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SUMMARY

In the literature there is growing evidence of instabilities in standard time-stepping schemes to solve boundary
integral elastodynamic models.1–3 However, there has been no theory to support scientists and engineers in
assessing the stability of their boundary element algorithms or to help them with the design of new, more
stable algorithms. In this paper we present a general framework for the analysis of the stability of any
time-domain boundary element model. We illustrate how the stability theory can be used to assess the
stability of existing boundary element models and how the insight gained from this analysis can be used
to design more stable time-stepping schemes. In particular, we describe a new time-stepping procedure that
we have developed, which has substantially enhanced stability characteristics and greater accuracy for the
same computational e�ort. The new scheme, which we have called ‘the half-step scheme’, is shown to have
substantially improved performance for the displacement discontinuity boundary element method commonly
used to model dynamic fracture interaction and propagation.
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1. INTRODUCTION

There is considerable interest in the numerical solution of the elastodynamic equations in the geo-
sciences, both for geological prospecting and for assessing the dynamic e�ects of stress waves
on surface structures and excavations, excavation support, and fractures. Boundary element algo-
rithms, in the form of the displacement discontinuity method, provide an e�cient representation of
geological features such as faults, parting planes, and cracks. Since the boundary element method
only involves the discretization of the boundary of the domain and the fractures themselves, there
is considerable potential for modelling dynamic fracture propagation numerically without having
to re-mesh the domain at each growth increment as would be the case with �nite element and
�nite di�erence methods.
Unfortunately, there is growing evidence of ‘intermittent numerical instabilities’ in boundary

integral elastodynamic models. Mack2 and Siebrits3 have both noted numerical instabilities in
their Three-Dimensional (3D) and Two-Dimensional (TWO4D) displacement discontinuity codes,
respectively. 3D uses linear in time and constant in space functional variation on at rectangular
elements. TWO4D uses linear in time, and either constant in space (‘constant / linear’) or linear in
space (‘linear / linear’) functional variations on straight-line elements. Tian4 and Loken5 have both
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also noted numerical instabilities in their two-(IBEM2) and three-dimensional (3DFS) �ctitious
stress codes, respectively. 3DFS uses linear in time and constant in space functional variations
on at rectangular elements. IBEM2 uses constant or linear in time and constant in space func-
tional variation on straight-line elements. Tian’s4 direct boundary element code (DBEM2), which
uses linear in time and quadratic in space functional variations, also exhibits numerical
instabilities.
The above codes all use analytic integrations in time and space. A more recently published direct

boundary element code, QUADPLET,6 which uses quadratic spatial and linear temporal elements,
and numerical integrations for the spatial integrals, also goes unstable, e.g., the problem in which
the circumference of a circular cavity is suddenly loaded by a normal traction axisymmetrically,7 is
clearly unstable by 2000 time steps. There are also other independent references made to unstable
boundary element methods in the literature, e.g. Koller et al.8 had to resort to a penalized least-
squares formulation in terms of a Tikhonov stabilizing functional to eliminate spurious numerical
‘oscillations’. Andrews1 modeled mixed-mode shear slip with a boundary integral approach, where
the spatial convolutions were performed in the Fourier domain. He also notes the presence of
‘oscillations’ in almost all the boundary integral models he considered, and for which he found
no solution.
We have used the term ‘intermittent instabilities’ because of the way in which the instabilities

appear and disappear as the time step and spatial mesh parameters are changed. As an example
of this type of instability, consider a �xed spatial discretization of a boundary integral model of a
given elastodynamic problem, and allow the time step-size to change. The time-domain boundary
element model can be unstable for a certain step-size and become stable if the step-size is increased.
If the step-size is increased further, then the boundary element model may become unstable again.
In addition, these instabilities may occur for certain problems and not for others depending on the
speci�c geometry of the problem.
This intermittent instability is unacceptable, as one cannot provide coherent guidelines about the

appropriate choice of time step. In order to be practical, we require an algorithm whose stability
is assured provided the time step satis�es a relatively simple criterion. The Courant–Fredricks–
Lewy (CFL) upper bound on the time step for explicit �nite di�erence and �nite element schemes
provides an example of such a criterion in numerical analysis. Such criteria cannot, however, be
applied directly to boundary element schemes as they are based on a di�erent formulation and
discretization of the original system of partial di�erential equations.
In the boundary element formulation of elastodynamic problems a time-domain approach or

a frequency-domain approach can be used. In the latter approach, the time dependence of the
problem is removed by taking a Laplace or Fourier transform in the time variable. The original
hyperbolic partial di�erential equations are thereby reduced to a sequence of elliptic (steady-state)
partial di�erential equations that need to be solved for each frequency. The boundary element
method is then used to solve these elliptic problems. The time evolution of the original system is
then obtained by taking the appropriate inverse Laplace or Fourier transforms of the solutions to
the elliptic problems. The bene�t of the frequency domain approach is the e�cient way in which
the expensive time convolutions are performed. However, one disadvantage of the frequency-
domain approach is that localized non-linear phenomena such as slip on a fault or the e�ect of
nonlinear material within a crack-like excavation cannot be modelled. In order to model these
phenomena, a full space–time discretization of the boundary integral equations is required. We
therefore restrict ourselves in this paper to the space–time formulation of the boundary element
equations.
In this paper we make use of the stability analysis framework, established for model problems

based on the equations of elastodynamics,9 to develop the necessary tools to analyse the stability



STABILITY ANALYSIS AND DESIGN OF TIME-STEPPING SCHEMES 321

properties of any time-stepping boundary element method. Because of the potential for dynamic
fracture modelling by means of the displacement discontinuity method, we use these stability
analysis tools to investigate the sources of the instabilities in the displacement discontinuity method.
This theory can also be used to explain the superior stability characteristics of the �-scheme9 for
elastodynamic problems. In addition, we show how the insight gained from the stability analysis
can be used to develop a new time-stepping scheme with enhanced stability characteristics. The
enhanced stability characteristics and improved accuracy of the so-called half-step scheme is clearly
demonstrated by contrasting its performance with the Trapezoidal scheme which is commonly used
in boundary element algorithms.
In Section 2 the BE equations of elastodynamics are summarized and the typical discretization

procedure is described. In Section 3 we develop the necessary tools to analyse the stability of any
discretized time-domain boundary element formulation. In Section 4 we use the stability analysis
tools to analyse the �-scheme and to design the new half-step scheme both of which have enhanced
stability properties. We contrast the performance of the half-step scheme with the Trapezoidal
scheme in numerical examples. In Section 5 we summarize the results and make some concluding
remarks.

2. BOUNDARY ELEMENT EQUATIONS

2.1. Boundary integral formulations

The direct boundary integral equations10 are obtained by combining the dynamic reciprocal
theorem with the appropriate fundamental solutions to the equations of elastodynamics. In the
absence of body forces and given zero initial conditions, the direct boundary element equations
are given by

uk (^; t) =
∫
S

[
Uik (x; t; ^; 0) ∗ ti (x; t)− Tikj (x; t; ^; 0) nj ∗ ui (x; t)

]
dS(x) (1)

Here Uik (x; t; ^; 0) are the displacement components due to a unit impulse load applied at t = 0 and
the corresponding stresses Tijk(x; t; ^; 0) are obtained by substituting these displacements directly
into Hooke’s law. The explicit expressions for these fundamental solutions are:
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where x is the receiver position, ^ is the source position, c1 and c2 are the compressional (P) and
shear (S) wave speeds, respectively, and for the unit impulse we let f(t) = �(t).
The indirect boundary element methods (i.e. the �ctitious stress method and the displacement

discontinuity method) can be obtained from the direct boundary element method by superimposing
an interior problem and an exterior domain problem.3–5 By subtracting the equations for the interior



322 A. PEIRCE AND E. SIEBRITS

region from those for the exterior region, an equation similar to (1) is obtained in which the
tractions ti and displacements ui are replaced by the jumps in traction and displacement across the
boundary between the two regions. By requiring that the displacement jumps are zero across the
interface, we obtain the �ctitious stress method. The displacements and stresses for the �ctitious
stress method are given by

uk(x; t) =
∫
S
Uki (x; t; ^; 0) ∗ Fi(^; t) dS(^) (4)

�kj(x; t) =
∫
S
Tkji(x; t; ^; 0) ∗ Fi(^; t)nj dS(^) (5)

where Fi = t+i − t−i are the traction jumps across the �ctitious stress surface S.
Similarly, by requiring that the tractions are continuous across the interface, we obtain the

displacement discontinuity method. The displacement and stress equations for the displacement
discontinuity method are given by

uk(x; t) =
∫
S
Tkij(x; t; ^; 0)nj ∗ Di(^; t) dS(^) (6)

�kl(x; t) =
∫
S
Sklij(x; t; ^; 0)nj ∗ Di(^; t) dS(^) (7)

where Di = u+i − u−i are the displacement jumps across the displacement discontinuity surface S,
and Sklij is given by

Sklij = −
[
�
@Tmij
@�m

�kl + �
(
@Tkij
@�l

+
@Tlij
@�k

)]
(8)

2.2. Discretization of the boundary integrals

The boundary integrals in the above equations contain two types of integrals, viz. time and space.
The time integrals (embodied in the time convolution operator) are discretized into time steps,
with a particular functional variation over each time step (e.g. constant, linear, etc.). The spatial
boundaries are also discretized into elements. Each element is assumed to have certain geometric
properties (e.g. straight or curved elements) and the functional variation over each element is
assumed to be of a particular order (e.g. constant, linear, quadratic, etc.). The temporal integrals
can all be performed analytically, and this is well documented.2–5 The spatial integrations are often
determined numerically (e.g. Reference 11), especially in the case of higher-order geometrical and
functional variations over each element. In the case where each element is assumed to be straight
(or at), these integrals can also be determined analytically.2–5

The time integrals in the boundary integral equations are discretized using techniques that are
closely related to the methods commonly used to solve ordinary di�erential equations. In Appendix
I the essential di�erences between these two classes of numerical problem are described.
There are restrictions governing the choice of functional variation in space and time. For ex-

ample, in the displacement discontinuity method, a piecewise constant functional variation in time
(in two and three dimensions) is not possible because it leads to in�nite stresses at the wave
fronts.2; 3; 5 Hence, a minimum requirement of the displacement discontinuity method is a linear



STABILITY ANALYSIS AND DESIGN OF TIME-STEPPING SCHEMES 323

variation within each time step, with continuity between time steps. Furthermore, stability and ac-
curacy considerations govern which orders of time and space functional variations are permissible,
as will be seen later.

2.2.1. Temporal integrations. Assuming a piecewise linear time variation for the approximating
function, denoted by f(t), the integrations can be performed for the special case f(t) = t=�t,
and then generalized by combining three such staggered functions to obtain a ‘hat’ function, from
which the piecewise linear time variation can be constructed. Hence,

f(tk) =
[
H (t − tk−1)�k−1�t

− 2H (t − tk) �k�t + H (t − tk+1)
�k+1
�t

]
(9)

where tk = k�t and �k = t − tk . The above approach is possible because of the linearity of
the boundary element method (so that the principle of superposition applies), and because of the
time translation property of all the fundamental solutions. Combining a hat function at each time
step results in a piecewise linear temporal variation.2–5 Piecewise constant time elements can be
constructed in a similar way, by combining three sets of Heaviside functions appropriately. Higher
order in time variations can also be constructed, but are not covered here.

2.2.2. Spatial integrations. In the two-dimensional case, if we assume that the elements are
straight-line segments, then analytic integrations are possible for functional variations that are
constant, linear or quadratic along the element. This has been fully covered in References 4 and 3,
and will not be repeated here. In the three-dimensional case, if we assume that each element is at,
then analytic integrations are once again possible.2; 5 Alternatively, numerical integration procedures
can be used. Care must be taken, especially in the displacement discontinuity element method, to
avoid numerical problems with singularities at element edges because of the hypersingularity of
the fundamental solutions of this method. In fact, the hypersingular nature of the stress equations
for the displacement discontinuity method precludes the use of numerical integration schemes.
Furthermore, element integrations must be causal (i.e. partial integrations are performed for those
portions of the elements that fall within the causal space–time ‘light cone’) in order to ensure
accurate inuence coe�cient calculations.

2.2.3. Numerical implementation. The discretization of the time and space integrals in any of
the time-domain direct or indirect boundary element methods leads to a system of time marching
algebraic equations of the form:

bm = C0Fm +
m−1∑
k=1

Cm−kFk (10)

where F is the vector of unknown boundary tractions and/or displacements, or �ctitious stresses,
or displacement discontinuities, Ck is the inuence coe�cient matrix, b the boundary displacement
and/or traction vector and m the current time step number.
In general, the matrices Ck are fully populated. It is clear that the unknown quantities Fm at

the current time step m are obtained via a convolution between the known coe�cients and known
quantities from all previous times (in the two-dimensional case).
Algorithm (10) can be explicit (C0 diagonal) or implicit (C0 not diagonal), depending on the

type of discretization that is used. If the functional variation is constant across an element, then
the algorithm can be made explicit by choosing a small enough time step, in which case the
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dimensionless mesh parameter Q1 = c1�t=�x satis�es the inequality Q1 ¡ 0·5. Here �x is the
element size and �t is the size of the time step. In other words, the system is explicit if the
compressional wave front travels less than half an element length in one time step. Of course,
this pre-supposes that neighbouring elements are not at acute angles to each other, or closer than
half an element length. In such cases, the time step restriction is more severe. If the functional
variation over each element is variable, then the algorithm will always be implicit, because multiple
collocation points within each element ensure that cross-coupling occurs regardless of the size of
the time step, and hence the matrix C0 is never diagonal.
The stability of the algorithm is not guaranteed if the time step is chosen such that the

scheme becomes implicit. This has to be tested, and will be shown later to depend on the func-
tional variations across time steps and space elements as well as the geometric distribution of
elements.

3. GENERALIZED STABILITY ANALYSIS

In this section we generalize the stability analysis which was developed in Reference 9 so that it can
be applied to general boundary element formulations which reduce to the form (10). Because of the
uniform spatial discretization of the one-dimensional wave model considered in Reference 9, it was
possible to use the lattice Fourier transform to simplify the analysis considerably. Unfortunately,
such simpli�cation is not possible for general boundary element models so we need to develop
the theoretical tools necessary to analyse the stability of matrix time-marching equations (10)
directly.

3.1. The matrix stability problem

As a starting point we take the z-transform (see Reference 12, 13 and Appendix II) of the
matrix equation (10) to obtain

b(z) = C(z)F(z) (11)

where the z-transforms of the vector and matrix sequences {bk}; {Fk}, and {Ck} are de�ned in
terms of the z-transforms of their components. For example,

C(z) = [cij(z)] =
[∞∑
0
[cij]k z−k

]
(12)

In a typical boundary element problem we are given {bm} and need to determine {Fk} and we
represent this process in terms of (12) as follows:

F(z) = C−1(z)b(z) (13)

The sequence {Fk} can now be represented using the inversion formula (33) and the adjoint
formula for the inverse of a matrix

Fk =
1
2�i

∫
C

{
adj(C(z))
det(C(z))

b(z)
}
zk−1 dz (14)

where C is a contour that encloses all the poles of the expression between parentheses in (14).
The poles that are due to the numerical scheme are determined by the zeros of the following
equation:

det(C(z)) = 0 (15)
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The time-marching scheme is said to be stable9 if all the zeros of (15) lie within the unit disc. We
therefore need to locate the zeros of (15) in order to be able to determine if a given discretization
is stable. Our problem is that each of the elements of C(z) is an in�nite series so that (15)
potentially has an in�nite number of roots.

3.2. Stability polynomials and the Argument principle

For problems in which the boundary elements are located within a �nite region, the coe�-
cient matrices {Ck} decay as k → ∞. We can therefore approximate the in�nite series cij(z) by
polynomials of degree at most M , which is su�ciently large for the dominant element-to-element
inuences to be included. Provided the truncated matrices are su�ciently small, the roots that are
discarded by this truncation procedure will be close to zero and will not a�ect the stability anal-
ysis (see Appendix III). For an N degree of freedom boundary element model the Ck are N × N
matrices so that det(C(z)) is approximated by a polynomial of degree MN which we denote by

PMN (z) = det(CM (z)) ≈ det(C(z)) (16)

For large boundary element models (e.g. N = 100) with truncations involving even a modest
number of time steps M = 50 we are faced with the problem of locating the roots of a 5000 degree
polynomial. It is impracticable to determine explicit expressions for such high degree polynomials
and �nding such a large number of roots explicitly is computationally prohibitive. Our strategy
will be to use the fact that we are trying to �nd the roots of an analytic function PMN (z) and
concentrate on only those roots that can cause instabilities.
By means of the transformation w = 1

z the unstable roots |z |¿ 1 can be mapped into the unit
disc. We therefore de�ne the complimentary stability polynomial

QMN (z) = zMNPMN

(
1
z

)
(17)

which has roots zk inside the unit disc that correspond to the unstable roots of PMN (z) that fall
outside the unit disc. Since QMN (z) is an analytic function in the �nite complex plane, the Argument
principle14; 15 implies that the number of roots of QMN (z) contained within a closed curve C is
given by the change in argument (1=2�)�arg(QMN (z))|z∈C , which is an integer representing the
number of times the point w = QMN (z) winds around the origin as z traverses the curve C in a
positive direction. In particular, if the curve is a circle Cr of radius r then the number of roots of
QMN (z) within the circle is given by 1

2� [arg(QMN (re
2�i))− arg(QMN (re0i))]. If we set r = 1 then

(1=2�)[arg(QMN (e2�i)) − arg(QMN (e0i))] is the number of unstable zeros for the discretization.
The application of the Argument principle thus enables us to ascertain the stability of a particular
discretization by focusing on the number of unstable roots rather than having to determine all the
roots.
Figure 1 shows a two-element displacement discontinuity model which served as a rather ex-

acting test problem for stability. By varying the inter-element distance h it was possible to see the
type of intermittent instabilities that have been reported in the literature. Figure 2 shows stability
information for an unstable constant / linear two-element displacement discontinuity model. The �rst
plot shows the image curve Q(z) as the point z traverses the unit circle C1, the second plot shows
the cumulative argument arg(Q(z = ei�)) for 06�62�. Figure 3 shows the actual distribution of
roots of P(z) for the model. The cumulative argument plot predicts that there is one unstable root
which is consistent with the diagram of the roots of the stability polynomial that are evaluated
explicitly in this special case.
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Figure 1. Two element problem geometry which exhibits instabilities

3.3. Implementation of the stability criterion

For large boundary element models even applying the stability criterion can become prohibitive.
In this section we discuss some of the numerical techniques that can be used to make the stability
checking more e�cient.

3.3.1. Practical implementation of the Argument principle. The most expensive component in
the stability criterion based on the Argument principle is the process of evaluating the compli-
mentary stability polynomial for various values of z along the boundary of the unit disc. The �rst
step in evaluating QMN (z) is to evaluate the truncated matrix polynomial CM (z) = [

∑M
k=0[cij]kz

k ].
Since each coe�cient in this matrix is a polynomial of degree M it is important to evaluate each of
them e�ciently using Horner’s rule.16 In addition, in order to prevent the numbers from becoming
too large in the evaluation of the polynomial and later in the evaluation of the determinant, the
coe�cients are scaled by dividing each of them by the largest matrix element [cij]k—typically
the self-e�ect [cii]0. The second step is to evaluate the determinant of the N × N matrix CM (z)
by performing an LU decomposition and then taking the product of the diagonal elements on the
upper diagonal matrix. To avoid round-o� errors for large boundary element models, this product
can be performed by summing the logarithms of the diagonal elements. The complex argument
of the determinant that we require for the Argument principle can be found by taking the imag-
inary part of the logarithm of the determinant, i.e. if det(QMN (z)) = Rei� then � = Im(log(det
(QMN (z)))).

Once we have a technique to evaluate the determinant QMN (z) the next step is to �nd the
cumulative argument � of QMN (z) as z = rei� traverses the stability circle. In order to achieve
this we use the following procedure arg in which the determinant det(QMN (ei�i)), the cumulative
argument �i from the ith step, and the value of the determinant det(QMN (ei�i+1)) at the (i + 1)th
step are used to �nd the (i + 1)th cumulative argument �i+1. The cumulative argument �i should
be distinguished from the principal argument of det(QMN (ei�i)) which is evaluated on the principal
branch of the Riemann sheet and denoted by �i = Arg(det(QMN (ei�i))). In the procedure that
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Figure 2. The image curve Q(C1) of the unit circle, and the cumulative argument arg(Q(z)) for the unstable two-element
displacement discontinuity model: (top) stability polynomial Q(z) as z traverses the unit disk, (bottom) cumulative argument

follows we use the notation [t ] to denote the integer just less than t.

FUNCTION arg: �i+1 = arg(det(�i);�i ; det(�i+1))

N = sign(�i)[�i=2�]

�i+1 = Arg(det(�i+1))

if |�i+1 − (�i −N2�)|¿ �

�i+1 = (N+ sign(�i))2�+�i+1
else

�i+1 =N2�+�i+1
end if

end

where the shorthand notation det(�i) has been used for the quantity det(QMN (ei�i )).
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Figure 3. The actual distribution of roots of P(z) for the two element problem

Figure 4. The situation representing a close shave of the origin by the points A and B

3.3.2. An adaptive algorithm to sample the stability boundary. When the Argument principle is
applied, the sample rate of the stability circle can crucially a�ect the results as well as the e�ciency
of the algorithm. If the partition of the stability boundary is too coarse then we may miss some
crucial loop around the origin. In contrast a very dense partition of the stability boundary will
make it extremely expensive to evaluate the large number of determinants. We have developed
an adaptive sampling procedure which adjusts the sampling density to make the changes in the
cumulative argument � roughly constant from one step to the next. In addition, logic is inserted
to detect a situation in which the determinant makes a close shave to the origin in which case the
sample density is increased to determine which side of the origin the determinant trajectory falls.
At the ith step the basis for choosing the sampling point at the (i+1)th step is the gradient d�=d�

of the cumulative argument curve over the previous step. The formula we use for determining the
(i + 1)th sampling point �i+1 is as follows:

�i+1 = �i +��MAX
(�i − �i−1)
(�i −�i−1)

(18)

where ��MAX is the maximum change allowed in the cumulative argument �.
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The criterion for determining a close shave is based on the orthogonal projection from the
origin O to the closest point C on the line joining the point A = det(QMN (ei�i)) and the point
B = det(QMN (ei�i+1)). If C falls on the line between A and B, and OC � min[|A|; |B|] then an
additional sample-point is added at

�C = �A +
Re(C)− Re(A)
Re(B)− Re(A) (�B − �A) (19)

in order to determine whether the current loop includes the origin. The following procedure sum-
marizes the logic to check for a close shave between two points A and B (also see Figure 4)

FUNCTION close: (�C; ag) = close(A; B; �A; �B)

a = Im(B)−Im(A)
Re(B)−Re(A) , b=Im(A)-a Re(A)

rC =
|b|√
1+a2

Re(C) = −ab
1+a2

�C = �A +
Re(C)−Re(A)
Re(B)−Re(A) (�B − �A)

ag = 0

if C ∈ AB and rC ¡ 0·2min[|A|; |B|] then ag = 1
end

Once a close shave has been detected and a new sample point identi�ed, the close shave procedure
can be repeated until it is certain that the current values of the determinant are clear of the
origin.

4. DESIGN AND PERFORMANCE OF NEW TIME-STEPPING SCHEMES

4.1. The two-element model, persistent wave fronts and stability

One of the trends that comes out of the analysis in Reference 9 is that the magnitude of the self-
e�ect relative to those of the other element-to-element inuences plays a crucial role in determining
the stability of the time-stepping algorithm. The self-e�ect is the inuence an element or collocation
point has on itself in the �rst time step whereas the inuence an element has on itself at a later
time or the e�ect that an element has on one of its neighbours are referred to as ‘other e�ects’. In
the particular case of the one-dimensional wave model problem, the Trapezoidal constant / linear
approximation is unstable. This instability is largely due to the fact that the kernel H (x ± ct)
for the one-dimensional wave equation9 does not decay in space or time, so that the self-e�ect
does not dominate the other element-to-element inuences. The two-dimensional inuence kernels
do generally decay with space and time (see for example Reference 3). However, exceptions to
the space–time decay for two-dimensional elastodynamic problems do occur for certain types of
persistent solutions such as those for pressurized cracks (see Reference 17) and the stress waves
that propagate along the axis of symmetry that lies perpendicular to displacement discontinuity
elements. In this subsection we describe the persistent wave fronts for displacement discontinuity
elements, demonstrate the di�raction e�ects from the corners of the elements, and discuss the
inuence this has on stability of the standard Trapezoidal time-stepping scheme.
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Figure 5. The stress response of a constant displacement discontinuity element along its center-line when it is subjected to
triangular time pulses (solid), and largest root of the stability polynomial as a function of separation of the two element

problem (dashed)

Figure 6. Basis functions for the trapezoidal / standard linear scheme

For simplicity we consider the displacement discontinuity method for antiplane motion and
elements which have a piecewise constant spatial variation and piecewise linear time variation.
In Figure 5 we show the spatial plots, observed at times t = �t, 2�t, 3�t, and 4�t along the
element centre-line, of the wave fronts emanating from a displacement discontinuity element. In
this �gure, we have chosen Q2 = c2�t=�x = 0 ·5, E = 7·5398 Pa, � = � kg/m3, � = 0·2, and
�x = 2m, which implies a shear wave velocity of c2 = 1m/s. The displacement discontinuity
element has been excited by the Trapezoidal triangular hat functions that act initially over one time
interval and subsequently over two time intervals as shown in Figure 6. In the �rst snap-shot in
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Figure 5 at time t = �t the response to the triangular excitation of the displacement discontinuity
element is a square-wave stress pulse H (t −�t)−H (t) that does not decay with distance. In the
second snap-shot, observed at time t = 2�t, the response is no longer a square-wave stress pulse
but a perturbation of the pulse H (t) − 2H (t −�t) + H (t − 2�t). The perturbation of this pulse
results from the di�raction pulses that arrive at yd from the edges of the element. To the left of
this point yd the pulse H (t)− 2H (t −�t) +H (t − 2�t) is subjected to interference while to the
right of yd the pulse is undisturbed. In the third snap-shot, observed at time t = 3�t, a similar
di�raction-interference pattern is observed. In this case the response is a perturbation of the pulse
H (t−�t)−2H (t−2�t)+H (t−3�t). We also observe that the jumps in each of these perturbed
step pulses are the result of and are directly proportional to the changes in gradient with respect
to time in the original exciting triangular pulses.
An interesting phenomenon, that can be observed in the third time step t = 3�t, is that the

stress pulse reaches a level which is larger than unity—the magnitude of the self-e�ect (see time
step t = �t at y = 0). Physically, this implies that the displacement discontinuity element can
achieve a larger stress inuence on an element located at y ¿ 0 than the stress inuence that
the element has on itself. This situation arises from the interference of the di�racted pulses that
emanate from the singular points at the edges of the element. We shall refer to these large stress
regions as persistent di�racted pulses. As the stress wave moves further away from the displacement
discontinuity element, the width of the portion of the pulse that does not decay decreases. The
width of this region is determined by the di�erence between the distance travelled by the signal
that begins at the centre of the element and that travelled by the signals that begin at the edges
of the element.
In order to measure the e�ect that these persistent di�racted pulses have on the stability properties

of displacement discontinuity algorithms, we consider the special case of two parallel displacement
discontinuity elements of length 2�x separated by a distance h shown in Figure 1. In this case
the matrix problem (11) involves a 2×2 matrix

C(z) =

(
a0 + a1=z + · · · b0 + b1=z + · · ·
b0 + b1=z + · · · a0 + a1=z + · · ·

)
(20)

=

(
a(z) b(z)

b(z) a(z)

)
(21)

and the stability condition (15) reduces to the form a(z)2 − b(z)2 = 0 or a(z)± b(z) = 0.
From the above discussion of the persistent di�racted pulses, we expect that the regions where

the remote inuences are larger than the self-e�ect are associated with poor stability. Thus, if we
place the second element in one of these regions then we would expect the resulting two-element
problem to be unstable. In each plot of Figure 5 the magnitude of the largest root of the stability
polynomial is represented as a function of the location y along the centre-line of the displace-
ment discontinuity element at which the second displacement discontinuity element is placed (see
the dashed line). Superimposed on these plots are the appropriate persistent stress waves due to
the displacement discontinuity element which is located at the origin. We observe, for time steps
t = 3�t and t = 4�t, the close correlation between the regions in which the di�racted stresses are
larger than the self e�ect and the regions within which the two element problem will be unstable
because the stability root is larger than unity.
If the time step is altered (either increased or decreased) then it is possible that, due to the

relative locations of the elements, no persistent di�racted pulse passes through the second element.
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Figure 7. Basis functions for the �-scheme

In this case the algorithm will most likely be stable because the self-e�ect will dominate all
the inuences over the time history of the model. This is the source of the intermittent instability
phenomena that are observed in more complex displacement discontinuity models such as the Hook
problems considered in Reference 18 and later in this section. Because the instability regions and
the places where the persistent di�racted pulses occur are not identical, it is not possible to derive a
simple criterion for instability based on the location of the persistent di�racted pulses. In addition,
in problems with more complicated geometries the net e�ect of the persistent di�racted pulses may
be di�cult to assess—for example, when there are two lines of elements that are not parallel. It
is for this reason that we have developed the more global stability checking procedures which we
considered in Section 3.
It is interesting to note that if more than two of these parallel elements were stacked on top

of one another, and their relative distances were chosen so that each one fell on a persistent
di�racted pulse of one of the others, then we would be able to generate a numerical model which
goes unstable extremely rapidly.

4.2. The enhanced stability of the �-scheme

It is natural to try to consider possible remedies to the persistent di�ractive pulses by con-
sidering other discretization schemes. In this subsection we consider the �-scheme which was
successful in the case of the modal model problem and the one-dimensional wave models consid-
ered in Reference 9. For the Hook problem considered in Reference 18 there is evidence that the
�-scheme improved the stability of the displacement discontinuity models. However, when subjected
to the extreme situation presented by the two-element model problem, similar sorts of instabilities
can be observed. In this section we determine the reason for the improved stability properties of
the �-scheme and the reason why it ultimately fails to resolve the two-element problem.
When the �-scheme (whose basis functions are shown in Figure 7) is implemented in a con-

stant / linear displacement discontinuity algorithm, similar persistent wave fronts are observed as is
shown in Figure 8. The reason why the �-scheme is more stable is that the di�raction from the
tips of the element has the e�ect of increasing the self-e�ect while the persistent di�raction pulses
are not increased. This has the net e�ect of improving the stability properties of the algorithm.
However, the increase in the self-e�ect is not su�cient to remove the instabilities completely
because some inuences are still larger than the self-e�ect. The �-scheme can be interpreted as
a perturbation to the Trapezoidal scheme which provides improved stability characteristics. The
stability often improves as the value of the parameter � is increased, however, this gain in stability
is o�-set by an associated loss in accuracy. If � is small the loss in accuracy is not noticeable,
however, for � ≈ 1 a signi�cant error in the form of a phase shift in the solution is observed.
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Figure 8. Regions of instability and the persistent wave fronts for the �-scheme applied to the two element model problem

Figure 9. Basis functions for the half-step scheme (top) and full-step scheme (bottom)
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Figure 10. Regions of instability and the persistent wave fronts for the half-step scheme applied to the two element model
problem for t = �t=2 to t = 2�t

4.3. The half-step scheme

The strategy for designing a new algorithm with improved stability properties must be to in-
crease the self-e�ect while not increasing the magnitudes of the persistent di�raction pulses. The
scheme we consider in this section exploits the relationship between the changes in gradient of
the time basis functions and the jumps in the wave fronts in order to achieve improved stability
properties.

4.3.1. Design and formulation. We have observed that the persistent wave fronts associated
with the triangular basis functions of the piecewise linear displacement discontinuity method have
jumps that are proportional to the changes in gradient of the basis functions. In order to achieve a
large self-e�ect our idea is to start with a basis function with a large gradient and then change the
basis functions to the standard piecewise linear triangles. The transition between basis functions
should be such that the basis functions are consistent (i.e. they should all add up to unity so that
they can at least model a constant function).
The solution is advanced in a sequence of two half-steps each of magnitude 1

2�t, while the
convolution, which forms the major part of the computational burden, is performed using steps of
magnitude �t. In Figure 9 the basis functions associated with the �rst half-step and the second
half-step (or the so-called full-step) are shown.
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Figure 11. Regions of instability and the persistent wave fronts for the half-step scheme applied to the two element model
problem for t = 5�t=2 to t = 4�t

The recursion for the half-step scheme can be expressed in the following form:

Ch0F2m−1 +
m−1∑
k=0

Ch2m−1−2kF2k = b2m−1

Cf0F2m + C
f
1F2m−1 +

m−1∑
k=0

Cf2m−2kF2k = b2m

(22)

where ‘h’ and ‘f’ imply half and full steps, respectively. In order to interpret this scheme in the
same form as (10) , we eliminate F2m−1 from the full-step equation using the half-step equation
in (22) to obtain

Cf0F2m +
m−1∑
k=0

C̃f2m−2kF2k = b̃2m (23)

where C̃f2m−2k = [Cf2m−2k − Cf1Ch0
−1
Ch2m−1−2k ] and b̃2m = b2m − Cf1Ch0

−1
b2m−1. The stability

analysis developed earlier in this section can now be applied to (23).
In Figures 10 and 11 we superimpose the plots of the half-step wave fronts (normalized with

respect to the self-e�ect) and the magnitude of the zero of the stability polynomial with the
largest modulus. We observe that the persistent wave fronts that plagued the Trapezoidal scheme are
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now all less than the self-e�ect. Unfortunately, due to the modi�ed recursion (23), there are
still regions within which the maximal stability root is larger than unity. We observe that these
regions of instability coincide with the basis functions that span two time steps and which are used
to perform the convolution at the half-steps, i.e. those associated with the inuence coe�cients
Ch2m−1−2k ; k = m − 2; m − 3; : : : The e�ect of these basis functions is ampli�ed by the factor
Cf1C

h
0
−1
by which they are multiplied in (23). We refer to these basis functions as the shadow basis

functions. Because of the regions of instability caused by the shadow basis functions for this two-
element test problem, stability is not guaranteed for this new algorithm. However, this two element
problem is somewhat extreme. Because the self-e�ect for the half-step scheme is double that of the
Trapezoidal scheme we would expect that the half-step scheme would be more stable in general.
Evidence of this enhanced stability is demonstrated for Hook problems in the next subsection.

4.3.2. Performance of the half-step scheme. Implementing the half-step scheme (22) requires
signi�cant modi�cations to the normal time-marching algorithm (10). The new basis functions that
are needed to calculate the inuence coe�cients at each time step for the half-step scheme are
shown in Figure 9.
The time step �t (for each half-step) in the new algorithm (22) is taken as half the time step

used in the old algorithm (10). This implies that twice as many time steps are needed to advance
the solution to the same time horizon. The number of coe�cient matrices that are required in the
new algorithm is twice that required by the old algorithm. However, the number of calculations
that are required does not increase accordingly because of the structure of the new algorithm. The
largest share of CPU time is taken up by the calculation of the convolution histories at each time
step, and this operation is only slightly slower for the new scheme than in the old scheme (even
though there are twice the number of steps). Computer run times increase by about 50 per cent,
but accuracy and stability are substantially improved. Because of the increased accuracy of the new
scheme it is possible to use larger time steps. This implies that the new scheme is competitive with
the old one (e.g. compare the run times of the two 150 time step runs in Table I). Table I compares
the CPU times of the two schemes for di�erent numbers of time steps. These results were obtained
for the 28 element plane strain constant / linear Hook problem (see Figure 12) run on a Pentium
66MHz machine. Figure 13 shows solutions obtained using the two schemes plotted against results
from the ABAQUS/EXPLICIT19 �nite element code. The half-step solution agrees well with the
ABAQUS solution and is clearly more accurate and more stable than the Trapezoidal scheme.
Figure 14 shows the Hook problem results obtained from the linear / linear plane strain version

of TWO4D with Q1 = 0·6, and a numerical instability is evident by 500 time steps. The stability
analysis predicts two poles. Figure 15 shows the half-step results to 3000 time steps and there is
no sign of an instability.
Further details of the implementation of this new algorithm as well as its application to other

boundary element formulations are discussed in another paper.18

Table I. Run times for Trapezoidal versus half-step scheme

Time-stepping scheme No. steps Run time Q1 Stable?

Trapezoidal 75 2·05min 1·2 No
150 6·23min 0·6 Yes
300 20·93min 0·6 No

Half-step 150 3·30min 1·2 Yes
300 9·88min 0·6 Yes
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Figure 12. Plane strain Hook problem geometry which exhibits instabilities

Figure 13. Standard, half-step, and ABAQUS/EXPLICIT results for Hook problem
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Figure 14. Standard linear / linear Hook problem, showing numerical instability

Figure 15. Half-step constant / linear Hook problem to 3000 time steps

5. CONCLUSIONS

Amid the growing evidence of numerical instabilities in boundary element elastodynamic models,
there has hitherto been little theoretical investigation of the causes of these instabilities and the
possible strategies for remediation. Up till now the user of a time-domain BE algorithm has no
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way to guarantee a priori that a model with a given selection of meshing parameters will be stable.
Indeed, there has been considerable frustration expressed in the literature1 regarding the lack of
predictability and alternative time-stepping procedures.
The objective of this paper has been to address this lack of theory. In this paper we generalized

the stability theory established for model problems9 so that it can be applied to any time-domain
boundary element algorithm. We showed that the stability of a given time-stepping scheme can
be determined by �nding the zeros of the characteristic determinant of the problem. Since each
of the elements in the determinant is an in�nite series, the determinant itself is also an in�nite
series. Thus, determining the roots (of which there are possibly an in�nite number) of the stability
determinant directly poses a formidable task. We outlined a methodology for approximating the
stability determinant by a polynomial whereby the neglected roots are close to zero and therefore
do not a�ect the stability of the method. Rather than searching for all the roots of this polynomial
we developed a procedure, based on the Argument Principle, to check for the presence of unstable
roots alone. We outlined practical procedures to implement the search for the presence of unstable
roots.
Because of the potential for dynamic fracture modelling by means of the displacement discon-

tinuity method, we used these stability analysis tools to investigate the sources of the instabilities
in the displacement discontinuity method. To focus on the causes of these instabilities, we iden-
ti�ed a simple example involving two parallel displacement discontinuity elements which rapidly
exhibits potential instabilities. This test problem enabled us to establish the link between the per-
sistent elasticity solutions, characteristic of displacement discontinuity elements, and the onset of
exponential instabilities. In two dimensions an excited element will radiate a pulse which does
not decay with distance from the source element. Indeed, as is the case for the model problems
analysed in Reference 9, the stability of the problem is dominated by the relative magnitude of
the e�ect that the element has on itself and the e�ect it has on its neighbours. Due to di�rac-
tion of the pulse caused by a change in the spatial variation of the displacement discontinuity,
it is possible for the stress e�ect remote from an element to be larger than the e�ect that the
element has on itself. This positive feedback between the two elements results in the instability.
By appropriately changing the discretization procedure we showed that it is possible to develop
new time-stepping schemes for the displacement discontinuity method with enhanced stability
characteristics. We used this information to design a novel scheme, which we called the half-
step scheme, with improved stability characteristics and greater accuracy for similar computational
e�ort.
In summary, we have highlighted the causes of numerical instabilities in elastodynamic bound-

ary element schemes, and have suggested a new algorithm—the half-step scheme, which delays
and in some cases eliminates these instabilities. Furthermore, we have developed a numerical
procedure which can be used to check a priori whether a particular problem will go unsta-
ble or not. We hope that the framework established in this paper will assist researchers in
the assessment of the stability characteristics of their boundary element codes. We also hope
that this paper will stimulate the development of new time-stepping algorithms that
will enable dynamic boundary element algorithms to reach their full potential in practical
applications.
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APPENDIX I

I.1. Discretization of ODE and boundary integrals

The relationship between the numerical solution of ordinary di�erential equations and the com-
plications involved in the numerical solution of the dynamic boundary element equations can best
be explained in terms of the following simple integral equation:

b(t) =
∫ t

0
K(t − s)f(s) ds =

∫ t

0
f(s) ds (24)

This is a trivial convolution equation similar to the type of time convolution integral equation
of the �rst kind that needs to be solved in the dynamic boundary element formulations. In this
case we have chosen the kernel K(t − s) = 1 whereas the dynamic boundary element equations
involve a singular kernel and vector quantities. In this equation, we are given b(t) and we need
to determine f(t). By di�erentiating (24) both sides we see that (24) is equivalent to the ordinary
di�erential equation:

b′(t) = f(t) (25)

To see what is involved when we try to solve the integral equation (24) (i.e. �nd f(t) given
b(t)) we can look to the ordinary di�erential equation (25). We essentially need to perform the
process of numerical di�erentiation because given b(t), we need to determine b′(t) = f(t). This is a
notoriously ill-conditioned process. In contrast, when solving the ordinary di�erential equation (25)
we are typically given f(t) and we need to determine b(t)—this amounts to numerical integration
which is much better conditioned. In fact (24) provides a representation for the solution b(t) to
the ordinary di�erential equation (25), which is a starting point for the derivation of many of
the numerical schemes that are used to solve ordinary di�erential equations. For example, the
trapezoidal approximation to the integral in (24) yields the Crank–Nicolson or Trapezoidal method
to solve (25). Thus, similar discretization techniques can be used to solve the integral equation
(24) and the ordinary di�erential equation (25). Indeed, various discretizations of the integral in
(24) yield a variety of di�erent schemes for solving the integral equation (24). Although the
discretization strategies may be the same, the stability properties of the approximation scheme
for the ordinary di�erential equation and the integral equation are very di�erent. In particular, a
discretization of (24) is of the form:

bN = �t
N∑
k=0
wkfk (26)

Solving (25) involves evaluating the convolution sum on the known quantities fk , whereas solving
(24) using the same discretization involves inverting the convolution sum to �nd fk given bk .

APPENDIX II

II.1. The z-transform

De�nition II.1 The z-transform of a causal sequence {fk : fk = 0 if k ¡ 0} is de�ned to be

F(z) = Z [fk ] =
∞∑
0
fk z−k (27)
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while the z-transform of a continuous function f(t) with the sampling period �t is de�ned to be:

F(z) = Z [f(k�t)] =
∞∑
0
f(k�t)z−k (28)

Although there are many more, we only list some of the important properties of the z-transform
that we need in our stability analysis that follows. These properties can be derived directly from
the de�nition of the z-transform:

Property 1. (Linearity):

Z[�fk + �gk ] = �Z [fk ] + �Z [gk ] (29)

Property 2. (Backward shift):

Z [fk−m] = z−mZ[fk ] (30)

Property 3. (Forward shift):

Z [fk+m] = zm
{
Z[fk ]−

m−1∑
k=0

fk z−k
}

(31)

Property 4. (Convolution):

Z
[

k∑
m=0

fk−mgm

]
= F(z)G(z) (32)

Property 5. (Inversion integral): Let C be a closed contour enclosing all the poles of F(z) then:

fk =
1
2�i

∫
C
F(z)zk−1 dz (33)

APPENDIX III

III.1. Truncating det(C(z)) and stability zeros

In this appendix we consider the e�ect that the truncation procedure (16) has on the stabil-
ity roots. The in�nite series det(C(z)) potentially has an in�nite number of zeros, whereas the
approximating polynomial pMN (z) has only MN zeros. We consider conditions under which it
is possible to truncate the series without a�ecting the number of unstable zeros. Since, we are
considering a search for only unstable zeros |z |¿ 1 of det(C(z)) we explicitly exclude the case
of marginally stable roots of det(C(z)) which lie on the unit disk |z | = 1. The argument followed
in this appendix is fairly common in complex analysis (see for example Reference 15) but will
be presented in this appendix for the sake of completeness.
Let MN =N and consider the zeros of the polynomial

pN(z) = a0zN + a1zN−1 + · · ·+ aN (34)

which is a truncation of det(C(z)). In order to focus on the unstable zeros only, we consider the
complimentary polynomial:

qN(z) = zNpN

(
1
z

)
= a0 + a1z + · · ·+ aNzN (35)
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of pN(z). The conformal map w = 1
z associates the unstable zeros |z | ¿ 1 of pN(z) with the

zeros of qN(z) which lie within the unit disk |z |¡ 1. Provided the coe�cients an of qN(z) have
the following asymptotic behaviour:

|an| ∼ 1
np

as n→∞; where p ¿ 1 (36)

then, by the Weierstrass M-test, the sequence of partial sums {qn} converges uniformly within the
unit disk |z |61 to the limit function q(z) =∑∞

n=1 anz
n. Since, we are only considering the unstable

zeros |z | ¡ 1 of q(z), we assume that q(z) has no zeros on the unit circle C1 = {z : |z | = 1}.
Since, q(z) is analytic and therefore continuous on the compact set C1 and non-zero on C1, there
exists an m0 ¿ 0 such that |q(z)|¿m0 ¿ 0. Since the sequence qn(z) converges uniformly to q(z)
on C1, there exists an integer N0 such that

n¿N0 ⇒ |qn(z)− q(z)|¡ m06|q(z)| for all z ∈ C1 (37)

Since, qn(z) and q(z) are analytic on |z |61, it follows from Roch �e’s theorem that each of the
qn(z) for which n¿N0 have precisely the same number of zeros within C1 as does q(z).
Thus, provided the sequence of inuence coe�cients an converge su�ciently rapidly to satisfy

(36), it is possible to truncate in�nite series without compromising the stability analysis.
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