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In the literature there is growing evidence of instabilities in standard time-stepping schemes to solve 
boundary integral elastodynamic models [ 11-13]. In this article we use three distinct model problems 
to investigate the stability properties of various discretizations that are commonly used to solve 
elastodynamic boundary integral equations. Using the model problems, the stability properties of a 
large variety of discretization schemes are assessed. The features of the discretization procedures 
that are likely to cause instabilities can be established by means of the analysis. This new insight 
makes it possible to design new time-stepping schemes that are shown to be more stable. @ 19% 
John Wiley & Sons, Inc. 

1. INTRODUCTION 

There is considerable interest in the numerical solution of the elastodynamic equations 
in the geosciences both for geological prospecting and for assessing the effect of fault 
movement and fracture propagation on surface structures and mining excavations. The 
displacement discontinuity boundary element (BE) method provides perhaps the most ef- 
ficient representation of cracks and geological features such as faults and parting planes, 
and has, therefore, been actively investigated by a number of authors. 

Unfortunately, there is growing evidence of “intermittent numerical instabilities” in 
boundary integral elastodynamic models. Mack [2] and Siebrits [3] have both noted nu- 
merical instabilities in their three-dimensional (3D) and two-dimensional (TW04D) dis- 
placement discontinuity codes, respectively. 3D uses linear in time and constant in space 
functional variationson flat rectangular elements TW04D uses linear in time, and either 
constant in space (“constant/linear” scheme) or linear in space (“linear/linear” scheme) 
functional variations on straight-line elements. Tian 141 and Loken [ 5 ]  have both also noted 
numerical instabilities in their two-(IBEM2) and three-dimensional (3DFS) fictitious stress 
codes, respectively. 3DFS uses linear in time and constant in space functional variations 
on flat rectangular elements. IBEM2 uses constant or linear in time and constant in space 
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functional variation on straight-line elements. Tian’s I41 direct boundary element code 
(DBEM2), which uses linear in time and quadratic in space functional variations, also 
exhibits numerical instabilities. 

The above codes all use analytical integrations in time and space. A more recently 
published direct boundary element code, QUADPLET [ 61, which uses quadratic spatial 
and linear temporal elements and numerical integrations for the spatial integrals, also goes 
unstable, e.g., the problem in which the circumference of a circular cavity is suddenly 
loaded by a normal traction axisymmetrically 171 is clearly unstable by 2000 time-steps. 
There are also other independent references made to unstable boundary element methods 
in the literature, e.g., [8], which had to resort to a penalized least-squares formulation in 
terms of a Tikhonov stabilizing functional to eliminate spurious numerical “oscillations.” 
Andrews [ 11 modeled mixed-mode shear slip with a boundary integral approach, where the 
spatial convolutions were performed in the Fourier domain. He also notes the presence 
of “oscillations” in almost all the boundary integral models he considered, for which he 
found no solution. 

We have used the term “intermittent instabilities,” because of the way in which the 
instabilities appear and disappear as the time-step and spatial mesh parameters are changed. 
As an example of this type of instability, consider fixed spatial discretization of a boundary 
integral model of a given elastodynamic problem, and allow the time-step-size to change. 
The time-domain boundary element model can be unstable for a certain step-size and 
become stable if the step-size is increased. If the step-size is increased further, then the 
boundary element model may become unstable again. In addition, these instabilities may 
occur for certain problems and not for others depending on the specific geometry of the 
problem. 

This intermittent instability is unacceptable, as one cannot provide coherent guidelines 
about the appropriate choice of time-step. In order to be practical, we require an algorithm 
whose stability is assured, provided that the time-step satisfies a relatively simple crite- 
rion. The Courant-Fredricks-Lewy (CFL) upper bound on the time-step for explicit finite 
difference and finite element schemes provides an example of such a criterion in numerical 
analysis. Such criteria cannot, however, be applied directly to boundary element schemes, 
as they are based on a different formulation and discretization of the original system of 
partial differential equations. 

The discretized BE equations of elastodynamics are complicated and, therefore, are 
not amenable to direct analysis to determine their stability properties. The approach we 
adopt in this article is to consider a hierarchy of model problems that share many of the 
properties of the BE equations, but which are more tractable analytically. The model 
problems vary in complexity from the one that represents only the time-stepping part of 
the BE algorithtns without any representation of the spatial meshing, to the most com- 
plex model that represents a full space-time discretization of the one-dimensional wave 
equation. Fourier Analysis can be used to show how the elastodynamic wave equations 
can be reduced to the various model problems in certain special cases. Apart from their 
simplicity, the advantage of the model problems is that they allow the stability properties 
of large classes of discretization schemes to be assessed. Indeed, from the study of these 
schemes a pattern emerges that provides considerable insight into the requirements of a 
stable solution algorithm. It is, therefore, possible to propose new time-stepping schemes 
with enhanced stability characteristics. 

The analysis presented here can be generalized to provide stability checking criteria 
and information useful for algorithm design for general BE models. As the focus of this 
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article is on the analysis of a variety of discretization schemes when applied to the model 
problems, these extensions are beyond the scope of this article and are reported elsewhere 
(see 191). 

In Section I1 the BE equations of elastodynamics are summarized and the three model 
problems are presented. In Section I11 we analyze the stability of various discretization 
procedures when they are applied to the model problems, which involve only integrals over 
time without any explicit spatial meshing. The theoretical results are confirmed by means 
of numerical experiments. In Section IV we analyze the stability properties of the standard 
space-time discretizations that are commonly used to solve the RE equations when they are 
applied to the model problem comprising the integral form of the one-dimensional wave 
equation. In Section V we summarize the results and make some concluding remarks. 

II. BE EQUATIONS AND MODEL PROBLEMS 

A. Boundary Element Equations 

The direct boundary element method is well documented (e.g., [lo]), and the derivation 
will not be repeated here. The direct boundary element method equations are obtained by 
combining the dynamic reciprocal theorem with the appropriate fundamental solutions. In 
the absence of body forces and given zero initial conditions, the direct boundary element 
equations are given by 

(2.1) 

where U l k ( g ,  t ;  (, 0) represents the kth displacement component at the receiving point rr: 
at time t due 6 a unit point load in the ith direction, which was applied at time t = 0; 
and T t J k ( g ,  t ;  (, O)nJ represents the kth displacement component at the receiving point g 
at time t due to a unit displacement in the ith direction, which was applied at time t = 0. 

The indirect boundary element methods (i.e., the fictitious stress method and the dis- 
placement discontinuity method) can be obtained from the direct boundary element method 
by adding an interior to an exterior domain problem [3]-[5]. By subtracting the equations 
for the interior region from those for the exterior region, an equation similar to (2.1) is 
obtained in which the tractions t ,  and displacements 11, are replaced by the jumps in trac- 
tion and displacement across the boundary between the two regions. By requiring that the 
displacement jumps are zero across the interface, we obtain the fictitious stress method. 
The displacements and stresses for the fictitious stress method are given by 

(2.2) 

(2.3) 

where F7 = t: -- t ;  are the traction jumps across the fictitious stress surface S. 
Similarly, by requiring that the tractions be continuous across the interface, we obtain 

the displacement discontinuity method. The displacement and stress equations for the 
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displacement discontinuity method are given by 

where I), = u,' - ua- are the displacement jumps across the displacement discontinuity 
surface S ,  and Sklz, is given by 

The boundary integrals in the above equations contain two types of integrals, viz. time 
and space. The time integrals (embodied in the time convolution operator) are discretized 
into time-steps, with a particular functional variation over each time-step (e.g., constant, 
linear, etc.). The spatial boundaries are also discretized into elements. Each element is 
assumed to have certain geometric properties (e.g., straight or curved elements) and the 
functional variation over each element is assumed to be of a particular order (e.g., constant, 
linear, quadratic, etc.). The temporal integrals can all be performed analytically, and this is 
well documented 121-1 5 ) .  The spatial integrations are often determined numerically (e.g., 
[ I  1 I), especially in the case of higher-order geometrical and functional variations over each 
element. In the case where each element is assumed to be straight (or flat), these integrals 
can also be determined analytically [2]-[ 51. There are restrictions governing the choice 
of functional variation in space and time. For example, in the displacement discontinuity 
method, a piecewise constant functional variation in time (in two and three dimensions) is 
not possible, because it leads to singular integrated stress expressions [2], 131, 151. Hence, 
a minimum requirement of the displacement discontinuity method is a linear variation 
within each time-step, with continuity between time-steps. 

The discretization of the time and space integrals in any of the time domain direct or 
indirect boundary element methods leads to a system of time marching algebraic equations 
of the form: 

flr 

L O  

where F is the vector of unknown boundary tractions and/or displacements, fictitious 
stresses, or displacement discontinuities; C,, is the influence coefficient matrix; b is the 
boundary displacement and/or traction vector; and nz is the current time-step number. The 
matrices C,,, are fully populated in general. It is clear that the unknown quantities F, 
at the current time-step rri are obtained via a convolution between the known coefficients 
and known quantities from all previous times (in the two-dimensional case). Algorithm 
(2.7) can be explicit (Co diagonal) or implicit (Co not diagonal), depending on the type 
of discretization that is used and the magnitude of the dimensionless mesh parameter 

The stability of the algorithm is not guaranteed if the time-step is chosen such that the 
scheme becomes implicit. This has to be tested, and will be shown later to depend on 
the functional variations across time and space elements and the geometric distribution of 
elements. 

c i A f  & I  = x. 
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B. Model Problems 
In order to motivate the model problems that we will consider, we observe that the equa- 
tions of elastodynamics can be reduced to solving (see for example [12]) a scalar wave 
equation and a vector wave equation. Let us consider the scalar wave equation 

d 2 U  
-- c2V2u(r, t )  = f ( r ,  t ) .  
at2 

(2.8) 

Taking the Fourier transform i i (k1,  k2, k ~ )  = JR3 ~ Z ( ~ . ' ) u ( r ) d r ~  of both sides of (2.8), we 
obtain the following second-order ordinary differential equation: 

& + w 2 &  = f, (2.9) 

where w = c d k f  + k: + k:. The general solution to the homogeneous form of this equa- 
tion is 

ii = A(w) coswt + B(w)  sinwt. (2.10) 

Since (2.8) is linear, we see that solutions u to (2.8) are superpositions of spatial modes 
parameterized by w and whose time-evolution is of the form {coswt, sinwt}. 

Our first model problem comprises the following Volterra integral equation: 

u(t)  = cosw(t - T)~(T)~T, I' (2.1 I) 

in which u(t) is a given function that satisfies the compatibility condition u(0) = 0, and f ( t )  
is the unknown function that needs to be determined. Therefore, (2.1 1) can be interpreted 
as tracking the time evolution of one of the spatial modes in (2.10) that are associated with 
a particular forcing function f ( t ) .  A solution of (2.1 l), therefore, involves determining the 
appropriate distribution of sources f(7) over the time interval (0 ,  t )  in order that certain 
prescribed conditions u(t)  are satisfied at time t .  We note that the implicit assumption 
when using the Fourier transform is that we are considering an infinite domain. However, 
this line of reasoning is not restricted to problems that are defined on infinite domains. 
Indeed, given a different domain, we would proceed as before, but with an expansion of 
the solution u in terms of the spatial eigenfunctions associated with that geometry. This 
will yield time-dependent expansion coefficients that also satisfy (2.9). We see, therefore, 
that (2.1 1) can be regarded as an equation that tracks the time evolution of a typical spatial 
eigenmode of the elastodynamic equations. The range of eigenmodes that are present will 
depend on the particular problem under consideration. However, for our purposes we can 
regard these to be represented by a range of values of the parameter w. To distinguish it 
from other model problems that we shall consider, we refer to (2.11) as the modal model 
problem. 

The model problem in (2.11) in the special case w = 0 reduces to the classic model 
problem 

r t  

(2.12) 

which has been used to analyze approximate methods for Volterra integral equations (see 
for example [13], [14]). Differentiating (2.12) we obtain the equivalent ordinary differential 
equation f ( t )  = u'(t), so that the numerical solution of (2.12) is equivalent to numerical 
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differentiation-a notoriously difficult procedure particularly if u is subject to errors or 
uncertainties. The analytic solution to (2.1 1) can be obtained by taking the Laplace trans- 
form of both sides, solving for f ( s ) ,  and inverting the Laplace transform. For example, if 
u(t) = tsinwt,  then 

f ( t )  = 2siriwt. (2.13) 

The above two model problems represent only the time evolution part of the elasto- 
dynamic boundary element equations. In our analysis, we will also need to consider the 
effect of spatial discretization on the solution of the boundary element equations. We con- 
sider the forced one-dimensional wave equation [see (2.8)] subject to the initial conditions 
u(z ,0)  = 0 = ~ and the boundary conditions u(&m,t) = 0. In this case, (2.9) has 
the following solution: 

(2.14) 

Inverting the Fourier transform in (2.14), we obtain the classic D’ Alambert solution for 
the wave equation 

(2.15) 

Equation (2.15) is an expression for the solution u(z, t )  to the one-dimensional version 
of the wave Eq. (2.8) in terms of the source distribution f(x, t )  and the Green’s function 
for the one-dimensional wave Eq. g(z , t )  = & ( H ( z  + ct)  - H ( z  - ct)) .  In order to 
construct our space-time model problem, we consider the opposite situation: determine 
the appropriate source distribution f(z, t )  that will bring about a given set of displacements 
u(z, t ) .  Comparing (2.15) with (2.3) and (2.5), we observe that this model problem has a 
similar form to the boundary element equations of elastodynamics. Indeed, this model 
problem retains many of the important features of the boundary element formulations 
of elastodynamics including the space-time convolution, the domain of dependence as 
represented by the light cone (x - c(t  - T ) , Z  + c(t - T ) ) ,  and the lack of decay of the 
signal with &stance from the source (a curious property of the wave fronts of certain 
persistent elastodynamic solutions in certain directions). In Section IV, we shall see that 
the discretization of (2.15) leads to a system of time marchng algebraic equations that are 
of precisely the same form as the discretized BE equations of elastodynamics (2.7). 

111. STABILITY ANALYSIS OF DISCRETIZATIONS OF TIME-ONLY MODEL 
PROBLEMS 

In this section we consider various discretization schemes to solve simple integral equa- 
tions, which serve as model problems for the boundary element formulation of the equa- 
tions of elastodynamics. The first model concentrates only on the time evolution part 
of the boundary element equations and disregards the spatial discretization. The second 
model problem represents a full space-time boundary element formulation of the one- 
dimensional wave equation. While these model problems do not yield stability criteria 
that can be applied directly to the boundary element elastodynamic models, they do high- 
light the stability characteristics of the various discretization schemes and allow certain 
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of them to be rejected without having to implement them in the complicated boundary 
element formulations. 

A. Stability of Approximations to the Classic Model Problem 

The model problem (2.12) that we consider in this section is useful in assessing the stability 
properties of some of the more complicated approximation schemes, as well as approx- 
imations that are cast within a general framework. The principal tool that we shall use 
for the stability analysis in this section and throughout the remainder of this article is the 
z-transform [ 1514 171 which is described in Appendix A. 

We consider the following class of ( q  + 1)-stage, ( r  + 1)-step linear approximation 
schemes for (2.12): 

(3.1) un+l = un-q + At(Pofn+l + P i f n  + . . . + Pr fn- r+ l ) ,  

where the ,& represent the appropriate quadrature weights used to approximate that part 
of the integral in (2.12) defined on the interval [tnPq, t,+l]. An important subclass of this 
algorithm is obtained by letting q = 0 so that the quadrature weights are determined by 
considering the integral over the last time step [tn,tn+l] only. The truncation error for 
this scheme can be obtained by direct Taylor expansion of each of the terms u,+~ and 
f n - k  in (3.1) about the point t,. We then collect like powers in At and use the fact that 
f ( t )  = u'(t). For O(At3) accuracy, we require that the coefficients of each power of At 
in this expansion up to and including O(At5) should vanish, which leads to the following 
sequence of conditions that need to be satisfied by the ,&: 

The lowest order truncation error for which the algorithm (3.1) will still converge is given 
by the special case of the above condition s = 1. This we refer to as the consistency 
condition. The stability properties of the above approximation can be established by taking 
the z-transform of both sides of (3.1) and expressing the z-transform F ( z )  of { f n }  in terms 
of the z-transform U ( z )  of (u,] 

From the inversion integral (z-transform property 5 )  we observe that f k  can be expressed 
in terms of a sum of the residues of T ~ s ( z ) U ( z )  at the poles of the transfer function 
T ~ s ( z )  and the poles of the forcing function U ( z ) .  From (3.3) we see that the poles of 
the transfer function are determined by the roots of the stability polynomial 

(3.4) 

An exponential numerical instability (i.e., due to the approximation (3.1) as opposed to 
an exponential growth that may be introduced by the forcing function {un}) will result if 
any of the poles of T ~ s ( z )  fall outside the unit disk ) z /  > 1. In this case, the asymptotic 
behavior of the numerical solution { f n }  will be 

POZT+' + P1zT + . ' ' + P T Z  + PT+l = 0. 

(3.5) n-cc f n  - czk--1, 

where c is a constant that depends on the initial conditions and ZM is the pole of Tus ( z )  
with the maximum modulus. A resonant numerical instability can also occur if T , ~ s ( z ) U ( z )  
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has any poles on the unit disk (i.e., 121 = 1) of multiplicity greater than unity. Such a situa- 
tion can occur even if TMS ( 2 )  has only a simple pole on the unit disk, but which happens to 
coincide with a pole of V ( z ) .  In this case, a spurious polynomial growth in the numerical 
approximation will be observed due to an undesirable resonance between the numerical 
scheme and the particular forcing function. The asymptotic behavior of the numerical 
solution in the case of such resonant instabilities will be 

(3.6) f n  - m N f K p l  z1 n-l , 
where c is a constant, z1 is on the unit disk and is an Nth order pole for TMS ( z ) ,  and a Kth 
order pole for U ( z ) .  Although these resonant instabilities are weaker than the exponential 
instabilities, in order to guarantee stability it is necessary to require that all the poles 
of TMS(Z) be inside the unit disk. We, therefore, introduce the following definition of 
stability for the purposes of this article. 

Definition 3.1. A numerical approximation is stable provided that the poles of its transfer 
function lie inside the unit disk. The approximation is said to be marginally stable, if the 
poles of its transferfunction lie on and within the unit disk. A numerical approximation is 
unstable i f  any of the poles of its transfer function falls outside the unit disk. 

It is interesting to consider the stability and accuracy of the approximation (3.1) in some 
special cases. 
One-stage 2-step schemes, q = 0, T = 1: In this case (3.1) reduces to 

n+cc 

~ n + 1  = un + At(POfn+l + Plfn). 

Po + P1 = 1, 

(3.7) 

The consistency condition for (3.7) is 

(3.8) 

while the stability polynomial is 

Po2 + p1 = 0. (3.9) 

From (3.9) it follows that for stability we require 121 = < 1 or, equivalently, I Po I 

lPll < 1001. (3.10) 

Because of the consistency condition (3.8), the two-parameter family of schemes (3.7) is 
reduced to one with a single free parameter, which needs to be chosen so that the stability 
inequality (3.9) is satisfied. If we try to use this free parameter to obtain a scheme with 
second-order accuracy, then it follows from (3.2) that 

1 
Po = 5’ (3.11) 

which together with (3.9) implies that P1 = $. Thus, the Trapezoidal rule is the only 
O(At2) 2-step scheme. From (3.10) we see that the Trapezoidal scheme is not stable, but 
only marginally stable, and we have the following result. 

Theorem 3.1. There is no one-stage two-step scheme in the class (3.1) that is second- 
order accurate and stable. 

The weights and stability properties of a number of classic approximations are summa- 
rized in Table I. Even for this simple class of algorithms, we have observed a trade-off 
between stability and accuracy. 
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TABLE 1. Summary of multistep algorithms for the classic model problem. 
--__ ___ 

Scheme Q r  Weights Order Stability roots Stability 

Forward 
Euler 

Backward 
Euler 

Trapezium 

Moulton 

Quadratic 

Adms-  

Linear 

Midpoint 
Simpson 

Shifted 

t-scheme 
Quadratic 

Po = O , P ,  = 1 

Po = 1,Pl = 0 

1 None 

1 21 = o  

2 2 1  = - 1  
3 

2 

2 z = o  

z -  - 4 r J 2 1  
5 

- - - 5 * m  
4 

4 2 = - - 2 * &  

- 1 t d h  3 

1 

7 

2 25 --1 + 4€.  - c 2  

Stable 

Stable 

Marginal 
Unstable 

Unstable 

Stable 
Unstable 

Stable 

Stable 

One-stage 3-step schemes, q = 0, T := 2: In this case (3.1) reduces to 

un+1 = un + A t ( h f n + ~  + P l f n  + D 2 f n - 1 ) .  (3.12) 

The consistency condition and the condition for second-order accuracy for (3.12) are 

Po + P I  + P2 = 1 
1 

Po - P2 = - 2'  
(3.13) 

Using (3.13) to express the two parameters PI = 
we obtain a 1-parameter family of algorithms with the following stability polynomial: 

-- 2P0 and P2 = Po - in terms of Po, 

(3.14) 

If we try to use the free parameter PO to achieve an O(At:') scheme, then it follows that 

(3.15) 
1 

Do -f P 2  = - 3 '  
1 from which it follows that Po = &,al = -=, and P3 = A ,  which are just the weights 

of the Adams-Moulton corrector. The roots of the stability polynomial (3.14) in this case 
are 

- 4 f f i  
5 '  

z =  (3.16) 

which implies that the O(At3) Adams-Moulton corrector will be unstable! As was the 
case with the 2-step scheme, the 3-step scheme with the smallest truncation error has a 
compromised stability characteristic. 
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Applying Jury’s criterion [15] to (3.14) in order to ensure that the roots are within the 
unit disk, we obtain the condition 

1 2 < P o .  (3.17) 

Combining this condition with the first equation in (3.13), it follows that stability is assured 
by the condition 

P1 +Pz < Po,  (3.18) 

which implies that the coefficient of the unknown fn+l in the last time-step should dom- 
inate the sum of the coefficients of the remaining unknowns f n  and f n - l  at the previous 
time-steps. It is also interesting to note from (3.14) that the value of Po for which the 
largest root of the 3-step scheme (3.12) just crosses the unit disk at z = -1 is Po = i, in 
which case p1 = 4, and Pz = 0, so that the 3-step scheme reduces to the 2-step Trape- 
zoidal rule. 

Many of the weights for the above approximations can be derived alternatively by as- 
suming the appropriate polynomial representation of the unknown f ( ~ )  over the last T + 1 
time intervals before the final time horizon tn+l. For example, the Trapezoidal scheme as- 
sumes a linear variation in f ( ~ )  over the last time-step, while the Adams-Moulton scheme 
assumes a quadratic variation off(.) over the last two time-steps, which is integrated over 
the last time-step. If we assume that f ( ~ )  varies linearly over [tn-l, tn] and quadratically 
over [tn,tn+l] and that the gradients of the linear and quadratic functions agree at t,, 
then we obtain a 3-step scheme, which is second-order accurate but also unstable (see the 
Linear-Quadratic scheme in Table I). 

A second sub-class of (3.1) is obtained by letting q = 1 so that the quadrature weights 
are determined by considering the integral over the last two time-steps [tn-l,tn+l]. The 
simplest such scheme is the Midpoint rule, which is second-order accurate and stable 
(see Table I). Simpson’s rule on the other hand is fourth-order accurate but unstable. We 
notice that stability can be improved by a scheme that places a large weight on the last 
value of the unknown f ( ~ )  in the recursion (3.1). An example of this among the classic 
quadrature schemes is the Midpoint rule. Another example, which we refer to as the 
Shifted Quadratic scheme, interpolates the points (tn-2, f n - 2 ) ,  ( tnp1,  fn-l), and (t,, j n )  
with a quadratic polynomial that is then integrated over the interval ( tn - l , tTL+l ) .  In this 
case, (3.1) reduces to the form 

at 
u,+1 = un-1 + 5(7h - 2f,-1 + f n - 2 ) .  (3.19) 

The properties of this scheme are summarized in Table I. We note that the scheme is stable 
and is third-order accurate. The enhanced stability for this particular scheme results from 
the relatively large weight given to the last unknown fn in the recursion (3.19). 

In some boundary element formulations, it is difficult to perform analytic integrations 
of higher-order polynomial variations for the unknowns along the boundaries. The dis- 
placement discontinuity method is a case for which this is particularly pressing, because 
the hypersingular kernels make it necessary for analytic integrations to be used. On the 
other hand, if piecewise constant basis functions are used to time-step displacement discon- 
tinuity elastodynamic models, then nonremovable singularities occur at the wave fronts, 
which makes the scheme impossible to implement. In fact, Co continuity of the solution in 
time is required to make the displacement discontinuity method feasible. It is, therefore, 
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At 2At 3A1 

FIG. 1. Basis functions for the t-scheme. 

of interest to design a piecewise linear scheme that has enhanced stability characteristics. 
Similar to the Shifted Quadratic scheme, we use a linear interpolation of f through the 
values f,L and f,, + I  and integrate this linear approximation over the interval (t,, t n + l + c ) .  
We refer to this scheme as the €-scheme. The forcing function u ( t )  is evaluated at the 
point t , , + ~ + ~  = t,, 1 + tat and the contribution to the integral in (2.12) from the previous 
time-steps 10. . . . , f r L  is represented by the standard (Trapezoidal) approximation (see 
Fig. I ) .  The approximation to (2.12) then becomes 

At 
2 1171 t 1 + r = - [ fo + 2f1 + . . . + 2 f I L  - I + ( 2 - c2)fn + ( 1 + E ) ~  f I L  1- 1 1 .  (3.20) 

We note that when c = 0 this scheme reduces to the Trapezoidal scheme. The stability 
polynomial for this scheme is given by 

(1 + Qt' + (1 - 2f - 2 4 2  + 2 = 0. (3.21) 

The roots of (3.21) expanded in powers of c are of the form 

z = -1 + 4 c  - 6t2 + O(c').and z = - f 2  + O(c4),  (3.22) 

so we see that the effect of perturbing the upper bound of the integral in (2.12) by an 
amount FAt beyond the last unknown f ,L  is to pull the Trapezoidal root t = -1 inside 
the unit disc. Thus, the additional weight to the last unknown fn+, in (3.20) makes the 
f-scheme more stable than the Trapezoidal scheme. 

B. Polynomial Approximations to the Modal Model Problem 

Various schemes to approximate (2.1 1) can be obtained by dividing the interval (0, t )  
into N equal elements of width 4 t  and assuming some form of approximation f (7)  % 

zfzo f k & ( 7 )  to f(T) in terms of piecewise polynomial basis functions &('r). Substituting 
this approximation to f(7) into (2.1 l), we obtain the discrete convolution equation of the 
form 

(3.23) 

Taking the z-transform of both sides of (3.23) and solving for F ( z ) ,  we obtain the algebraic 
equation 

F ( z )  = T ( z ) U ( z ) ,  (3.24) 
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TABLE 11. Transfer functions for piecewise polynomial approximations to (2.1 1). 
_____-__ 

Scheme Transfer Function T ( z )  Poles Stability 

1 Marginal 

L(J 1 )  0, 1 Marginal 

Midpoint 1 / 2  z ( : -  1 )  Marginal 

Trapezium ) *I Marginal 

_____ .~ 

( 2 -  P A t ) ( z - e -  ‘ - A ‘ )  

-2 ~ t ,  - (, 1uAt ) ( 8  - ~ - c-scheme __________ ’ (see (3.29)) ZI(W) E [ - l , O ] ,  z2 = 1 Marginal 
Dc !&- 

where T ( z )  is the appropriate transfer function for the approximation scheme. For the 
special case w = 0, these approximation schemes reduce to the approximations to the 
classical model problem (2.12) considered in the last section. 

For the sake of brevity, we give details only for the analysis of the escheme and 
merely summarize the results for the more standard approximation schemes in Table 11. 
When applied to (2.1 l) ,  the escheme can be expressed in the form 

N 

(3.25) 
k-0 

where J , v + , - ~  is defined as follows: 

J ,  = R( (1 -+ 6)At) 

J l ~ r  = R((2 + 6)At) - 2R((1 + f ) A t )  

J N + < - ~  = R ( ( N  + 6 - k + 1)At) - 2 R ( ( N  + 6 - k)At)  

+ R ( ( N  + E - k - l ) A t ) ,  (3.26) 

and R(t )  is the ramp function defined by 

C O S ~ ( ~  - 7 ) d ~  = ( 1  -- coswt)/w*At. (3.27) 

Taking the z-transform of (3.25) and solving for F ( z ) ,  we obtain 

1 w2At(z - elaAt)(Z - e - ~ ~ A t  

F ( z )  = ___ -[J(.), 
Df (.) 

where 

D, (z)  = (1  - COS( 1 + c)wAt)z3 

+ (2 COS( 1 + c)wAt - 2 cos wAt + cos CwAt - 1)z2 

+ (1 - COS( 1 + t)wAt + 2 cos w A t  - 2 cos cwAt)z 

(3.28) 
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FIG. 2. The resonant trapezoidal solution with u( t )  = sin2 4t and At = 
rule which has no resonance at z := - 1. 

compared to the midpoint 

We observe that all the schemes considered have at least one pole at z = 1 on the unit 
disk. Thus, they are only marginally stable, since a resonance can occur if U ( z )  also has 
a pole at z = 1. For the piecewise constant schemes, none of the poles that were on the 
unit disc in the case w # 0 persist in the limit w --+ 0 (see Table I), while the pole z = -1 
persists for the Trapezoidal scheme. The pole at z = -1 will resonate with frequency 
components from u( t )  of the form eaRAt('lAt), where QAt = x, which implies that R must 
be at the Nyquist frequency (see for example (181, [191) for such a resonance to occur. 
Therefore, depending on the particular eigenmodes that are present in a given problem 
and the choice of time-step At,  a resonance may occur. Unfortunately, in a complicated 
elastodynamic model, we do not know Q priori which eigenmodes (i.e., which values of (1)  
are present in a given problem. However, as the size of the time-step is varied, one of the 
values of QAt may pass through the value x associated with resonance and an instability 
characterized by linear growth with t will occur. If At is moved away from the value 5, 
then the instability will disappear. The pole at z = 1, which was common to all the above 
schemes, is less problematic, since spurious resonance will occur only if u( t )  has a DC 
component (i-e., R = O), which corresponds to the presence of a rigid body mode in the 
problem, which is unlikely for a well posed boundary value problem. 

As an illustration of the resonance due to the pole at z = -1, consider the numerical 
solution of (2.12) with u(t)  = sin'4t = ;(l - cos8t) using the Midpoint rule and the 
Trapezoidal rule. For the time step 8At = x corresponding to resonance for the Trape- 
zoidal rule, both the Trapezoidal and the Midpoint solutions are shown in Fig. 2. We 
observe that the Trapezoidal solution grows linearly with t ,  whle the Midpoint rule re- 
mains bounded and still yields a fairly accurate approximation-compare the Midpoint 
solution (the circles) to the exact solution (the solid line). If the time-stepping parameters 
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Trapezoidal and Midpoint solutions with timestcp = 1.2xpii8 

0 1 2 3 4 5  6 7 8 9 1 0  

FIG. 3. The midpoint and trapezoidal solutions with u(t) = sin2 4t at a time-step At = 9, which 
is just beyond resonance. 

are chosen to be away from resonance point (even though the time-step is larger), then the 
instability should disappear. To demonstrate this we increase the time step to 8At = 1 . 2 ~  
and the corresponding solutions are plotted in Fig. 3. We observe that the Trapezoidal 
approximation is not unstable in this case-even though the time-step At is larger. 

The poles of the transfer function T,(z) for the t-scheme are plotted in Fig. 4 for 
t = 0.1 and 0 5 IwAtl 5 IT. A resonant pole at z = -1 occurs only for wAt = T ,  while the 
algorithm will be stable for all the other values of wAt. The value of At can be chosen for 
a given w to avoid this resonance point. To appreciate the significance of this for stability, 
it is interesting to contrast this with the Trapezoidal rule, which has a pole at z = -1 for 
every frequency w. 

IV. STABILITY ANALYSIS OF DISCRETIZATIONS OF THE SPACE-TIME MODEL 
PROBLEM 

Thus far, we have considered only the stability properties of discretizations of model 
problems that represent the time evolution component of the elastodynamic boundary 
element methods. Although the spatial discretization is, to some extent, represented in 
these models by the spatial frequency parameter w, no explicit account is given for the 
coupling between the time and spatial discretizations. 

In order to investigate the combined effect of spatial and time discretizations on the 
stability of boundary element models, we consider the integral equation representation for 
the solution of the one-dimensional wave equation (2.15). To simplify the analysis, we will 
use a piecewise constant approximation to the spatial variation of the solution throughout 
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Roots of the transfer function for the epsilon scheme 

n LI  \ / : : : : p i  
-1 

-1 -0.5 0 0.5 1 

FIG. 4. Poles of the transfer function for the t-scheme with 6 = 0.1 

this section. The stability of various piecewise linear approximations to the time variation 
of the solution will be considered. 

A. Spatial Semi-Discretization 

We subdivide the spatial domain (-x, m) into elements each having a length Ax and 
assume that f ( < ,  7) in (2.15) is constant over each subinterval. In this case, (2.15) reduces 
to 

(4.1) 

where 
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I t - r  

X 

FIG. 5. Light cone showing the elements and fractions of elements on which the point at the origin 
is dependent. 

H is the Heaviside function, and T = % is the time period that it takes the wave to 
traverse one element. The function um(t) represents the influence at time t of the rnth 
element on the element that is centered at the origin. When the whole of the rnth element 
falls within the light cone centered at the origin then om = 1, whereas if only a portion of 
the element falls within the light cone, then om is the ratio of the part of the element in 
the light cone to Ax (see Fig. 5). This light cone information is all represented by means 
of the switches in the form of the Heaviside function in (4.2). 

B. Fourier Transform of the Spatial Semi-Discretization 

We notice that (4.1) involves a convolution sum over the spatial unknowns, which can be 
represented in the frequency domain as a multiplication of the Fourier transforms of u, 
and f m .  This simplifies the stability analysis of the discrete algorithms substantially. To 
obtain this representation, we use the following pair of discrete Fourier transforms: 

q w )  = F { U n }  

= c e-iwxn U n  
n=-m 

un = F-l{.iL(w)} 

eZWxnti(w)dw, 
= "rAx ZIT - l r / A x  

which we apply to (4.1) to obtain 

(4.3) 

(4.4) 
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N = O  1v=1 I v = 2  "3 
- c 

I T  
12'1' 

13T 

1 4 7 '  

FIG. 6. Light cone construction and values of N for the special case Q = 

where 
t < l  
7' - 2 

where 0 = WAX, N ( t )  = [$ + i] - 1, and It] denote the function that evaluates the integer 
just less than t .  

We note that the Volterra integral Eq. (4.4) is of a similar form to the modal model 
problem (2.1 I )  in which the kernel cosw(t - 7) has been replaced by the kernel &(w, t) 
defined in (4.5). 

C. Fourier Transform of the Ramp Function 

In this section we consider various piecewise linear approximations to (4.4). In Section 
IIIB we saw that the piecewise linear schemes can be conveniently constructed using the 
ramp function defined in (3.27). In a similar way, we use the following ramp integral as a 
basic building block for the analysis of piecewise linear time-stepping schemes: 

h(t, At) = -&(w, t - T)&. I' i t  
After some manipulation, this integral can be reduced to the following form: 

t 1  
when - < -: 

T - 2  
t3 

3AtT' R(t ,  At) = - 
t 1  when - > -: 
T 2  

(4.6) 
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Spatial spectrum of 1D wave model: Q=1/2,1= 11 
0.5 

0.4 

0.3 

h 

+4 

4 0.2 
v - 

0.1 
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-0.1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t hct a/pi 

FIG. 7. The analytic spatial spectrum Ji (0) of the constant-linear approximation (solid) compared 
with the spatial Discrete Fourier Transform of the constant-linear approximation (*). 

T2 (2 - 3 cosec2g) + 6 [t - ( N  + + ) I 2  s i n ( N + i ) o  . + 
l2At sin 2 

(4.7) 

where 0 and N were defined below (4.5). 

D. Stability of the Constant/Linear Scheme 

The constant/linear scheme is obtained by applying the Trapezoidal rule to approximate 
the time integral in (4.1). In this case, the Fourier transform Eq. (4.4) assumes the form 

(4.8) 

where the kernel jl can be expressed as follows in terms of the ramp integral: 

Sl(t9) = k(At( l  + I), At) - 2k(AtZ, At) + k(At(Z - I), At). (4.9) 

We observe that (4.8) involves a sum that is in the form of a z-transform convolution (see 
a-transform property 4 in Appendix A). Thus, by taking the z-transform of (4.8) we obtain 
the following simple algebraic equation representing the discretization of (2.15): 

T 
2 U ( z )  = - -J (z )F(z )  (4.10) 
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Zeros of J(z) for the Trapezoidal Scheme with Q=1/2 

-4 -3 -2 -1 0 1 2 3 4 

Re@) 

FIG. 8. 
equation with Q = f .  

Zeros of the transfer function J ( z )  for the constant-linear approximation of the wave 

The stability of the discretization is determined by the poles of the transfer function A, 
or equivalently by the zeros of J ( z ) .  

In order to obtain explicit expressions for J1 (O), it is necessary to make some specific 
assumptions about the relative magnitudes of the spatial meshing, the time meshing, and 
the wave velocity. The relationships among these three parameters can be determined 
by prescribing the value of the dimensionless mesh parameter Q = e. In the analysis 
presented in this work, we consider only two specific values Q = f and Q = 1. The first 
value, Q = f, represents the largest time-step for piecewise constant spatial elements for 
which the time-stepping can be performed explicitly, i.e., without inverting a matrix at 
each step. The second value, Q = 1, represents a time-step well into the implicit regime. 
An explicit scheme, Q = f , T = 2At: 
When determining an explicit expression for the function j l ( O ) ,  special care has to be 
taken to use the appropriate values of N in the formula (4.7). Figure 6 depicts the light 
cone for the case Q = f and the values of N as one moves away from an element on the 
wave front. In this case, & ( O )  can be expressed in the following form: 

1 = 0  

[sin (y) Bcot : + cos (9) 8 + cos (q) 01 , 1 odd . (4.11) 

( Atsin (i) Ocot :, 1 even 

In Fig. 7, we compare the function in (4.11) with the Discrete Fourier Transform of 
the actual constant/linear discretization of (2.15), whose discrete spectrum is denoted by 
asterisks. 
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Succesive trapezoidal solutions to 1 D wave equation 
8 ,  I 

Exact solution --- 

Trapezoidal solution __ I 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 I 

X 

FIG. 9. The constant-linear solution for the case Q = $. 

In order to obtain the z-transform J ( z )  [see (4.10)J that applies in this case, we make use 
of (4.11) and the definition of the z-transform given in (A.1). After some simplification, 
we obtain 

. (4.12) 
At[z4 + (5 + cos8)z3 + (6 + 4cos0)z2 + (5 + cos0)z + 11 

6(z4 - 2 cos Oz2 + 1) 
J ( z )  = 

As we described above, the stability of the constant/linear discretization of (2.15) in 
the case Q = is determined by the zeros of the function J ( z ) .  In Fig. 8, the zeros of 
J ( z )  are plotted for the full range of values of 0: -7r 5 8 I n-. We note that, for each 
value of ~ , J ( z )  has one unstable root at z NN -3.732, one stable one at z NN 0.268, and 
a complex conjugate pair of roots are marginally stable so that the numerator of (4.12) 
factors as follows: 

( z  - eta(’))(z - e-ia(e))(z + 3.732)(z - 0.268). 

In Fig. 9, the constant/linear numerical solution to (2.15) is compared to the analytic so- 
lution f(z, t) = sinvt sinzuz, which is the solution associated with the prescribed function 

u(x,t) = . (4.13) 

As predicted by the zeros of the above transfer function, we observe that the straight- 
forward constant/linear discretization of the one-dimensional wave equation leads to an 
unstable algorithm. In Fig. 10, the log of the amplitude of the numerical solution is also 
plotted for each time-step. The asymptotic gradient of this function is log(zll N” 1.32, 
which yields an estimate of the magnitude of the largest root z1 x -3.74. This agrees well 
with the value of the maximum root of the transfer function obtained from the stability 

w[cosw(z - cc) - coszu(z + ct)] + cw[cos(vt + wz) - cos(vt - zuz)] 
2CUI(V2 - c2w2) 
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Growth rate of the Trapezoidal instability 

n 

FIG. 10. The asymptotic growth rate of the constant-linear Q = $ solution. 

analysis above. The question that remains unresolved is whether the scheme will become 
more stable when an implicit algorithm is used. To this end, we next consider an implicit 
scheme. 
An impkit scheme, Q = 1, T = At: 
Using a similar light cone diagram as that shown in Fig. 6 for the case Q = 1, j l ( 0 )  can 
be expressed in the form 

$37 + 1 = Q  

At (cot - q) sin10, ) I \  L 1 
&(e) = (4.14) 

Again, using the definition of the z-transform, we obtain 

(4.15) 
At[(7+cos8)z2 + (22+10cos0)~+(7+cos8) ]  

J ( z )  = 
24( - 2 cos 82 + 1) 

In Fig. 11, the zeros of J ( z )  are plotted for the full range of values of 0: -7r 5 0 5 7r. 

As 0 varies from 7r to 0, the pole with the larger magnitude changes from being unstable at 
-3.8 to being stable at -0.2. Since there are unstable zeros for at least one of the possible 
values of the parameter 0 = wAz, the constant/linear discretization is unstable, in spite 
of the fact that the time-stepping scheme is implicit. The numerical solution in this case 
exhibits similar instabilities to that shown in Fig. 9. 

E. Stability of the €-Scheme 

Since both the explicit and implicit constandlinear schemes are unstable, we investigate 
the escheme to see if it yields improved stability characteristics as it did for the simpler 
model problems. We note that the t-scheme can be regarded as a perturbation to the 
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J @ , E )  = < 

Zeros of J(z) for the Trapezoidal Scheme with Q=l 

’ At( 1 + 3~ + 3e2 + c3 cos 0)/6, 1 = 0  

at(5 + 3 ( ~  - E ~ )  + ((1 + E ) ~  - 2E3) cos8)/6,  111 = 1 

At [sin (q) 0 (cot ; - sinO((1 + E ) ~  - 2 e 3 ) / 6 )  + 
~ c o s ( ~ ) 8 ( 6 - ( l - ~ ) ~ + ( ( l + ~ ) ~ - 2 2 6 ~ ) ~ 0 ~ 8 ) ] ,  111 > l o d d  

1 at sin 0 cot; - $sine + [ ( 2 )  ( 
, 6 cos (i) 6)-4 + 6(1 + c ) ~  - 2(1 + E ) ~  + e3( l  + C O S ~ ) ) ]  , Ill 2 2 even. 

-4 -3 -2 -1 0 1 2 3 4 

W )  
FIG. 11. 
equation with Q = 1. 

Zeros of the transfer function J ( z )  for the constant-linear approximation of the wave 
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,-Q=1/2 and eps= 0 1 
I 

I I 
I 

s ,  Q=1/2 and eps= 0.2 

1 

FIG. 12. Zeros of the transfer function J ( z ,  6 )  for the c-scheme approximation of the wave equation 
with Q = f and 6 = 0 . 1 , ~  = 0 . 2 , ~  = 0.3, and t = 0.4. 

Making use of the definition of the z-transform, we obtain the following expression for 
transfer function J ( z ,  E )  of the €-scheme: 

z(z-l - 2 c o s e z 2  + 1) 
J ( z ,  6 )  at 

= (1 + 3c + 3E2 + 2 cose)25 

+ [:, + (:OS e + 3( I + cos e)€ - 3 (  1 - C O ~  e)f2 - 2 c o ~  

+ [5 + - q i  + cose)F - 3( i  - cose)t2 + (1 + cose)E:3)z2 

+ (1 - 3t + 3t2 + 2 ) z  - 2. (4.18) 

We note that the transfer function (4.18) for the t-scheme reduces to that of the Trapezoidal 
one (4.12) when E = 0. The zeros of the transfer function given in (4.18) are plotted in 
Fig. 12. We observe that the root structure in all these diagrams is similar to that given 
for the Trapezoidal constant/linear scheme in the case Q = $, which is plotted in Fig. 8. 
Increasing the parameter E brings the unstable zero closer to the unit disc until it finally 
falls within the unit disc for E 2 0.4. To demonstrate the validity of this analysis, in Fig. 13 
we plot the 6-scheme solution for the cases E = 0.3, which is unstable, and the case E = 0.4, 
which is stable, as well as the exact solution. 
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Epsilon scheme approximates to exact solution f(x=-0.6,t)=sinvt.sin(-0.6~) for Q=In 
8 -  

-2 ‘ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

t 

FIG. 13. The exact solution and the Q = +€-scheme solutions with t = 0.3 and e = 0.4. 

t-scheme Q = 1, T = Atl E 5 f :  
Making use of (4.16) and the appropriate light cone diagram for this case, the kernel 
j l ( 8 ,  t) can be expressed in the form 

$ [4 + 6~ + 3(1 + 2 ~ ) ~  + (1 + 2 ~ ) ~  C O S ~ ]  , 1 = 0  

jl(8,t) = $ [ ( 2 3 + 6 t - 1 2 t 2 ) + 4 ( 6 + 9 t - 4 t 3 ) ~ ~ ~ 8 + ( 1 + 2 t ) 3 ~ ~ ~ 2 8 ]  ( I 1  = 1 

At [(cot C - sin8 (A + 2)) sinlo + E (2 - (1 + 26’) sin’ g )  c o ~ i e ) ] ,  11) 2 2. 

(4.19) 

Making use of the definition of the z-transform, we obtain the following expression for 
transfer function J ( z ,  t) of the t-scheme: 

i 
24z(z2 - 2 cos 8z + 1) Jh €1 At 

= [ (7 + cos 6 )  + 6( 3 + cos 6)t + 12( 1 + cos 6)t2 + 8 cos 8t3]z3 
+ [2(11+ 5c0s8)  - 24(i + cos8)E2 - 8(i + 2cos8)t3]z2 
+ [ (7+c0s8) - 6 ( 3 + ~ 0 ~ 8 ) ~ + 1 2 ( 1  +cos8)t2 + 8 ( 2 + ~ ~ ~ 8 ) ~ ~ ] ~ - 8 ~ ~ .  (4.20) 

The transfer function (4.20) for the 6-scheme reduces to that of the Trapezoidal one (4.15) 
when E = 0. The zeros of the transfer function given in (4.15) have a similar structure to 
those in Fig. 11 and are plotted in Fig. 14. Once again, increasing the parameter E brings 
the unstable zeros closer to the unit disc until they finally fall within the unit disc for 
t > 0.366. In Fig. 15, we plot the exact solution and the escheme solution for the case 
E = 0.3, which is unstable, and the case E = 0.4, which is stable. 
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FIG. 14. Zeros of the transfer funchon J ( z ,  c )  for the €-scheme approximation of the wave equation 
with Q = 1 and c = 0 .1 ,~  = 0 2 ,c  = 0 3, and F = 0 4 

V. CONCLUSIONS 

Amid the growing evidence of numerical instabilities in boundary element elastodynamic 
models, there has hitherto been little theoretical investigation of the causes of these in- 

Epsilon scheme approximates lo exact solution f(x=-0.6,t)=sinvt.sin(-0.6~) for Q=l 
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FIG. 15. The exact solution and the Q = lc-scheme solutions with c = 0.3 and c = 0.4. 
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stabilities and the possible strategies for remediation. Up till now, the user of a time 
domain BE algorithm had no way to guarantee a priori that a model with a given selection 
of meshing parameters would be stable. Indeed, there has been considerable frustration 
expressed in the literature [ I ]  regarding the lack of predictability and alternative time- 
stepping procedures. 

The objective of this article has been to address this lack of theory. Because of the 
complexity of the discretized boundary element equations, we have made use of a sequence 
of model problems in order to establish the appropriate tools to analyze the stability of 
existing time-stepping algorithms. The insight gained from these model problems has been 
useful in identifying the desirable properties that an improved time-stepping scheme should 
have. which has proved helpful in designing new time-stepping schemes with improved 
stability characteristics. 

The basic device that we have used to perform the stability analysis is the z-transform. 
For the model problems considered, we were able to use the s-transform to reduce the 
time-convolution equations into a simple algebraic equation involving a transfer function 
that characterizes the stability properties of the algorithm in question. 

In this article we have considered the stability properties of a variety of time-marching 
schemes when they are applied to three distinct model problems. 

The simplest model problem is the one classically used by numerical analysts to inves- 
tigate the stability properties of discrete approximations to Volterra integral equations (see 
for example [ 141). The stability analysis of boundary element type approximations applied 
to the classic model problem demonstrates quite clearly that the more stable schemes have 
larger or enhanced self effects-a property that is also important for more complicated 
boundary element models. However, the approximations to the model problem do not ex- 
hibit the type of exponential instability phenomena observed in actual boundary element 
models. This model problem was found to be inadequate as it does not give any account 
of the spatial discretization. 

We then devised a new model problem that we referred to as the modal model problem. 
This model has Volterra-type time-stepping and attempts to represent the spatial discretiza- 
tion in terms of a single parameter w.  Although this modal representation of the spatial 
information does not give any detailed account of the type of spatial approximation that 
is being used, the stability analysis does demonstrate additional possibilities for unstable 
behavior. The instabilities are in the form of resonances (giving polynomial growth with 
time) at certain spatial frequencies. However, this model does not manage to determine the 
source of the exponential instabilities observed in more general boundary element models. 

We, therefore, considered a full space-time model problem based on the one-dimensional 
wave equation. A detailed stability analysis of the space-time discretizations of this model 
clearly demonstrated that exponential instabilities always occur for the Trapezoidal con- 
stant/linear discretization schemes. These results were verified numerically. The charac- 
teristic feature of this model problem, which is the source of the exponential instability, 
is that the Green’s function does not decay with space and time. Thus, close-coupling 
between neighboring and even remote elements leads to a situation in which the response 
of neighboring elements to a stimulus by a given element will involve more energy than 
the original signal. This positive feedback causes an exponential growth observed in all the 
numerical solutions. To remedy this situation, we devised a novel time-stepping scheme, 
named the c-scheme, which is a perturbation to the Trapezoidal constant/linear discretiza- 
tion. For this scheme, the self-effect of an element is enhanced while the other inter- 
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element influences remain largely unaltered. For a large enough choice of the parameter 
6 ,  the constant/linear discretization becomes stable. 

One key feature to emerge from the analysis of all these model problems was that the 
most stable schemes had self-effects that were larger than the other effects. The self-effect 
is the influence that an element or collocation point has on itself in the first time-step, 
whereas the influence an element has on itself at a later time, or the effects that an element 
has on one of its neighbors are referred to as "other effects," We exploited this insight to 
propose new time-stepping schemes with enhanced stability characteristics. 

The tools and stability concepts developed in this article can be extended to enable them 
to be used for general boundary element models. As this article focuses on the analysis 
of model problems, this generalization will be treated in a future article. 

APPENDIX A 
2-TRANSFORM 

Definition A.1. 
to be 

The z-transform of a causal sequence { f k :  f k  = 0 if k < 0) is dejined 

w 

F ( z )  = z [ f k ]  = f k z - ' ,  (A11 

while the z-transform of a continuousfunction f ( t )  with the sampling period At is dejined 
to be 

0 

30 

F ( z )  = Z [ f ( k A t ) ]  = C f ( k A t ) z - ' .  (A21 
0 

The z-transforms of some simple functions follow directly from the above definition. 

Example 1. The z-transform of the Heaviside step function: 

1 for t 2 0  
0 for t < 0 H ( t )  = 

is 

Example 2. The z-transform of the exponential function: 

Example 3. The z-transform of the siii function: 

(A31 
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Example 4. The a-transform of the cos function: 

Although there are many more, we list only some of the important properties of the 
z-transform that we need in our stability analysis that follows. These properties can be 
derived from the definition of the z-transform. 

Property 2. Backward shift: 

Z [ f k  ,,,I = z " Z [ f k ] .  

Property 3. Forward shift: 

Property 4. Convolution: 

Lm -0 J 

Property 5. Inversion integral: 
Let C be a closed contour enclosing all the poles of F ( z ) ,  (hen 

The authors acknowledge the support of the Miningtek Laboratory of the Council for 
Scientific and Industrial Research of South Africa. The first author also acknowledges the 
support of the National Science and Engineering Research Council of Canada. 

REFERENCES 

1. D. J .  Andrews, "Dynamic growth of mixed-mode shear cracks," Buff. Seism. SOC. Am. M, I184 
( I  994). 



STABILITY ANALYSIS OF BE MODEL PROBLEMS 613 

2. 

3. 

4. 

8. 

9. 

10. 

11  

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

M. G. Mack, “A three-dimensional boundary element method for elastodynamics,” Ph. D. Thesis, 
University of Minnesota, 1991. 

E. Siebrits, “Two-dimensional time domain elastodynamic displacement discontinuity method 
with mining applications,” Ph. D. Thesis, University of Minnesota, 1992. 

Y. Tian, “Boundary element method in elastodynamics,” Ph. D. Thesis, University of Minnesota, 
1990. 

M. C. Loken, “A three-dmensional boundary element method for linear elastodynamics,” 
Ph. D. Thesis, University of Minnesota, 1992. 

J. Dominguez, Boundary elements in dynamics, Computational Mechanics Publications, 
Southampton, ( 1  993). 

H. L. Selberg, “Transient compression waves from spherical and cylindrical cavities,” Arkiv for  
Fysik 5, 97 (1951). 

M. G. Koller, M. Bonnet, and R. Madariaga, “Modelling of dynamical crack propagation using 
time-domain boundary integrals,” Wave Motion 16, 339 (1992). 

A. P. Peirce and E. Siebrits, “Stability analysis and design of time-stepping schemes for general 
elastodynamic boundary element models,” Int. J.  Num. Meth. Eng., to appear. 

S. Kobayashi, “Fundamentals of boundary integral equation methods in elastodynamics,” in 
Topics in boundary element research, 1101. 2: Time-dependent and vibration problems, Brebbia, 
Ed., Springer-Verlag, New York, p. 1, 1985. 
P. K. Banerjee, S. Ahmad, and G. D. Manolis, “Advanced elastodynamic analysis,” in Boundary 
Element Methods in Mechanics, Beskos, Ed., Elsevier Science Publishers B.V., Amsterdam, p. 
258, 1987. 

A. C. Eringen and E. S. Suhubi, Elastodynamics: Volume I1 Linear Theory, Academic Press, 
New York, 1975. 

C. T. H. Baker, Numerical Treatment of Integral Equations, Oxford University Press, Oxford 
(1977). 

C. T. H. Baker and N. J. Ford, “Some applications of the boundary-locus method and the method 
of D-partitions,” IMA J. Num. Anal. 11, 143 (1991). 

E. I. Jury, Theory and Application of the z-Transfonn Method, Krieger, Florida, 1986. 

K. Ogata, Discrete-7ime Control Systems, Prentice-Hall, New Jersey, 1987. 

L. Sirovich, Introduction to Applied Mathematics, Springer-Verlag, New York, 1988. 

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd Ed, 
Cambridge University Press, New York, 1992. 

A. P. Peirce, S. Spottiswoode, and J. A. L. Napier, “The spectral boundary element method: a 
new window on boundary elements in rock mechanics,” Int. J. Rock Mech. Min. Sci. & Geomech. 
A b s ~ ,  29, 379 (1992). 




