ne-dimensional model for a more general
problem comprising a surface on which adsorption-desorption and linear
diffusion are taking place, while generally non-linear reaction processes may
occur at localized defects in the form of curves on the surface.

2.2. Alternative “ jump-condition™ form

It is possible to rewrite (2.1) in an alternative form if we assume that
u, f€ C%x,, xy). We integrate (2.1) over each of the intervals (x;— €, x;+¢),
I=1,..., L in turn letting ¢ = 0" in each case. An application of the mean
value theorem for integrals yields the following conditions:

[ ] =-R/(u)l,, I=1,..., L. (23)

Here

[ ‘] = lim ($2 (e )= P, 1)
The initial-boundary value problem (2.1)-(2.2) can now be replaced by the
linear PDE obtained by setting R,=0 in (2.1) and requiring that solutions
satisfy not only (2.2) but also the additional jump conditions (2.3). This
alternative form emphasizes the fact that we have a linear differential equation
the solution of which is subject to non-linear ancillary conditions. These
ancillary conditions reduce to boundary conditions in some special cases. For
example, we could assume that the solution u is constant throughout (xg, X5)
except for a single subinterval [x,, x,,,). In this case the jump conditions
which apply at x; and x,,, reduce to derivative boundary conditions.
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3. The boundary element algorithm
3.1. The boundary integral formulation of the diffusion-localized reaction equation

The starting point of this formulation is the use of the method of Green's
functions to rewrite (2.1) as an integral equation involving boundary values of
the solution and its derivatives, initial values, and sources that are distributed
throughout the interval (x,, x5). As this technique is standard, the derivation
will be omitted [9-11]. Let

0, x&[xq, xy],
v(x)= {1, X € (xq9, Xy),
then
y(x)u(x, 1)

_ /’”G(x —¢, )u®(8) dt

+fof[e(x—g, x-f)og—Z(g, ) - %(x—&, t—1)0u(g, 7) : dr
[ “G(x~¢£, t—1)F(¢, ) d¢ dr. (3.1)
0%y

Here

a2 (i}
LG(E=x,7—1):= (Da—&_2 -Q- IE)G(ﬁ—x, T—t)=—=8(£—x)8(7—1)!
and in addition G— 0 as |x| — co and G satisfies the causality condition
G(x,1)=0if 1 <0.
The explicit expression for G can be derived using Fourier or Laplace
transforms [14,15]:

—Q.t—x%/4D,1
exp( 2, Dx/ ( )811” i, j=1,...,s,
{18 ‘.l (3.2)

Gi;(x, t)=H(t)

1, =20,
H(’)={o :io.

This Green’s function differs from that for the standard diffusion equation
through the term exp(—£2,7), which is due to desorption. Notice that in (3.1)
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the localized reaction terms have been lumped with the source term f by
defining

L
F= 121 R,(u)8(x—x,) +f.

If we substitute this expression for F into (4.1) we obtain

Xn 1 pXN ¢ §oxy
y(x)u=L0 Gu® d“foj;, Gf d¢ d'r+fo{[GDg—Z - %%Du]eﬂxo
L
+ Y G(x—x;, t—1)R,(u(x,, 'r))} dr. (3.3)
I=1

Here the arguments of some of the terms have been omitted for the sake of
brevity.

Consider the implications of (3.1) for a well-posed boundary value problem
such as (2.1)-(2.2) in the absence of localized reactions i.e. F=f. In this case
(3.1) is an expression of the solution in terms of quadratures of the prescribed
functions #° and f and an integral involving the values of # and its derivative
du/d¢ at the boundary points x, and x,. If we were for example considering
Neumann boundary conditions (a, =/, B, = 0 in (2.2b)), then all that prevents
us from writing down the solution u(x, 7) is the unknown values of u at x,
and x,. If we let x = x, and x, in turn, we obtain two integral equations
from which u(x;, t), i=0, N can in principle be found. Once wu(x;, ),
i=0, N are known, the solution at any point (x, ¢) can be found by direct
quadrature using (3.1). The full variety of boundary value problems as
represented by (2.2b) can be solved in an analogous way. Due to the singular-
ity of the kernel 8G /3£ in (3.1), special care has to be exercised in the limiting
process x — x;, i =0, N used to derive the boundary integral equations. The
resulting integral equations are

%“(Xn t)

=[x -t nu(®) at

=0 du 3G o
+j; [G(X‘_g’ t=n)Dgg (6 1) = g xi= b 1= m)Du(g, 7)|  de
1—0 pXv =
+j; fx: G(x,— &, t—7)F(§ ) dédr, i=0, N. (34)

Here f{~° is used to indicate that a small neighborhood (¢ —¢, f) is to be
excluded in the evaluation of that integral. Notice, by defining y(x,) =13, i=
0, N eq. (3.3) can be made to encompass (3.4) as a special case.
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If localized reactions are present, then the appropriate integral equations
can, as in the case of (3.2), be obtained by substituting

F=f+ ) R8(x—x,)

=1
into (3.3). In this case the resulting integral equations not only involve
unknowns on the boundary, but also unknowns at the localized active sites
that appear in a non-linear form.

3.2. Space~time discretization

The space—time region [x4, xy] X [0, T] is divided into cells [x,, x.,1] X
[t 1) e= ,N=-1; j=0,. — 1. Over this mesh of space—time
cells we construct piecewise polynomlal basis functions in terms of whlch the
solution u, the derivative du/9£, and the specified functions f, g and #° are
expanded. These expansions are substituted into (3.3), and the products of the
Green’s function and the piecewise polynomial basis functions are integrated
to form the appropriate influence matrices. These influence matrices are used
to evolve the solution from one time-step to the next. This procedure is
outlined in appendix A for the case of piecewise constant and linear basis
functions resulting in the evolution eq. (A.2). In order to obtain accurate
solutions in the vicinity of a boundary point or an active site when desorption
is present, it is necessary to use an asymptotic expansion of the boundary
influence matrices. The required asymptotic expansions are given in appendix
B.

3.3. Time marching

We exploit the Volterra form of the time integrals in (3.3) to construct the
following time-marching scheme. The solution is carried from one time level ¢;
to the next ¢,,, =¢;+ Af; by using (3.3) in which r=A¢; and the solution
values at ume 1 are regarded as initial values, i.e., u°(x) u(x, t;). De-
pending on the prescnbed boundary conditions we solve (3.3) for au(x )/0¢
i=0, N when u(x;) are given, or for u(x;) i=0, N when du(x;)/3¢ are
given. Eq. (3.3) is then used to generate u(x, ¢;,,), which can in turn be used
as initial data for the next step.

If we assume that all the time-steps are the same size, then a substantial
computational saving can be achieved by a priori generation and storage of the
required influence matrices mentioned above. Thus the discretized BE equa-
tions can be used to advance the solution by a procedure that involves mainly
matrix multiplication (i.e., explicitly). Only terms involving the boundary
unknowns and active sites have to be solved at every time-step (i.e., treated
implicitly). In fact, numerical experiments suggest that instead of solving the
non-linear equations for u(x, 7) /=1,...,L at the L active sites, it is
reasonable to assume u(x,, t;+ At) =u(x, t;) provided At||(3R,;/du)
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X(Qu/dt)|| < || R,(u)]| at ¢;. This assumption essentially allows non-linear
effects to be treated explicitly too. This procedure will be outlined in the next
two subsections.

3.4. Solution of the non-linear equations associated with the active sites

There are a number of different strategies that could be used to solve the
S X (Q— 1) X (L) non-linear equations for the unknowns u(x,,f;+1¢ by
{r;}f_1; 2<b < Q that appear in eq. (A.2). One such technique involves an
iterative predictor-corrector sequence. Initially we assume that u(x,, 1) is
constant over the time-step Az, Using these values of # on the right-hand side
of (A.2), we can calculate new values of u(x,, 1, + t*). These values are in
turn substituted on the right-hand side of (A.2) and so on. This is an example
of the general iterative method for solving non-linear equations [16]. In order
to consider the convergence of such a scheme, assume the special case in which
there is only one species (so S =1), only one active site (so L =1), and we
have approximated # by a linear function over [0, Ar] so that O =2. If we
assume that the active site is remote from the boundaries then a sufficient
condition for the convergence of the iterative scheme when applied to the
single non-linear equation is that

[F6(0, Ar=n)R(T(x)u + T2 )u?)T¥(5) dr| <1
1}

where the shape functions T* are defined in appendix A. If we assume that
R & C? we can show using integration by parts that:

foAlG(O. At—1)R(TY(7)ut + T*(7)u?)T?*(7) dr

2 At 172 ’ 2 372
~3(5) R'(u?) +O(Ar?), A1—0,

Thus the iterative scheme can always be made to converge by choosing Af
sufficiently small.

We now consider a scheme that assumes that the solution u at each active
site is constant over the time-step [0, Ar]. This amounts to taking only the first
step in the above iterative algorithm. This procedure is extremely attractive
from a computational point of view as the solution is then taken from one
time-step to the next in an explicit fashion and no non-linear equations have
to be solved. A variant of this scheme is to calculate the effect of the integrals:

f Gu® d¢, f“ 2 GDa achud

(assuming u and au/8£ are constant over [0, A?]), and

L o ) "GFdt dr



A.P. Peirce, H. Rabitz / The effect of defect siructures on catalytic surfaces 9

in (3.3) evaluated at each of the active sites x,. This estimate of u(x,, ;) is
then used to obtain a more accurate approximate of the integral
&' GR,(u(x,, 7) d7 using linear interpolation. This is essentially the piece-
wise linear Caratheodory iteration scheme used by Peirce et al. [12] in the
analysis of convergence of BE approximations in the non-linear regime. The
results of this analysis are summarized in the next section. This explicit scheme
will be used for the numerical examples given in this paper. Naturally this
algorithm could be improved by using the iteration scheme outlined above or
by employing a Newton—-Raphson scheme — with a concomitant overhead in
computing costs.

3.5. Convergence properties of piecewise polynomial BE approximants

In this section we summarize the convergence properties of BE approxima-
tions based on the piecewise polynomial collocation schemes that were de-
scribed in section 3.2 and appendix A. The analysis, which was performed by
the current authors [12), provides a theoretical framework for resolving mesh-
ing issues such as the appropriate size of time-stepping,.

In the absence of active sites it is possible to identify a dimensionless mesh
parameter the magnitude of which determines the performance of a given
mesh. BE meshes based on piecewise constant and piecewise linear collocation
are shown to be conditionally convergent. Surprisingly, this loss of convergence
occurs when the size of time-steps is small relative to spatial meshing and
manifests itself in the form of excess diffusion. The magnitude of this excess
diffusion can be predicted precisely by the theory. On the other hand, BE
schemes based on piecewise quadratic collocation are unconditionally con-
vergent and do not display any excess diffusion. Another surprising result is
that for all three schemes time-steps can be made as large as desired without
any instability occurring, provided that the degree of boundary interpolation is
sufficient to prevent a degradation in accuracy.

In the case that active sites are present with non-linear reactions taking
place, the issue of convergence is more complicated. By considering a model
problem, it is possible to prove that the piecewise linear Caratheodory iterates
outlined in section 3.4 do converge to a solution on a finite time horizon. The
extent of the convergence region depends on how long the solution is guaran-
teed to exist. This analysis provides a theoretical justification for the use of the
piecewise linear collocation scheme in a non-linear environment.

4. Numerical examples

In this section we present BE solutions for four different localized reaction
diffusion problems. The first of these is the so-called distributed Lotka-Volt-
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erra system, which has been chosen as it provides a stringent test of the
stability of the numerical technique. The second system comprises the Prigo-
gine-Lefever reaction, which is assumed to occur at each defect in a periodic
array of defects. The parameters of this system are chosen so that marginal
stability oscillations occur in the vicinity of an equilibrium solution. These
marginal stability oscillations were first identified by Bimpong-Bota et al. [6]
using linear stability analysis. The remaining two problems consider the effects
of defect structures on the desorptive processes that occur on catalytic
surfaces. In another paper {2], the current authors have given a detailed
analytic and numerical account of the effect of defect locations on the balance
between the steady state desorptive processes that occur on catalytic surfaces
assuming time independent adsorption. In the third problem of this section we
investigate the effect of dynamic pulsing of the adsorption level on the
competitive behavior between defects, which was identified for static adsorp-
tion levels, The competitive behavior is shown to persist for the case of
periodic pulsing of the surface. In the fourth problem we consider the effect of
defect locations on the desorption processes for a more complex three-species
model. Similar competitive phenomena are demonstrated in this more complex
environment. These latter two examples illustrate the pervasiveness of these
competitive / cooperative phenomena associated with the defects on catalytic
surfaces. In addition, these examples illustrate the stability of the BE tech-
nique and its usefulness in analyzing the physical phenomena associated with
defects structures.

4.1. Distributed, diffusion-coupled Lotka-Volterra system

We consider the numerical solution of the following system of partial
differential equations with non-linear auxiliary conditions:

32

du, u, _ .

?—D,-Kx-? SZ,-u—O, i=1,2, XG[ L, L], (4.18)

u(x,0)=1, i=1,2, (4.1b)
o, du, ] _ 01,

_Dla —aul x-_L, D][ ax = _Buluzx-o, ax —OxmL, (4.1C)

au2 _ au2] _ aU2 _

Y =Dy | 5[ = Buwa = Dy == —vu, L (4.1d)

where the jump condition form defined in (2.3) has been used and «, 8 and y
are all non-negative constants. Eqgs. (4.1) represent a Lotka—Volterra system in
which the linear source and sink terms are located at the two boundaries of the
domain, and the non-linear predator—prey interaction occurs at a single active
site. Bulk diffusion couples the active site with the source and sink points at
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the boundaries. This system has been chosen as it provides a stringent test of
the stability of the numerical scheme, since for the given initial condition the
numerical solution is required to traverse a large region near the axis u, =0
without moving into the unphysical region u, < 0. Another interesting feature
of this model is that it is an oscillator driven by diffusion. The model
represents the introduction of species 1 at x = —L from a bath of material,
while species 2 is prevented from escaping from this point. At the defect x =0,
species 1 and 2 are converted to species 2 according to S + S, = 28,. At the
boundary x = L, species 2 flows into a bath of material while species 1 is
prevented from escaping at this point. The whole process is coupled by
diffusion. Desorption of both species is included in the model.

4.1.1. Steady states of the distributed Lotka—Volterra system
By solving the system (4.1) with 9u,/9r=0 we obtain the steady state
solutions of (4.1):

wi(x) = u,(0)[cosh(w,x) — ¢, sinh(w,x)], x<0, (4.20)
! u,(0) cosh[ w,(x — L)} /cosh(w,L), x>0, )
_ {u2(0) cosh[w,(x — L)] fcosh(w,L), x=<0,

ua(x) = { u;(0)[cosh(w,x) — ¢, sinh(w,x)],  x<0, (4.20)
where
W= (Qi/Dl)l/zv

_ =D,w, sinh(w;L) + & cosh(w,L)
= "D w; cosh(w,L) — a sinh(w, L)

_ —Dyw, sinh(w,L) +y cosh(w, L)
= D,w, cosh(w,L) — v sinh(w,L) ’
and
(2,(0), u5(0)) = (0, 0), (4.3a)
or

(1,(0), u(0)) = (Dz‘*’zl‘h +;anh(w2L)] ’ Dy [ gy —;;nh("-’lL)] ) (4.3b)

w,—»O\( DyB DB

"N\Dyy+L' Difa—L) (4.3¢)

We notice that in the limit D; — oo the steady state (4.3c) reduces to that of
the standard non-distributed Lotka-Volterra ODE system. This is in agree-
ment with physical intuition, since the time-scale on which the diffusion
processes take place is in this case much smaller than that of the reaction
processes. The reaction processes then take place as if they were all located at
one point.
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4.1.2. Stability of the distributed Lotka—-Volierra system

We consider a small perturbation v)(x) to the steady states given in (4.2)
and let v,(x, ) be the subsequent evolution of this initial perturbation. The
equation governing the evolution of v;(x, t) can be obtained by perturbation
of (4.1) and can be seen to be identical to (4.1) except for the jump conditions
at x=0 which are of the form:

[ ] ZJ.,,(O) (4.4)

J=i
where
J= —Buy(0) —Bu(0)
Buy(0)  Bu,(0)
We use Laplace transforms to analyze the growth or decay of the perturba-
tion v;(x, 7). We take the Laplace transform of (4.1) with u; replaced by v,
and replace the jump conditions at x=0 in (4.1c and 4.1d) by the jump

conditions (4.4). The stability of the system is determined by the roots s* € C
of the transcendental equation:

det[8,9,(s*) - J,;] =0, (4.5)
where
Dyw, sinh(2w,L) — a
Dyw, cosh?(w,L) — a sinh(w,L) cosh(w,L) |’
Dyw, sinh(2w,L) + v
Dy, cosh?(w, L) + v sinh(w, L) cosh(w,L) ]

‘Pl(ﬂ') = Dyw,

¥2(s) = Dy,

and

(s+$2‘)1/2
w; = .

D,
We notice that in the limit D, > 1
2L(.§‘+91) -

()~
2L(s+2,)— v
¥a(s) ~ lsrBh)-y
1+vL/D,

If we also assume £, = 2, = £, then (4.5) reduces to

Y-a_(l_aD_l;‘)J“ (1+ )Jzz]

AL (s* + Q) +2L(s*+ Q)
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We use the steady states ((4.3a) and (4.3c)) to evaluate J;, and conclude from
(4.6) that:

(i) when (,(0), u,(0)) = (0, 0):

$*=-Q+a ors=-2-8; (4.7a)
(ii) when (2,(0), u2(0)) = ((v/B)/(1 +vL/D,), (a/B)(1 — aL/Dy)):
s*=—-0Q4 '—\2@ (4.7b)
When £ =0 it can be seen from (4.7a) that the trivial solution is unstable,

5.00
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Fig. 1a. The evolution in the phase plane of the concentrations at the defect site for the diffusion
coupled Lotka-Volterra equation. This example has been chosen as it provides a stringent test of
the stability of the numerical algorithm since a large portion of the region close to the axis u; = 0
has to be traversed without the solution moving into the unphysical region u, <0. The stable
spiral behavior is consistent with the linear stability analysis and the steady state achieved by the
numerical algorithm after ¢ =100.0 agrees well with the exact steady state solution at the active
site. It is interesting 10 note that the trajectory comes reasonably close to itself in the region
3.0 < 1) 4.0 and 0.0 < u; < 0.2 and then subsequently moves to very different parts of the phase
plane. This is not some sort of instability of the problem but a reflection of the very different
spatial structure of the solutions associated with these two parts of the trajectory. This can be scen

in fig. 1b.
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Fig. 1b. The space-time distribution of the concentration u,

oscillations throughout the domain by that at the active site can also be observed.

whereas (4.7b) shows that the system will perform marginal oscillations in the

vicinity of the second steady state defined by (4.3c).

When £ > 0 it can be seen from (4.7a) that the trivial solution is a stable node

provided 2 > a; whereas (4.7b) shows that the second steady state defined by

(4.7b) will be a stable spiral.
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4.1.3. Discussion of results

Fig. 1a plots the evolution in the phase plane of the concentrations at the
active site obtained by the BE technique. An accurate spatial discretization of
the BE equations using quadratic interpolation and 60 mesh points has been
used. The size of time-step was Az = 0.01. The parameters used in this model
were D,=D,=20; a=B=y=10, L=10 and 2 =20. The steady state
concentrations at the active site obtained from (4.3b) are (u,(0), u,(0)) =
(3.524, 0.477) which can be seen to agree well with the numerical solution
(3.524, 0.471) after an elapsed time of 7= 100.0. The stable spiral behavior is
consistent with that predicted in (4.7b).

It is striking to note the large portion of the region close to the line u, =0
that the numerical solution is able to traverse without moving into the
unphysical region u, <0. What is also interesting is the closeness of the
trajectories in the region 3.0 < 1, < 4.0 and 0 < u, < 0.2. Here two neighboring
points move large distances from one another as time progresses. This would
seem to indicate some sort of instability of the system. However, it should be
emphasized that we are only looking at the phase portrait at the active site, in
which the two neighboring points are in fact associated with solutions with
very different spatial structures. This can be seen clearly in fig. 1b in which the
space-time evolution of the concentrations is plotted. An interesting feature of
these space—time plots is the way in which the damped oscillations throughout
the domain follow the oscillations at the active site.

4.2. Marginal oscillations of the Prigogine—Lefever reaction which occurs at
defects on a periodic lattice

Bimpong-Bota et al. [6] considered a periodic lattice of defects located at
x,=2nL; n=0, +1,.... At each of these defects the Prigogine-Lefever reac-
tion:

R,(u)=)\(A—Bul+u12u2—ul), (4.8a)
R,(u)=A(Bu, — uiu,), (4.8b)

is assumed to occur. The defects are coupled by diffusion of the species as
described by (2.1) and it is assumed that no bulk desorption or adsorption
occurs so that the steady state solutions are constant functions. They show
using linear stability analysis that the marginal oscillations about the steady
state (uy*, u?)= (A, B/A) of the Prigogine-Lefever system are given by the
roots B8 and B of the equation:

¥(i8) = }A(B—2) +iir(4B - B?)"?, (4.9)

where §(s) = 2(Ds)'/? tanh[(s/D)'/?L] and 4 = 1. In many physical systems
reaction terms of the form (4.8) are the object of some criticism on physical
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grounds due to the third-order terms. These reactions are unlikely to occur in a
bulk fluid medium since they represent the joint probability that two atoms of
species 1 and a single atom of species 2 will be at the same place at the same
time. However, in the context of localized reactions at defects, it can be argued
that this type of reaction is more likely to occur owing to the fact that a defect
structure will form a collection point for many reagents.

Using the BE technique the localized Prigogine-Lefever system was mod-
elled in the vicinity of the steady state (u*, u$) = (1.0, 2.8227). The choice of
parameters in this case was A = 1.0, D, = D, = 1.0, L = 2.5. The critical values
of 8 and B for this set of parameters, determined from the complex
transcendental equation (4.9), are 8, =0.1146 and B, = 2.8227. Exploiting the
periodicity of the problem we considered a single defect located at the
midpoint x=2.5 of the interval [0, 5] and assumed zero flux boundary
conditions. The BE equations were solved using quadratic interpolation and 60
mesh points and the size of time-step was At = 0.01.

In fig. 2a the evolution in the phase plane of the concentrations at the
defects are plotted for the solutions with the following spatially uniform initial
conditions:

i) (), u?)=(1.000, 2.820);

(i) (u, u?)=(1.020, 2.800);

(i) («?, u?)=(1.040, 2.777);

(iv) (u?, ul) = (1.000, 2.760).

We observe that the concentrations at the defect rapidly approach a stable
cycle for trajectories (i) and (ii). This is consistent with the marginal stability
oscillations predicted by the linear stability analysis. For trajectories (iii) and
(iv) a dissipative spiral behavior occurs. This dissipative behavior is due to
non-linear effects that occur when large perturbations are made to the steady
state. These effects are neglected in the linear stability analysis. By comparing
trajectories (iii) and (iv) it can be seen that the rate of dissipation depends on
the magnitude of the initial perturbation.

Another interesting phenomenon that can be seen clearly in the case of
trajectory (ii) is a rapid evolution from the initially spatially uniform per-
turbed state to a state with the appropriate spatial distribution for marginal
stability oscillations. This explains the outward spiral behavior observed in the
initial part of trajectories (ii), (iii) and (iv).

As an illustration of the spatial redistribution effect, trajectory (ii) of fig. 2a
is plotted (solid line) in fig. 2b together with the corresponding trajectory
(dotted line) of the concentrations at x = 1.25 located midway between the
defect and the boundary. The two trajectories start at the same point (u?, u?)
= (1.020, 2.800) (due to the spatially uniform initial conditions) and move into
different cycles.

We have seen that the BE technique is able to capture the marginal stability
oscillations in a stable fashion and to establish dissipative behavior when
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initial perturbations are sufficiently large for non-linear effects to become
significant. From a physical point of view these stable cycles are particularly
interesting in view of the fact that third-order reaction terms are more likely to
occur at defect structures that form collection points for the reagents.

4.3. A continuum model of reactive trapping by defects

Assuming a constant adsorption rate the current authors [2] have given a
detailed analytic and numerical account of the effect of defect locations on the
steady state desorptive processes that occur on catalytic surfaces. A class of
reactive trapping models was considered in which defects act as sinks of
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Fig. 2a. The evolution in the phase plane of the concentrations at the defect for four distinct
spatially uniform initial perturbations to the steady state (#;*, u3). The marginal stability
oscillations predicted by lincar stability theory occur for the smaller two perturbations to the
steady state (i) and (ii). However, when size of the initial perturbation is increased, a dissipative
spiral behavior occurs due to the effect of the non-lincar terms that are neglected in the linear
stability theory. Another interesting phenomenon that can be observed for trajectories (ii), (iii),
and (iv) is the rapid evolution from an initially spatially uniform state 10 a state with the
appropriate spatial distribution for marginal stability oscillations. This spatial redistribution is

demonstrated in fig. 2b for trajectory (ii).
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Fig. 2b. The evolution in the phase plane of the concentrations at the defect (solid line) that is

located at x =2.5 and at an interior point x =1.25 (dotted line) for the initial perturbation (ii).

Since the initial perturbation is spatially uniform, the two trajectories start in the same place but

cand up on different orbits, which demonstrates the spatial redistribution to the marginal
oscillation states.

material that ultimately desorbs as a chemical product. Other features in-
cluded in that model were enhanced reactivity with concentration and satura-
tion effects. The effect of defect locations on desorptive processes were
analyzed by considering symmetry-breaking perturbations to a periodic array
of defects. Two regimes of desorption were identified depending on the level
of adsorption to the surface and the defect spacing:

(i) Competitive: defects that are moved closer together by the perturbation
compete for material that reduces the trapping efficiency of the defects. The
bulk (i.e. non-defect) desorption rate increases.

(ii) Cooperative: defects that are moved closer together by the perturbation
in this regime act cooperatively to reduce the saturation level locally. This
enhances the trapping efficiency of the defect lattice and reduces the bulk
desorption rate.
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These interesting competitive/cooperative desorptive phenomena were in-
vestigated in the steady state limit assuming constant adsorption to the
surface.

In this section we explore the effect of dynamic adsorptive pulsing on these
competitive/ cooperative phenomena. We assume that the pulsing is in the
form of a square wave in which the time period of a single pulse is T. We
assume that we start with a periodic lattice of defects located at x, =2nL,
n=0, +1,..., N within the interval [—r, r). The surface containing these line
defects is then pulsed and the desorption rate

r
= % f udx (4.10)

is determined. The defects are then subjected to finite random spatial per-
turbations and the pulsing process is repeated. The change in desorption rate
2 due to the perturbation of the uniformly distributed defects provides a
measure of how the balance between the bulk desorption and the desorptive
effect of the defects is altered by changing the locations of the defects. We
assume that there is a single species that is being trapped at the defects
according to the reactive trapping model:

R(u)=-(1-u)u (4.11)
and that the bulk diffusion, desorption and adsorption processes are governed
by (2.1) in which D =1.0, 2=2.0 and

f(r)=25(s)

where
1, nT<t<(n+3)T,

s(y=1{> "=’ (n+3) n=0,1,....
0, (n+3T=st<(n+1)T,

The results of this analysis are contrasted with those in which a constant
adsorption level f=1.0 is used. This corresponds (0 a uniform adsorption
level that delivers the same average amount of material to the surface.
Reference to this uniform adsorption function allows us to use theory devel-
oped [2] previously, assuming uniform adsorption, to identify possible regimes
of competitive behavior in the dynamic case. In particular if L =0.1 then the
static theory [2] predicts competitive trapping behavior between perturbed
defects, which will cause the bulk desorption rate to increase when a uniform
array of defects is perturbed.

In the laboratory pulsed modulation of the incident flux would be benefi-
cial for various reasons including the introduction of a laboratory controlled
time-scale. Resonance effects might be expected for 7~ L?/D, the character-
istic time-scale of diffusion on the lattice or other natural time-scale of the
system. If T< L2/D then by rescaling of variables in (2.1) the diffusion
coefficient can be shown to be of order ¢ = TD/L?. The diffusion process on
the surface is in this case extremely weak and the points throughout the
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surface will behave to first order as if they were decoupled. The decoupling
implies that this limit is not very interesting from the point of view of
competitive behavior between defects. We shall therefore not pursue this
limiting case. In this section we consider dynamic pulsing at two different
time-scales T=0.02 ~ L2/D=0.01 and T=0.8 > L?/D.
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Fig. 3a. The time cvolution of the desorption rate 2@ for 10 defects spaced over the interval
(0, 2.0), assuming that reactive trapping given by (4.11) occurs at the defects. The desorption rate
provides a measure of the balance between the bulk desorption rate and the desorption due to the
reactive trapping that occurs at defects. Two different distributions of defects are considered: a
uniform distribution (denoted by functions with no symbols) and a random distribution of the
same number of defects (denoted by functions with a solid circle). Two types of adsorption are
applied 1o the surface. In the first type of adsorption, the surface is pulsed with a square wave
pulse having a period T = 0.02, while the characteristic diffusion time-scale of the defect lattice is
L*/D =001 In the second type of adsorption, the surface is supplied with the same average
amount of material as in the dynamic case, but at a uniform rate. In both the static case and the
dynamic case the bulk desorption rate increases as a result of perturbing the uniformly distributed
defects. This is due to competitive behavior between the defects that are moved closer by the
perturbation, which results in a decrease in the trapping efficiency of the defects as a whole and
an increase in the bulk desorption rate. Therefore, the competitive behavior that has been
established for static adsorption levels persists when the surface is pulsed periodically. It is
interesting to note that the mean increase in the desorption rate is larger in the dynamic case than
in the static case.
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In the case of the short time-scale 7= 0.02 the BE equations are solved on
[0, 2] using quadratic interpolation and 90 spatial mesh points. The size of the
time-step was Ar=0.001. It should be noted that the convergence theory
discussed in section 3.5 is useful in this case for deciding on an appropriate
meshing strategy. If piecewise constant or piecewise linear interpolation is
used for time-steps as small as this, then to avoid the significant numerical
diffusion described in section 3.5, we would require at least 400 mesh points.
Since the quadratic interpolation scheme was shown not to suffer from this
problem it was chosen for the purposes of this example. In the case of the long
time-scale the same spatial meshing was used while the size of the time-step
was 0.01.
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Fig. 3b. The time evolution of the average desorption rate @ is plotted as is done in fig. 3a.
However, in this case the period of the pulsed adsorption is T = 0.8, which is much larger than the
characteristic diffusion time scale L2/D = 0.01. The results for constant adsorption which delivers
the same amount of material to the surface are also plotted. The desorption response of the system
to square wave pulsing is in the form of relaxation oscillations due to the larger time-scale of the
pulsing. No phase lag is observed because of the rapid diffusion time-scale. In both the static case
and the dynamic case the bulk desorption rate increases as a result of perturbing the uniformly
distributed defects. This demonstrates that the competitive behavior persists in this regime of
periodic pulsing.
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In fig. 3a the time evolution of the desorption rate 2 is plotted for the case
of 10 defects uniformly distributed over the interval [0, 2.0] so that L =0.1.
These defects are then each subjected to a finite random perturbation and the
adsorption process is repeated. Results are shown for pulsed adsorption with
period T = 0.02 and a constant rate of adsorption to the surface. According to
constant adsorption theory [2], the defects are for this level of adsorption in
the competitive regime, so that perturbations to the uniform lattice are
expected to increase the bulk desorption rate. We observe that the competitive
behavior persists when the surface is pulsed and that the mean increase in bulk
desorption rate for the pulsed surface is larger than that for the surface
supplied with the same amount of material at a uniform rate. It is interesting
10 note the sawtooth structure of the oscillations in the desorption rate. This
piecewise linear behavior can be explained by looking at the initial linear
increase of the desorption rate 2 in the time interval {0, 0.2] for the constant
adsorption cases in fig. 3a. The time-scale for non-linear increase of 2 to
occur can also be read from these plots. In particular we would expect a
non-linear increase of 2 to occur on the time-scale T =0.8. This relatively
simple response of the system is probably due to the fact that we are
considering only a one species system. In a more complex multiple species
problem a variety of time-scales are likely to occur. This would certainly make
the response function more complex when the pulsing has a period close to
one of these time-scales.

In fig. 3b the time evolution of the desorption rate 2 for uniformly and
randomly spaced defects is plotted for pulsed adsorption with a period
T=0.8, and for constant adsorption at a level that delivers the same average
amount of material to the surface. As predicted above, a non-linear response
function is observed which is in the form of a sequence of relaxation
oscillations. There is no phase lag in the response to the pulse owing to the
faster diffusion time-scale. As was the case in fig. 3a the average desorption
rate 2 increases when the uniformly distributed defects are perturbed. Thus
competitive behavior between the defects persists in this regime of adsorption.

This example serves to demonstrate the interesting features that can result
from an analysis of the continuum model of defect structures. The overlay
feature of the BE technique is particularly useful when the effects of randomly
spaced defects are included in the analysis.

4.4. Competitive behavior in a three-species reaction occurring at defects

In this section we demonstrate that the competitive behavior of defects is
not restricted to the simple reactive trapping model considered in section 4.3.
We use the same procedure adopted in the previous section to investigate the
effect of defect locations on the balance between the desorptive processes that
occur on surfaces with defects. However in this case we consider a more
complex three-species model with saturation effects.
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We assume that we start with a periodic array of defects located at
x,=2nL, n=0, +1,..., which are then subjected to finite random perturba-
tions. We assume that three species are present on the surface and that bulk
diffusion, adsorption and desorption processes are governed by (2.1) in which
D,=D,=D,=10,2,=2,=2;=20and f;=10, ,=20and f;=00. We
assume that the same reaction occurs at each of the defects in which the
components of the reaction function R(#) in (2.1) are given by:

Ry(uy, up, u3)=k(s3—uz)uy,

Ry(uy, g, u3) =ky(sy —u)ug, (4.12)
Ry(uy, up, us) =kiuus.

In (4.12) species 1 and 2 collect at the defects and react to form species 3. The
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Fig. 4a. The time evolution of the desorption rates for the case of 10 defects spaced over the
interval [0, 2.0], assuming that the threc species reaction (4.12) occurs at the defects. As was the
case in fig. 3a uniform spacing of defects is considered (denoted by solid lines) as well as a
random spacing of the same number of defects (denoted by dotted lines). Competitive behavior
between the defects causes the bulk desorption rate of species 1 and 2 to increase. The production
of species 3 at the defects is decreased owing to the reduced trapping of species 1 and 2 by the
defects. This results in less of species 3 being supplied to the surface, and therefore a drop in the
bulk desorption rate of species 3. This demonstrates that the phenomenon of competitive behavior
between defects is not restricted to the simple reactive trapping model considered in fig. 3.
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Fig. 4b. The spatial distribution of the concentrations of the three specics are plotted at time
¢ = 4.0 for both uniformly (solid linc) and randomly (dotted line) spaced defects. The locations of
the defects are denoted by solid circles toward the bottom of the plots. It is interesting to note the
strong relative competitiveness of the two pairs of defects located in the interval [0.0.4]. This
variation of competitiveness with defect spacing causes a redistribution of material between all the
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Fig. 4b. Continued.

factors (s; — u;) represent saturation at the defects as the concentration of the
Jth species increases until complete saturation occurs at the concentration s;.
In this section we assume s, =5,=1.0; k; =2.0 and &k, = k;=1.0.

We assume that 10 defects are uniformly spaced over the interval [0, 2.0] so
that L=0.1. Then each of the defects is subjected to a finite random
perturbation and the adsorption process is repeated. In this case the BE
equations are solved using quadratic interpolation and 90 spatial mesh points.
The size of the time-step is Az = 0.01.

In fig. 4a the time-evolutions of the bulk desorption rates 2; (defined
analogously to (4.10)) for the three species are plotted for uniformly and
randomly spaced defects, The competitive behavior between the defects causes
the bulk desorption rate of species 1 and 2 to increase when the defects are
perturbed from the uniform distribution. Since the concentration of reagents 1
and 2 present at the defects is reduced overall, the production of species 3 at
the defects is reduced. This reduced production of species 3 at the defects
causes the bulk desorption rate of species 3 to be reduced when the defects are
perturbed.

In fig. 4b the spatial distribution of the concentrations of the three species
is plotted at time ¢ = 4.0 in the case of uniformly spaced defects and randomly
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spaced defects. It is interesting to note the relative competitiveness of the pairs
of defects centered at x=0.1, 0.38, 0.88 and the three defects located in the
interval [1.40, 1.45]. The two pairs located in the interval [0.0, 0.4] are seen to
be most competitive while the other groupings of defects are less so. This
variation of competitiveness with defect spacing and the existence of a
maximum competitiveness at a non-zero defect spacing has been established
theoretically [2] and is seen to give rise to interesting redistribution of material
in two-dimensional defect structures [13).

This example demonstrates that the phenomenon of competitive behavior
between trapping defects is not restricted to simple one-species reactive
trapping models such as that considered in section 3.3. It also illustrates the
usefulness of the BE algorithm in observing the phenomena in this non-linear
environment in which finite perturbations elude analytic treatment. An at-
tempt to predict the outcome of the perturbation process based on physical
intuition is difficult because the dominance of competing physical effects has
to be determined.

5. Comments and conclusions

In this paper we demonstrated that the proposed numerical algorithm based
on the BE technique has the following features:

(i) It provides a convenient representation of the localized non-linear
behavior that allows active sites to be modelled by essentially overlaying the
effects of the desired active sites without requiring mesh deformation.

(ii) It yields an efficient and convergent algorithm for modelling such
localized non-linear behavior which is extremely stable since it exploits the
actual Green’s function of the linear diffusion process taking place in the bulk
medium.

In addition to the representation of localized defects and explicit treatment
of the resulting non-linear equations, a further modification to the standard
BE algorithm is the incorporation of desorption in the model. Asymptotic
methods have been developed to evaluate the solution near boundaries and
active sites when desorption is included.

The BE algorithm was applied to a number of interesting physical problems
in which non-linear reactions occur at localized defects. In the first problem
we considered the Lotka—Volterra system in which the linear source and sink
terms and the predator-prey interaction term have been distributed at defect
sites in the domain. Material was moved from one site to another by diffusion.
This system provided a stringent test of the stability of the BE algorithm as it
required that the numerical solution traverse a large portion of the phase plane
close to the axis u, = 0.

In the second problem the BE algorithm was used to consider non-linear
effects on marginal oscillations of the Prigogine-Lefever reaction that occurs



A.P. Peirce, H. Rabitz / The effect of defect structures on catalytic surfaces 27

at defects. The non-linear terms were seen to introduce small dissipative
effects which caused spiraling in toward the marginal stability state. As the
trajectory moved closer to the marginal stability state, the dissipative effects of
the non-linear terms diminished and a stable cycle behavior was observed.

In the third problem we used the BE algorithm to investigate the effect of
defect locations on the balance between desorptive processes on a catalytic
surface, assuming dynamic pulsing of the adsorption level. The competitive
behavior between defects, which has been established for static adsorption
levels, was shown to persist for dynamic loading of the surface. In the fourth
problem we demonstrated that the phenomenon of competitive behavior
between defects also occurs for a more complex three-species reaction. The
latter two examples illustrated the pervasiveness of the competitive behavior
exhibited by defect structures on catalytic surfaces.

In sum, the results illustrate the usefulness of the extended BE method for
modelling defect structures on catalytic surfaces.

Appendix A: Discretization of BE equations

Let xo<x;< ... <Xpy- l<x,,, be a partition of the interval [x,, xy] in
which the set of active sites {x }., are included as a subset. In accordance
with the one time-step recursion algorithm described in sections 3.2 and 3.3,
we introduce finite element-like interpolation functions over the rectangular
space-time cells [x,_,, x.] X [0, At] Within the eth interval [x,_;, x.] we
introduce the nodal pomts {x2}!_, and over the time interval we introduce
the nodal points {¢*}£.,. Here P —1 and Q — 1 are the degrees of the spatial
and time polynomial approximation, respectively. We now define polynomial
basis functions X7 and T

X:: X:(x?()=8‘,x8‘,b, Te: Ta(tb)=sab.

The resulting interpolants of the functions u(x, ¢), du(x;, 1)/06 =d(x;, 1)
and f(x, ?) are obtained:

N P
u(x, )= ¥ T Xe(x)u(x(, 1),

em1 a=l

¢(x;, 1;+1) = Z To(0)¢(x;, t;+1*), i=0, N, (A1)

f(x, y+1) = Z Z ZX"(x)T"(t)f( x2, 4+ 1%).

e=1ae=1 b=l
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Substituting these expressions into (3.3) and assuming homogeneous Di-
richlet boundary conditions, we obtain:

N P o

u(x, )= X X Gx, A)u(4)+ T X gi(x)e4(1;)
e=1a=1 i=0,N be=1
‘T

Q
fA‘G(x—x,l, At—7)R)| ¥ T”('r)u(x,,, L+ r”) dr
1=170 b=1

N P Q

+2 X X G (A2)

e=1aw=l =1
Here

G**(x, Ar) =f"'

Py

G(x—¢, AN X2(6) d,
0i(x) = ["'B(x = x,, Ar=)T*(7) dr,
0

G;“(x)=fo‘“r"(f)f' G(x—£, At—1)X2(£) d dr

Xe-1

= fMT”(T)G"(x, At —r7)dr.
0

It is possible to evaluate the integrals G**(x, Ar) and the self-effects g}(x;)
analytically. In the remaining cases the integrands are smooth and can be
evaluated using Gauss integration for points remote from the boundaries. In
order to determine the solution for points that are close to boundaries we
propose an asymptotic method to evaluate the influence kernels gj(x). This
method is outlined in appendix B.

Rather than providing the general expressions of G** etc. we will provide
the analytic expressions for the above kernels in the two special cases P= Q =1
and P=Q=2.

A.1. Interpolation by a constant function in space and time: P=Q = |

In this case
xl= %(xe—l +x,), Xcl = {H(x_xe—l) - H(x—-x,)},

where H is the Heavyside function.
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t'=A:, T'={H(1)-H(t-Ar)},

el X— X,_ X—X
G;;) (x, Ar) =1 exp(— £, Ar)|erf —‘i)—erf( = 118;;,
( J) ( ) 2z p( i )[ (zm 2m ij

b
2»/Dl;:;9k erf(,/!?k At ), Q,.+0,

ar \'/?
(W_Dk) 8“, Qk=0.

(le):(xn Ar)=

(A3)
Here erf is the error function.

A.2. Interpolation by a linear function in space and time: P = Q =2

In this case
1x,(1-6,)—3x,.,(1+6,) +6,x
Xe— Xe1

1 _ 2 a _
Xe=Xe—1s Xeg= X Xe = ’

'=0, ?=A1, T*=3(1-6,)+8,t/A¢,
— { -1, a
a 1, a

(Ge) (%, Ar) = Jexp( -2, A!){

b

1
2,

e

+ 200 Dk At x _ (x—xe_])
(xe_xr-l) T P 4Dk At
(X - xt)z
_exp( - m— 8“, (A4)
zl/Dka v 28, Ar At
(9u)y(xin M) ={ 4 DR AD g L
29,/7D, At
. ar \'”?
sk,!’(l +0”/3)(1r_Dk) 5 Qk=0'
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Appendix B

In appendix A we advocate the use of numerical integration to evaluate the
influence matrices

0i(x) = [*G(x ~ x, Ar=7)T*(x) dr,

when x # x;. However, when x is close to x;, standard numerical integration
algorithms experience some difficulty owing to the large gradients introduced
by the almost singular integrand. If desorption were not present, then this
problem would not occur since the required integrals can be evaluated
analytically. If desorption is present (i.e., £, # 0), then we propose an asymp-
totic method for calculating these integrals in the limit x — x,. We provide
asymptotic expansions of the integrals that will be required to implement
piecewise constant and piecewise linear interpolation schemes.
We assume |x — x;| = ¢ < 1 and define the integrals:

rexp[—€2/4D(t = 1) = Q(¢t — 7)] ok
gk() f 2[1rD(t—'r)]V2 dr,

then for 2r << 1 we obtain:
172 €2
_ Canf 1 2 & € 2
go(€) = exp(—8 )(—wb) [1+ <23 (1+20D)+O((Qt) )]

_ eerfc(8)
4D

20 &2 6
2+ﬁ+w+0(€ ) ,

g,(e)=rgo(e)+%;‘f)($)"’[ 0r+20(1- &) 4 o)

e erfc(ﬂ) 4
B 1202 lOD + O(e") |

Here 8 = ¢/2(Dt)!/? and erfc is the complementary error function.
In order to evaluate the near defect effects of the derivative kernels 3G /9¢
in (3.3) we define the integrals

o€ ftCXP[€2/4D(’_7) 9("")] * dr,

gk(‘) = 4( D3)1/2 ( 7)3/2



-
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where |x—x;]| =e<«1 and o = sign(x — x;). Assuming that ¢ <1 we ob-
tain:

492

go(e)uﬁ erfc(ﬂ)[l+—+ +O(¢°)]
1,2 2
—on(=07)ea(=s) [1- B+ S8 (1 8)) 4 o
exp(—0 )cﬂ(ﬂ_D) [l i lZD( +0( )]}
eerfc(ﬂ) 0 &P 6
02 4 [“ 3 " s0p* )

+exp(—02)(%)1/2[1 + 623 izzt (1 + 20D) +o((an )]}

g1(€) =180(

Acknowledgement

The authors acknowledge support for this research from the Office of Naval
Research and the Air Force Office of Scientific Research. The first author also
gratefully acknowledges the support of the CSIR of South Africa and the
Fulbright Foundation.

References

[1} J.A. Serri, J.C. Tully and M.J. Cardillo, J. Chem. Phys. 79 (1985) 1530.
[2] A.P. Peirce and H. Rabitz, Phys. Rev. B, in press.
[3} D.L. Freeman and J.C. Doll, J. Chem. Phys. 78 (1983) 6002; 79 (1983) 2343.
[4) R.L Cukier, J. Chem. Phys. 79 (1983) 2430.
[5] E.K. Bimpong-Bota, P. Ortoleva and J. Ross, J. Chem. Phys. 60 (1974) 3124.
[6] E.K. Bimpong-Bota, A, Nitzan, P. Ortoleva and J. Ross, J. Chem. Phys. 66 (1977) 3650.
[7} F.F. Grinstein, H. Rabitz and A. Askar, J. Chem. Phys. 82 (1985) 3430.
[8] D. Lee, A, Askar and H. Rabitz, to be published.
[9] P.K. Banerjce and R. Butterfield, Boundary Element Methods in Engineering Science
(McGraw-Hill, London, 1981).
[10] C.A. Brebbia and S. Walker, Boundary Element Techniques in Engineering (Newnes-But-
terworth, London, 1980).
(11] H.L.G. Pina and J.L.M. Fernandes, Applications in Transient Heat Conduction, in: Vol. 1 of
Topics in Boundary Element Research, Ed. C.A. Brebbia (Springer, Berlin, 1984).
[12) A.P. Peirce, A. Askar and H. Rabitz, paper in preparation.
[13] A.P. Peirce and H. Rabitz, Surface Sci. 202 (1988) 32.
(14] W.E. Williams, Partial Differential Equations (Oxford University Press, New York, 1980).
[15) F. John, Partial Differential Equations, 4th ed. (Springer, New York, 1985).
(16} G. Dahlquist and A. Bjdrck, Numerical Methods (Prentice-Hall, Englewood Cliffs, NJ, 1974).



