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Abstract
We describe a novel approach to the inversion of elasto-static tiltmeter
measurements to monitor planar hydraulic fractures propagating within three-
dimensional elastic media. The technique combines the extended Kalman filter
(EKF), which predicts and updates state estimates using tiltmeter measurement
time-series, with a novel implicit level set algorithm (ILSA), which solves the
coupled elasto-hydrodynamic equations. The EKF and ILSA are integrated to
produce an algorithm to locate the unknown fracture-free boundary. A scaling
argument is used to derive a strategy to tune the algorithm parameters to enable
measurement information to compensate for unmodeled dynamics. Synthetic
tiltmeter data for three numerical experiments are generated by introducing
significant changes to the fracture geometry by altering the confining geological
stress field. Even though there is no confining stress field in the dynamic
model used by the new EKF-ILSA scheme, it is able to use synthetic data to
arrive at remarkably accurate predictions of the fracture widths and footprints.
These experiments also explore the robustness of the algorithm to noise and to
placement of tiltmeter arrays operating in the near-field and far-field regimes. In
these experiments, the appropriate parameter choices and strategies to improve
the robustness of the algorithm to significant measurement noise are explored.

(Some figures may appear in colour only in the online journal)

1. Introduction

Hydraulic fractures (HF) are a class of brittle fractures that propagate in pre-stressed solid
media due to the injection of a viscous fluid. These fractures occur naturally when pressurized
magma from deep underground chambers form vertical intrusions driven by buoyancy forces
[34, 28]. HF have also found numerous industrial applications. In the oil and gas industry, HF
are deliberately created in reservoirs to enhance the recovery of hydrocarbons by the creation
of permeable pathways [5]. In the mining industry, HF have been used to enhance the block-
caving process [12, 38] by weakening the rock surrounding underground excavations. HF have

0266-5611/12/015009+22$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1



Inverse Problems 28 (2012) 015009 A Peirce and F Rochinha

also been used in producing geothermal energy, in waste disposal, protecting environmentally
sensitive areas and may play a key role in CO2 sequestration.

Recently, there has been considerable concern raised about hydraulic fractures propagating
into subterranean water reservoirs leading to pollution of agricultural and domestic water
supplies. There is thus interest in being able to monitor the progress of propagating HF.
Unfortunately, other than the fluid pressure history at the well bore and the volume of fluid
pumped, there is very little information readily available during the HF treatment process.

Tiltmeters have been used to monitor propagating HF since the late 1960s [36]. This
technology has developed to the level that commercial HF monitoring services are routinely
provided to the oil and gas industry [26]. Tiltmeters measure changes in the inclination of
the rock at selected sample points due to the altered displacement gradient field induced by
propagating HF. These tiltmeters can be located in the well bore itself, in neighboring off-set
boreholes, or on the Earth’s surface [6, 41, 16]. Interest in this form of monitoring has been
mixed as the information that can be extracted from the inversion of the displacement gradient
solution of the elliptic, elasto-static, PDE is limited due to the rapidO(1/r3) decay of this field
with distance from the fracture. Indeed, this is a classic ill-posed inverse problem in which it
is only feasible to invert the first two moments of the crack opening displacement from remote
displacement gradient measurements [17]. This has likely hampered the development and
deployment of extensive tiltmeter arrays in practice. In fact, themore recent development in the
petroleum industry has been toward monitoring microseismic images [43], or a combination of
tiltmeter and microseismic data [40]. While microseismic networks, based on the hyperbolic,
elasto-dynamic PDE provide different information, it is difficult to distinguish the first motions
due to the propagating HF from a secondary cloud of movements triggered in the jointed
rockmass that surrounds the HF.

The approach to the tiltmeter inversion problem that we adopt in this paper is somewhat
different. Following our initial study using the extended Kalman filter (EKF) for the inversion
of tiltmeter data from a one-dimensional (1D) HF propagating in a state of plane strain [29],
we consider the application of this methodology to monitoring two-dimensional planar HF. In
1D, the identification of the free boundary involves the location of only two points, while the
determination of the crack opening involves the identification of a 1D function on the domain
defined by these free boundary points. The planar problem is a lot more complex. Locating
the free boundary involves identifying a closed curve in a plane, while identifying the crack
opening involves determining a surface defined on the domain circumscribed by this unknown
boundary curve. Rather than solving the isolated ill-posed tiltmeter inversion problems at each
time-step, which is the approach traditionally used for this problem, we formulate a different
inverse problem using the same data by stringing together the elasto-static tilt snapshots at each
tiltmeter station into a time-series. These time-series of tilt measurements are then combined
with a dynamic model for the fracture propagation to arrive at improved estimates of the
fracture geometry and opening via the EKF. Instead of explicitly parameterizing the fracture-
free boundary, which can be included into an augmented state vector for direct identification by
the EKF, we choose to use the implicit level set algorithm (ILSA) to locate the free boundary
by using local tip asymptotics along with EKF-generated state estimates comprising only the
fracture width. It is this integrated EKF-ILSA scheme that we describe in this paper.

Traditional data assimilation methods rely on the Bayesian inference-based Kalman filter
and its extensions [1, 15]. The EKF has been used extensively for inverse problems related to
a wide range of applications (see for example [18, 31, 10, 21]) and in particular for fracture
problems [2, 19]. In [2, 19], the EKF has been used to identify parameters from experiments
in a cohesive crack model by considering a pseudo-time-stepping of the flow of experimental
data and sequential estimation by the EKF. In contrast, we are using the EKF to compensate
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for significant unmodeled dynamics in a complex system of highly nonlinear integro-partial
differential equations. The objective of this inversion problem is not only to identify some
parameters in the model, but also to identify large perturbations in both the crack opening
displacement and the fracture geometry.

In section 2, we describe the forward hydraulic fracture model comprising a system
of integro-partial differential equations along with a free-boundary problem and outline the
novel ILSA numerical algorithm to locate the free boundary. In section 3, we provide a brief
introduction to the EKF formulation that we use in this paper and present the details of
the integrated EKF-ILSA scheme that we propose. In section 4, we provide the results of
numerical experiments chosen to demonstrate the performance of the EKF-ILSA scheme for
three distinct problems in which significant geometric perturbations are introduced by changes
in the confining geological stress field; in section 5 we provide some concluding remarks.

2. Forward model for a planar hydraulic fracture

2.1. Governing equations

Hydraulic fractures tend to propagate in planar regions perpendicular to theminimum principal
direction of the geological confining stress field. The dynamics of the propagating HF
are governed by a coupled system of nonlinear, degenerate, hyper-singular, integro-partial
differential equations along with propagation and boundary conditions that determine the
location of the fracture-free boundary. The numerical solution of these equations presents
considerable challenges, including: (i) the resolution of the multiscale, singular solution
structure close to the fracture tip; (ii) due to this singular tip behavior the front velocity
involves an indeterminate form expression that is difficult to evaluate numerically and as
a result the free boundary cannot be located using standard moving boundary algorithms;
(iii) a spatial discretization reduces the problem to a stiff system of ODEs for which implicit
backward difference time-stepping and specialized algorithms for the solution of the coupled
equations at each time-step are necessary [23].

Recently, the ILSA scheme [24] has been developed for the efficient solution of this
complex-free boundary problem. This scheme is able to incorporate multiscale tip behavior,
obtained via detailed asymptotic analysis [7, 8, 20], into an algorithm defined on a relatively
coarse structured Eulerian mesh. This ILSA solution scheme forms the basis for the forward
model that is used in this paper in combination with the EKF to devise a novel HF monitoring
technique. Since all the numerical experiments presented are in dimensionless form, for the
sake of brevity, we choose to only present the dimensionless form of the model equations
and details of their discretization. The dimensional equations and their reduction to the
dimensionless form are detailed in [24]. We also consider the host rock in which the HF
is growing to comprise an impermeable elastic medium.

We consider a coordinate system (χ, η, ζ ) and a dimensionless timescale τ . The evolving
fracture is assumed to occupy the region S(τ ) in the (χ, η)-plane that is circumscribed by
the fracture front ∂S(τ ) (see figure 1). The dimensionless quantities G j that appear in the
equations below are defined to be

Ge = E ′W∗
P∗L∗

, Gm = μ′L2∗
W 2∗ P∗T∗

, Gv = Q0T∗
W∗L2∗

, Gk = K′L1/2∗
E ′W∗

. (2.1)

Here, E ′ = E
1−ν2

, where E and ν are the rock Young’s modulus and Poisson’s ratio; μ′ = 12μ,

where μ is the dynamic fluid viscosity, and K′ = 4( 2
π
)
1
2 KIC is the modified stress intensity

factor. In addition, T∗ is a characteristic timescale,W∗ is a characteristic fracture aperture, P∗
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Figure 1.A schematic of a hydraulic fracture occupying the regionS in the χ –η plane. The squares
represent the structured mesh used by the ILSA scheme to discretize the governing equations. The
sets St , Sc and ∂Sc are used to identify different classes of elements that are used in the ILSA
scheme described in subsection 2.3.

is a characteristic net pressure, L∗ is a characteristic length scale and Q0 is the characteristic
volumetric fluid injection rate.

2.1.1. The elasticity equation. The hypersingular integral equation [9] relating the crack
opening displacement 	(χ, η, τ ) to the fluid pressure
f(χ, η, τ ) is given by


 = 
f(χ, η, τ ) − �oϕ(χ, η) = − Ge

8π

∫
S(τ )

	(χ ′, η′, τ )dS(χ ′, η′)
[(χ ′ − χ)2 + (η′ − η)2]3/2

. (2.2)

Here, �o = σo
P∗
is the dimensionless confining stress where σo is the characteristic

confining stress, ϕ(χ, η) represents the spatial variation of the confining stress field and

 = 
f − �oϕ(χ, η) is the net pressure.

2.1.2. The fluid flow equation. A combination of Poiseuille’s law and the conservation of
masswith a point sourceGvψ(τ )δ(χ, η) yields Reynolds’ lubrication equation, which assumes
the form

∂	

∂τ
= 1

Gm
∇ · (	3∇
f) + Gvψ(τ )δ(χ, η). (2.3)

2.1.3. Boundary and propagation conditions. A zero flux boundary condition and an LEFM
asymptotic propagation condition [27], which require that the local stress intensity factor be
in limit equilibrium with the dimensionless toughness Gk, respectively, assume the form

lim
ξ→0

	3 ∂
f

∂ξ
= 0 and lim

ξ→0

	

ξ 1/2
= Gk, (2.4)

where ξ is a local coordinate representing the normal distance to the free-boundary ∂S(τ ).

2.1.4. Propagation regimes and multiscale tip behavior. If Gk > 0, then the asymptotic
behavior of the fracture opening is always given by the second equation in (2.4). However,
this classic LEFM square root behavior may not be the appropriate asymptotic expansion
that applies at the computational length scale. There are, in the absence of a fluid lag, two
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competing dissipative processes, namely the viscous dissipation, associated with driving the
fluid into the fracture cavity, and the energy required to fracture the rock, which is associated
with the fracture toughness [24]. Since the objective of this paper is to explore the performance
of a combined EKF-ILSA algorithm rather than this multiscale behavior, we choose to restrict
the examples presented in this study to solutions in the neighborhood of the viscous solution
for which Gk = 0. This regime of propagation has been shown to be ubiquitous for practical
HF treatments [30]. Physically, this solution corresponds to an HF propagating between two
de-bonded impermeable half-spaces. For the plane strain case [4, 7, 8, 20] and for arbitrarily
shaped planar fractureswith smooth boundaries [24], the tip asymptotic behavior of the fracture
opening 	 for an HF propagating with a velocity v = lim

ξ→0
	2 ∂
 f

∂ξ
has been shown to be of the

form

	
ξ→0∼ βm0 v1/3ξ 2/3, βm0 = 21/3 · 35/6. (2.5)

This asymptotic behavior (2.5) plays a central role in locating the free-boundary ∂S(τ ) in the
ILSA scheme.

2.2. Discrete equations

We assume [24] that the fracture will grow within a rectangular region that has been tessellated
into a fixed uniform rectangular mesh with spacings �χ and �η in the two coordinate
directions. The fracture footprintS(τ ) is then covered by rectangular elements�Sm,n such that
S ⊆ ∪�Sm,n. Constant displacement discontinuity (DD) elements are used for the elasticity
computations [3] along with collocation at element centers, while the lubrication equation is
discretized by replacing spatial derivatives by second-order finite difference quotients to yield
a five-node finite difference stencil [35]. The resulting, extremely stiff, system of ODEs is
solved using the backward Euler scheme.

2.2.1. The discrete elasticity equation. The elasticity equation (2.2) is discretized by assuming
that the fracture opening	(χ, η, τ ) is piecewise constant over each rectangular element�Sm,n,
i.e.

	(χ, η, τ ) =
∑
m,n

	mn(τ )Hmn(χ, η), where Hmn(χ, η) =
{
1 for (χ, η) ∈ �Sm,n

0 for (χ, η) /∈ �Sm,n

(2.6)

andHmn(χ, η) is the characteristic function for element (m, n). Substituting (2.6) into (2.2) and
evaluating the pressures at the element-centered collocation points yield a system of algebraic
equations of the form


kl(τ ) =
∑
m,n

Ck−m,l−n	mn(τ ), (2.7)

where

Ck−m,l−n = − 1

8π

[√
(χk − χ)2 + (ηl − η)2

(χk − χ)(ηl − η)

]χ=χm+�χ,η=ηn+�η

χ=χm−�χ,η=ηn−�η

.

It is convenient to write (2.7) in the operator form


 = C	. (2.8)
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2.2.2. The discrete fluid flow equation. In order to discretize the fluid flow equation (2.3) in
a way that is compatible with (2.7), we use the pressures
kl(τ ) and widths	kl(τ ) at element
centers along with central difference approximations of the partial derivatives to arrive at the
following spatial discretization:

d

dτ
	kl(τ ) = 1

�χ

(
	3

k+ 1
2 l

(
k+1l − 
kl )

�χ
− 	3

k− 1
2 l

(
kl − 
k−1l )
�χ

)
+ 1

�η

(
	3

kl+ 1
2

(
kl+1 − 
kl )

�η
− 	3

kl− 1
2

(
kl − 
kl−1)
�η

)
+ skl(τ ), (2.9)

where skl(τ ) represents the source and sink terms that apply to the element located at (χk, ηl )

and 	k+ 1
2 l , etc, represent the aperture values at element edges that are determined by the

following averaging operator	k+ 1
2 l = 1

2 (	k+1l + 	kl ). It is convenient to express this system
of differential equations in the following operator form:

d	

dτ
= A(	)
 + s(τ ), (2.10)

where A(	) is the second-order difference operator defined on the right-hand side of (2.9).

2.2.3. Coupled evolution operator: backward Euler scheme. Using (2.8) to eliminate the
pressure 
 from (2.10), we obtain the following evolution equation for 	:

d	

dτ
= A(	)C	 + s(τ ), (2.11)

where s(τ ) represents the source vector. The evolution operator A(	)C can be shown [25]
to be extremely stiff resulting in a CFL condition of the form �τ � O(min{�χ3,�η3}) for
explicit time-stepping. We therefore use the L-stable backward Euler scheme to march the
solution process forward in time, resulting in the following system of nonlinear equations for
	(τ + �τ ) that need to be solved at each time-step:

	(τ + �τ ) − 	(τ ) = �τA(	(τ + �τ ))C	(τ + �τ ) + �τ s(τ + �τ ). (2.12)

Introducing the notation �	 := 	(τ + �τ ) − 	(τ ) we may express (2.12) in the following
form suitable for fixed point iteration to determine 	(τ + �τ ) = lim

i→∞
	i:

(I − �τA(	i)C)�	i = �τA(	i)C	(τ ) + �τ s(τ + �τ )

	i+1 = 	(τ ) + �	i.
(2.13)

2.3. The implicit level set algorithm (ILSA)

The fundamental ansatz behind the ILSA scheme is that a given tip asymptote applies at the
computational length scale, which is characterized by the mesh sizeO(�χ,�η). In this paper,
we assume that the viscous tip asymptote (2.5) holds one or two cell lengths from the tip. In
order to locate the free boundary, we assume that an initial estimate of the fracture footprint is
known and solve the coupled equations (2.12) for	(τ + �τ ). The apertures nearest to the tip
are then used to obtain a new estimate for the normal distance to the fracture tip by inverting
(2.5). To implement this iterative procedure, we divide the elements {�Sm,n} that cover the
region S occupied by the fracture in the current iteration into two disjoint sets, Sc and St .
The elements totally within the boundary ∂S are referred to as the ‘channel elements’ and
occupy the region Sc. Those partially filled elements that intersect the crack front are called
‘tip elements’, which occupy the region St (see figure 1). Thus, Sc ⊂ S, ∂S ∩ Sc = ∅ and
S ⊂ Sc ∪ St = ∪�Sm,n. As our reference points that we use to estimate the normal distance
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to the free boundary, we choose the ribbon of elements ∂Sc ⊂ Sc, each of which share at least
one side with a tip element in St . The current trial solution for 	 at the centers of the ribbon
elements ∂Sc combined with the asymptotic relation (2.5) provide the boundary conditions
for the eikonal equation

|∇T (χ, η)| = 1. (2.14)

The solution of (2.14) is the signed distance function whose level set T (χ, η) = 0 is the
fracture front ∂S.

We adopt the convention that T < 0 for points inside the fracture boundary and T > 0
outside the fracture boundary. Then, assuming that the fracture is evolving under a viscous
mode of propagation, we invert (2.5) to obtain

T (χ, η) = −ξ ∼ −
(

	

βm0 v1/3

) 3
2

for all (χ, η) ∈ ∂Sc. (2.15)

Rather than using the indeterminate form expression for the front velocity v = lim
ξ→0

	2 ∂
 f

∂ξ
,

which is difficult to evaluate numerically with any precision, we use the following expression
for the front velocity in terms of two successive signed distance functions

v = −Tτ+�τ − Tτ

�τ
. (2.16)

Eliminating v from (2.15) using (2.16) reduces the problem of determining T (χ, η, τ + �τ )

for (χ, η) ∈ ∂Sc to that of solving the cubic equation:

T 3
τ+�τ − TτT 2

τ+�τ + �τ

(
	τ+�τ

βm0

)3
= 0. (2.17)

Since Tτ < 0, an application of Descarte’s rule implies that (2.17) has only one negative real
root, which determines the boundary condition values T (χ, η, τ + �τ ) for (χ, η) ∈ ∂Sc

uniquely. Having determined the boundary values for T , an upwind differencing scheme,
developed for the numerical solution of conservation laws [22, 33], is used to solve (2.14) for
T (χ, η, τ + �τ ) in the immediate neighborhood of the crack front using the fast marching
method (FMM) (for further details see [22, 33, 24]). The fracture front is then determined by
locating the curve T (χ, η, τ + �τ ) = 0.

2.4. Tiltmeter observation model

For the observation model to be used in conjunction with the EKF in this paper, we consider
the time-series of displacement gradients due to the evolving fracture surface measured by a
distant array of tiltmeters. Tiltmeters measure the angles between their axes and the gravity
vector, which are related to the curl of the local displacement field [16], i.e. ω = ∇ × u, where
u = (u1, u2, u3) = (uχ , uη, uζ ) is the local displacement vector at each of the tilts.

In order to relate these displacement gradients to the evolving hydraulic fracture, we make
use of the following expression for the displacement field due to a planar crack occupying the
region S(τ ) in the χ–η plane. For a crack having an opening displacement	 in the ζ -direction
normal to the fracture plane, the scaled displacement components uk are given by

uk(χ, η, ζ , τ ) = 1

8π(1− ν)

∫
S(τ )

	(χ ′, η′, τ )Uk(χ − χ ′, η − η′, ζ ) dS (χ ′, η′), (2.18)

where Uk(χ, η, ζ ) can be expressed [32, 3] in terms of derivatives of the harmonic function
�(χ, η, ζ ) = 1

ρ
, where ρ =

√
χ2 + η2 + ζ 2, as follows:

Uχ = −(1− 2ν)�,χ − ζ�,χζ ; Uη = −(1− 2ν)�,η − ζ�,ηζ ; Uζ = 2(1− ν)�,ζ − ζ�,ζζ .

(2.19)
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For rectangular elements, such as the �Sm,n used to discretize the fracture plane S, it
is convenient to determine the integral of �, which we represent by �̄, over a typical
rectangle and to evaluate the following fundamental derivatives: �̄,χ = log(ρ + (η − η′)),
�̄,η = log(ρ + (χ − χ ′)) and �̄,ζ = arctan

(
ρζ

(η−η′ )(χ−χ ′ )

)
, where the limits of integration

]
χ ′= �χ

2

χ ′=− �χ

2

]
η′= �η

2

η′=− �η

2

have been omitted. The remaining higher order derivatives required to produce

the rotation vector ω can be obtained from these expressions for �̄,k by direct differentiation.

3. The integrated EKF-ILSA

In this section,we describe the integratedEKF-ILSA scheme formonitoring evolving hydraulic
fractures. A particularly challenging aspect of this problem is capturing the moving fracture
boundary. Rather than parameterizing the free boundary and defining an augmented set of
state variables to locate the free boundary explicitly using the EKF, we choose to use the ILSA
scheme to locate the fracture-free boundary using tip widths that have been corrected by the
EKF to account for tiltmeter measurements.

3.1. The extended Kalman filter (EKF)

The Kalman filter [1] provides the optimal linear estimator for the underlying state of a linear
dynamical system, at a given time, which takes into account all the observations up till that
time. The EKF [1, 15] applies this Kalman filter methodology to nonlinear dynamical systems
by linearizing the system about a nominal state comprising the current state estimate. Naturally,
as with all such linearizations, its validity depends on how close the current estimate is to the
actual state (see [1]).

We summarize the EKF formulation [1, 15] that we use in the EKF-ILSA scheme. We
consider a typical time interval [τk, τk+1] and re-write the discrete dynamical system and
observer models defined in section 2 as follows:

xk+1 = fk(xk) + wk (3.1)

yk = Hkxk + vk, (3.2)

where the state vector xk contains the discrete widths {	mn(τk)} and the observation vector
yk contains the rotation components {ωi(τk)} observed at the tiltmeter stations at time τk, and
wk ∼ N(0, �wk ) and vk ∼ N(0, �vk ) are assumed to be independent, normally distributed,
randomvariableswith covariancematrices�wk and�vk , respectively. Thematrix�wk represents
unmodeled dynamicswhile�vk represents noise in themeasurements themselves or uncertainty
in the measurement model. Here fk(·) is defined implicitly by the operator equation

(I − �τA(	(τk+1))C	(τk+1) = 	(τk) + �τ s(τk+1) (3.3)

and Hk is the discretized operator defined in (2.18) that maps the fracture widths xk to the
tiltmeter rotations yk.

We define x̂k| j := E[xk|x1: j, y1: j] to be the state estimate at time τk given all the data up to
time τ j. Similarly, we define �k| j := E[(x− x̂k| j)(x− x̂k| j)

T |x1: j, y1: j] to be the state covariance
matrix at time τk given all the data up to the time τ j. The Jacobian for the coupled system
Fk = ∂ fk (̂xk|k )

∂x has the form

Fk = [I − �τA(	k|k)C − �τA′(	k|k)C	k|k]−1, (3.4)
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where A′ represents the derivative of A. We have found that by neglecting the term
involving A′, we obtain the following fixed point operator (see (2.13)) approximation
Fk ≈ [I −�τA(	k|k)C]−1, which proves to be more stable and computationally more efficient
than that given in (3.4). The EKF can now be expressed in the following predictor-corrector
form.

Prediction step
Given x̂k|k and �k|k compute

x̂k+1|k = fk (̂xk|k) (3.5)

�k+1|k = Fk�k|kFT
k + �wk . (3.6)

Corrector step
Given the predicted values x̂k+1|k and �k+1|k compute

Kk+1 = �k+1|kHT
k+1

(
Hk+1�k+1|kHT

k+1 + �vk+1
)−1

(3.7)

x̂k+1|k+1 = x̂k+1|k + Kk+1(yk+1 − hk+1 (̂xk+1|k)) (3.8)

�k+1|k+1 = (I − Kk+1Hk+1)�k+1|k, (3.9)

where the matrix Kk+1 is the so-called Kalman gain. The initial estimate for the state is
assumed to be the radial solution [30], i.e. x̂1|1 = 	(τ1). For the model and noise covariances,
we assume that �wk = σ 2wI and �vk = σ 2v I, and for an initial guess for the state covariance
matrix we assume �1|1 = σ 2wI.

The scaled EKF equations and parameter choices
Because we will be typically dealing with remote measurements, which are typically small
due to the rapid O( 1

ρ3
) decay of the displacement gradient fields, it is useful to re-scale the

update equations in order to gain insight into how the algorithm parameters should be selected.
Since the measurements and the values of Green’s function operator are going to be small, we
introduce the following scaled variables:

ε = ‖H1‖2 , Hk = εHk, yk = εYk, and �i| j = σ 2wGi| j.

The covariance prediction equation (3.6) assumes the form

�k+1|k = σ 2wGk+1|k
= σ 2w

(
FkGk|kFT

k + I
)
,

while the expression for the Kalman Gain (3.8) can be rewritten in the form

Kk+1 = ε−1Gk+1|kHT
k+1

(
Hk+1Gk+1|kHT

k+1 + γ I
)−1

= ε−1Kk+1,

where

Kk+1 := Gk+1|kHT
k+1

(
Hk+1Gk+1|kHT

k+1 + γ I
)−1

and

γ := σ 2v

σ 2wε2
. (3.10)
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Finally, in terms of these new scaled variables, the state correction can be expressed as follows:

x̂k+1|k+1 = x̂k+1|k + Kk+1(Yk+1 − Hk+1x̂k+1|k).

The point of introducing this re-scaling is that the parameter γ defined in (3.10) provides insight
into the choice of parameters σv and σw. If γ → 0, then we observe thatKk+1 → H−1

k+1, which
implies that x̂k+1|k+1 → H−1

k+1yk+1. In this limit, the Kalman filter places more emphasis on the
measurements than on the dynamics of the model itself in arriving at an estimate of the state.
This would be appropriate, for example, if there was significant uncertainty in the model,
in which case σw would need to be large relative to σv . Alternatively, this situation might
occur if the data were known to be significantly more accurate than the level of confidence
in the model dynamics. Conversely, if σw → 0, which would be the case if there was a great
deal more confidence in the model dynamics than in the measurement process, then γ → ∞
so that Kk+1 → 0 and the change made by the Kalman filter to the state predicted by the
model dynamics is negligible. In the experiments explored in this paper, we are interested in
exploring situations in which there is significant unmodeled dynamics. Thus we would like
to be operating in the regime in which γ � 1. A choice that we have found particularly
effective is σv = φσwε, which implies that γ = φ2. Here, φ is a parameter that can be used to
adjust the resolution of the monitoring process. Values of φ are typically chosen in the range
0.01 < φ < 2 and can be used to adjust the weight that the EKF-ILSA scheme places on the
measured data relative to the desired weight on the accuracy of the dynamics of the forward
model.

3.2. The integrated algorithm

The integrated EKF-ILSA algorithm comprises the following two steps: (1) the discrete
fracture widths 	mn are treated as the primary state variables that are updated using the EKF
based on the coupled equations and observed data while the fracture footprint is frozen; (2)
the fracture front positions are updated using the ILSA algorithm and the new estimates of
the widths. Step (1), involving the EKF width prediction, and step (2), involving ILSA front
correction, are then repeated until the front iterations converge. By this stage, both the widths
and front positions are consistent with the dynamics of the forward models (2.2)–(2.5) and the
observed data (2.18).

To distinguish between time-steps and front iterations, we use subscripts to denote time-
step information and superscripts to denote the front iteration counter. Thus x̂ j

k+1|k represents
the predicted value for the state at time-step k + 1 given all the data up till time-step k in
the jth front iteration. If the superscript is absent, we assume that we are referring to the
value of that quantity once all the front iterations have converged. In the convergence check
below�(S ) represents the characteristic function of S. It is possible for the Kalman update to
predict width components that are negative, i.e. x̂ j+1

k+1|k+1, i < 0, where the additional subscript
refers to a particular component. These negative widths are likely to occur if the EKF-ILSA
footprint has, in some region, gone beyond that of the synthetic fracture. We prevent this
physically impossible situation by resetting those width components to the values predicted
by the forward model, i.e. x̂ j+1

k+1|k+1, i = x̂ j
k+1|k, i. This strategy involves minimal adaptation

of the standard ILSA scheme, while other schemes, which will add more robustness to the
algorithm, such as the deletion of negative width elements from the active set or the imposition
of a minimal width constraint are left to future investigations.

Initialization:
◦ Set the state to the radial exact solution x̂1|1 = 	exact(τ1).

◦ Set the domain to the exact circle S1 = {(χ, η) :
√

(χ − χc)2 + (η − ηc)2 � ρexact(τ1)}.
◦ Set the EKF parameters φ, σw and the covariance matrix �1|1 = σ 2wI.

10
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Time-step loop: k = 1 : Nt

τk+1 = τk + �τ .
Initialize guesses: set the front ∂S1k+1 = ∂Sk and the covariance matrix �1k|k = �k|k.
Front iteration loop: j = 1 : Nf

Given x̂k|k and ∂S j
k+1 solve (2.13) for x̂ j

k+1|k = fk (̂xk|k)

Evaluate F j
k ≈ [

I − �τA
(̂
x j

k+1|k
)
C

]−1
and H j

k+1
If k=1, set ε = ∥∥H1

2

∥∥
2 := ‖H1‖2 and then set σv = φσwε

�
j
k+1|k = F j

k �
j
k|k

(
F j

k

)T + �wk

K j
k+1 = �

j
k+1|k

(
H j

k+1
)T [

H j
k+1�

j
k+1|k

(
H j

k+1
)T + �vk+1

]−1

x̂ j+1
k+1|k+1 = x̂ j

k+1|k + K j
k+1

(
yk+1 − H j

k+1x̂
j
k+1|k

)
If x̂ j+1

k+1|k+1, i < 0 set x̂ j+1
k+1|k+1, i = x̂ j

k+1|k, i (to prevent negative widths).

�
j+1
k+1|k+1 = (

I − K j
k+1H

j
k+1

)
�

j
k+1|k

Use x̂ j+1
k+1|k+1 to set BC for T

j+1
k+1 along ∂Sc, j

k+1 using (2.17) and use FMM to solve∣∣∇T j+1
k+1 (χ, η)

∣∣ = 1.

Update the front position ∂S j+1
k+1 = {(χ, η) : T j+1

k+1 (χ, η) = 0} and the velocity v
j+1
k+1

field using (2.16).

Check for convergence
∥∥�(S j+1

k+1 ) − �(S j
k+1)

∥∥ < tol × �(S j+1
k+1 ).

end front iteration loop
end time-step loop

4. Numerical results

4.1. Description of the numerical experiments

4.1.1. Geometric changes due to variations in the confining stress field. We now present
results for a sequence of numerical experiments in which synthetic data at an array of tiltmeters
has been created for hydraulic fractures propagating in situations in which significant changes
to the geometry of the evolving fractures are induced by spatial variations in the confining
stress field�oϕ(χ, η). Gaussian white noise with mean zero of varying amplitude σN between
0% and 5% is added to the tiltmeter data to simulate typical measurement errors experienced in
the field. In the identification of the state and the fracture boundary by the EKF-ILSA scheme,
the forward model used by the EKF assumes no confining stress field, i.e. ϕ(χ, η) = 0.
Thus without the corrections introduced by the EKF component of the algorithm due to the
measured tiltmeter data, the solution produced by the dynamic model would correspond to
a radially symmetric crack. This amounts to significant unmodeled dynamics that has to be
compensated for by the EKF-ILSA algorithm.

4.1.2. Error measures. In order to be able to present the data in a compact form for ready
comparison of the performance of the algorithm with different choices of the parameter φ, we
introduce the following error measures:

Ew(τk;φ, σN ) :=
∫
Ss

k∪SE−I
k

|	s(χ, η, τk) − 	E−I(χ, η, τk)|dS∫
Ss

k
|	s(χ, η, τk)|dS ,

EF (τk;φ, σN ) := A
[(
Ss

k ∪ SE−I
k

) \ (
Ss

k ∩ SE−I
k

)]
A[Ss

k]

(4.1)
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where the operator A [·] represents the area of the indicated region, Ss
k is the region occupied

by the synthetic fracture at time τk and SE−I
k represents the corresponding region occupied by

the fracture identified by the EKF-ILSA scheme. Ew(τk) represents the relative width error
measured by the integral of absolute value of the difference between the widths over the
combined region Ss

k ∪ SE−I
k over which the two fractures fall divided by the total volume

in the synthetic fracture. We assume that 	s = 0 on SE−I
k \(Ss

k ∩ SE−I
k ) and 	E−I = 0 on

Ss
k\(Ss

k ∩ SE−I
k ). We observe that 0 � Ew(τk) � 2, the lower bound occurs when 	s ≡ 	E−I

and Ss
k ≡ SE−I

k , while the upper bound occurs if we assume that both schemes preserve volume
and that Ss

k ∩ SE−I
k = ∅. The quantity EF (τk) represents the relative footprint error measured

by the ratio of the areas of the two regions Ss
k and SE−I

k that lie outside their intersection
Ss

k ∩ SE−I
k divided by the area occupied by the synthetic fracture. We note that 0 � EF (τk),

where the lower bound corresponds to Ss
k = SE−I

k . There is not necessarily an upper bound
on EF (τk) because there is no reason for the areas to be preserved or even to be finite. If
Ss

k ∩ SE−I
k = ∅, then EF (τk) � 1.

4.1.3. Observation tiltmeter array and measurement noise. Weuse a planar array of tiltmeters
located at a grid of nodal coordinates defined as follows:

χ = {a : h : b}, η = {a : h : b}, ζ = d. (4.2)

We assume that tilt components with respect to the ζ -axis are measured at each tiltmeter station
on this grid, so that a time-series comprising the following components of the rotation vector:
ωχ = uζ ,η − uη,ζ and ωη = uχ,ζ − uζ ,χ , are generated by the synthetic model. We will model
noise and measurement errors by adding to each tilt measurement ω(χ j, η j, ζ j, τk)white noise
that is normally distributed, having a mean of zero and a variance of 1, i.e. N(0, 1), and which
has an amplitude of σNωmax, j and is independent of all the other noise components. Thus the
measurements that are fed to the EKF-ILSA scheme are as follows:

ω(χ j, η j, ζ j, τ ; σN ) = ω(χ j, η j, ζ j, τ ) + σN × ωmax, j × N(0, 1). (4.3)

For the amplitude components, we assume that ωmax, j = max
k

{
ω(χ j, η j, ζ j, τk)

}
and that

σN ×100 is a parameter that represents the percentage noise introduced into the measurements.

4.1.4. Near-field and far-field regimes. Lecampion et al [16] have identified a criterion to
distinguish far-field from near-field regimes for tiltmeter measurements. By means of far-field
asymptotic expansions of the displacement gradients, this criterion was derived based on the
ability to distinguish a geometric change represented by the difference between the tilt field
of a square DD of side length 2c and that due to a point DD of equivalent volume using
tilts in a plane a distance d away. The criterion is as follows: if the dimensionless distance
δ = d

2c < 1.5 = δc, then the tilt measurements are considered to be near-field, while if δ > δc

the tilt measurements are considered to be far-field. In the experiments, we will vary d in
order to be able to test the EKF-ILSA scheme both in the near-field and the far-field regimes.
To use this criterion, we take the critical dimension to be the side length 2c = √

A [S] of a
hypothetical square having an equivalent area to that of S. Here operator A [·] is the same as
that defined in (4.1). For a fixed d, this ratio will decrease as the fracture enlarges, so a fracture
can move from one regime to another as it evolves.

4.2. Monitoring an HF in a medium with a stress gradient

In the first experiment, the synthetic tiltmeter data were generated by considering an HF
propagating in the viscous regime in a linearly varying in situ confining stress field. The

12
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confining stress field �oϕ(χ, η), which was introduced in (2.2), is assumed to have the
following form:

ϕ(χ, η) = ηM − η

ηM − ηm
,

where ηm = 0.25 and ηM = 32.25 are the minimum and maximum η coordinates of the
rectangular mesh. In all the experiments considered in this subsection, we use a mesh size
�χ = �η = 0.5 and a time-step�t = 3.18. As a starter solutionwe considered the solution of
a small penny-shaped fracture propagating in the viscosity dominated regime [30, 24], which
has an initial radius ρ = 2.25 at a time τ = 13.94. This problem represents a buoyancy-driven
hydraulic fracture (see for example [28, 37]) as can easily be seen by re-writing the fluid-flow
equation (2.3) in terms of the net pressure 
 = 
f − �oϕ(χ, η). Eliminating 
f in favor of

, we obtain the following additional term:

�o

Gm
∇ · (	3∇ϕ(χ, η)) = − �o

Gm(ηM − ηm)

∂	3

∂η
(4.4)

on the right-hand side of (2.3). This first-order, convective, buoyancy term represents the
tendency of the fracture to follow the line of least resistance, which is to grow preferentially in
the vertical η direction. For the forward model used with the EKF-ILSA scheme, we assume
no confining stress field so that ϕ(χ, η) ≡ 0 so the EKF-ILSA scheme has no knowledge of
the buoyancy term. This is considered to be a rigorous test of the EKF-ILSA scheme as it
introduces significant unmodeled dynamics into the equations governing the evolving synthetic
hydraulic fracture that are not seen by the EKF-ILSA scheme except via the feedback from
the tiltmeter measurements.

4.2.1. Near-field monitoring without noise. We select the following values for the tilt array
parameters that are defined in (4.2): a = 0, b = 32, h = 9 and d = 10. For the range of
front positions shown in figure 2, the dimensionless distance parameter δ falls in the interval
2.51 � δ � 0.57, which implies that the fracture transitions regimes as it grows and passes the
critical value δc = 1.5. Indeed, for a brief initial period 13.94 � τ � 45 the evolving fracture
operates in the far-field regime for this tiltmeter array, after which it spends the majority of
the time in the near-field regime.

In figure 2 we plot the synthetic and EKF-ILSA fracture fronts and the corresponding
fracture widths at the time-steps τ25 = 94.97, τ50 = 174.53, τ75 = 254.09, and τ100 = 333.65
for different values of φ. Consistent with the discussion about the characteristics of the EKF
for different values of γ (see the discussion that follows (3.10)), we observe that the best
identification of the front positions and widths are achieved for the choice φ = √

γ = 0.1,
and that these estimates degrade as φ is increased. For small values of φ, the EKF places
relatively more weight on the measurements than on the dynamics of the forward model. The
slight asymmetry in the estimated front positions is due to the fact that the tilt array is not
completely symmetrically positioned relative to the axes of symmetry of the synthetic fracture.
We observe that as the time period over which the EKF-ILSA estimation scheme has been
operating increases, the front and width estimates improve due to the improved estimates of
the covariance matrices �k+1|k+1 accumulated over the duration of the HF process.

To see how the estimates of ∂S and 	 evolve with time, we plot the error measures EF

and Ew in figure 3. In these plots the times, τk : k = 25 : 25 : 100, at which the fronts
and widths in figure 2 are sampled, are represented by the solid circles along the τ -axis. We
observe that both these errors reduce monotonically as the value of the resolution parameter
is decreased, i.e. γ = φ2 → 0. Conversely, the solid curves without symbols in each of these
figures (shown in red) represent the upper bound errors between the synthetic fracture solution
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Figure 2. Left figure: the synthetic fronts ∂S25:25:100 indicated by the solid line (red) and the and
the corresponding EKF-ILSA front estimates using φ = 0.1 (•) φ = 0.5 (�), φ = 1.0 (�),
φ = 1.5 (�), and φ = 2.0 (�). The starter fracture is represented by the dashed circle (shown in
red). Right figure: vertical cross-sections of the corresponding synthetic width profile and EKF-
ILSA estimates	(χb, η, τ25:25:100) through the well-bore located at (χb, ηb) = (16.25, 8.25). The
same symbols have been used as those in part (a) to represent the different φ values.
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Figure 3. Left figure: time evolution of the footprint error measure EF for different values of φ.
Right figure: time evolution of the width error measure Ew for different values of φ.

with the stress gradient and the radially symmetric viscous solution for which γ = φ2 → ∞,
in which case the EKF assigns a zero weight to the tilt measurements and only updates for the
state dynamics. This latter solution is identical to the radially symmetric solution that would
develop in the absence of a stress gradient, i.e. when ϕ(χ, η) = 0. These plots give a clear
measure of the performance of the EKF-ILSA scheme. As time evolves, the errors typically
peak relatively early and then ultimately asymptote closer to the end of the identification. We
note that the peaks in the errors occur close to the far-field to near-field transition τ ≈ 45
so that the subsequent reduction in errors may be due to the fractures moving further into
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Figure 4. Left figure: the solid lines (red) represent the synthetic fronts while the symbols represent
the EKF-ILSA fracture fronts with φ = 1.2, near-field tilts (d = 10) and measurements with noise
levels σN = {0 (•); 0.01 (�); 0.02 (�); 0.04 (�); 0.05 (�)}. Right figure: variation of the
footprint error measure maxima Emax,F (-.-) and asymptotes EF (τ100) (solid lines) versus φ for
different values of σN .

the near-field regime as they enlarge. These reductions in error as time evolves could also, in
part, be due to the improved estimates of the covariance matrix �k+1|k+1 accumulated as time
advances.

4.2.2. Near-field monitoring including noise. We repeat the estimation process with the
same tilt array and parameters as described in the previous subsection 4.2.1, but this time we
include the noise defined in (4.3) in which σN > 0. In figure 4(a), we use the same sample
times as above to compare the synthetic and the EKF-ILSA fracture fronts assuming that
φ = 1.2 and that σN � 0. We observe that there is very little spread due to the increased
noise in the measurements, while the fracture fronts are still identified relatively accurately.
This situation is not true for all choices of 0 < φ � 2. If φ is too small, then the EKF-ILSA
scheme places too much weight on the measurements, which, if subjected to significant noise,
can introduce undesirable perturbations to the estimated fracture footprints to the point that
the scheme becomes unstable. This figure demonstrates that increasing φ can significantly
improve robustness while compromising little on resolution. To illustrate the performance
characteristics of the EKF-ILSA scheme in the φ-σN space, in figure 4(b) we plot the error
maxima Emax,F (-.- lines) and asymptotes EF (τ100) (solid lines) as a function of φ for a number
of different values of the noise parameter σN . These maxima and asymptotes are evident in
figure 3(a). A number of interesting characteristics of the EKF-ILSA scheme become evident
from this figure. (i) The asymptotic error EF (τ100) exhibits roughly a linear increase with φ

that is largely independent of the noise level σN . The error maxima Emax,F exhibit a similar
linear increase with φ, but the fluctuations about this straight line are more marked. (ii) As
the noise level σN increases, so too does the minimal φ value required to stabilize the EKF-
ILSA scheme need to increase. To represent this in figure 4(b), we have, for each σN , colored
(red) and enlarged the symbol representing the smallest φ value for which the EKF-ILSA
scheme is still stable. Finally, combining these two characteristics, we see that a compromise
in resolution is required in order to increase the robustness needed to deal with additional
noise.
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Figure 5. Left figure: variation of the footprint error measure maxima Emax,F (-.-) and asymptotes
EF (τ100) (solid lines) versus φ for different values of σN . A 4 × 4 tilt array with h = 9 was
used for all these experiments. Right figure: synthetic footprints represented by the solid lines
(shown in red) and the φ = 0.6 far-field tilt EKF-ILSA fracture fronts represented by the following
symbols corresponding to the measurements noise levels σN = {0 (•); 0.01 (�); 0.02 (�);
0.03 (�); 0.04 (�)}. A more dense 5× 5 tiltmeter array with h = 7 is used.

4.2.3. Far-field monitoring including noise. For the results presented in this subsection, we
select the following values for the tilt array parameters defined in (4.2): a = 0, b = 32,
h = 7 and 9, and d = 50. For this case, the dimensionless distance parameter δ falls in
the interval δc < 2.85 � δ � 11.51, which implies that the fracture remains in the far-field
regime throughout its evolution. In figure 5(a), we use the same format as that used above
to summarize the results for this series of numerical experiments. The values of the footprint
error measure maxima Emax,F and asymptotes EF (τ100) are plotted as a function of φ. In this
figure, we use the same 4× 4 tilt array with h = 9 as that used above. As with the near-field
case, these parameters increase almost linearly with increasing φ. However, the error level is
notably larger for the far-field case d = 50 than for the near-field case d = 10. For example,
the asymptotic error EF (τ100) for the near-field case (d = 10) lies in the range 1.48–5.50 %
(with a gradient of 0.021) compared to a range of 6.70–18.65 % (with a gradient of 0.059)
for the far-field case d = 50. It can be seen that it is possible to obtain stable EKF-ILSA
identifications for all φ in the range 0.1 � φ � 2.0, provided the amplitude of measurement
noise is restricted to the range 0 � σN � 0.02. In order to achieve a stable identification
for larger noise amplitudes σN > 0.02, it is necessary to use larger values of the resolution
parameter φ � 1.3. The footprint error measure in this case will range between 13.13 % and
24.4 %, or larger. Thus for a far-field tilt array one is presented with a difficult choice. In
order to achieve an identification of the fracture footprint within 10%, it is necessary to use a
resolution parameter in the range 0 < φ � 0.6, but then the EKF-ILSA scheme becomes more
susceptible to noise resulting in significant perturbations in the identified front and instabilities
in the algorithm. Indeed, using the 4 × 4 tilt array with h = 9 on the far-field measurements
d = 50, these perturbations and instabilities are observed for σN > 0.02 when φ is in the
range 0 < φ � 1.3.

However, it is possible to make the tilt array significantly more robust by increasing the
density of tiltmeters in a given region. Although we expect that increasing the density of tilts
can degrade the overall conditioning of the system, due to redundancy in the measurements, it
is this redundancy in measurements that enables the EKF-ILSA algorithm to distinguish noise
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from measurement by essentially canceling the random fluctuations—provided the noise in
the different tilt locations is independent. In figure 5(b), we plot the EFK-ILSA identifications
of the front locations for φ = 0.6, measurement noise amplitudes 0 � σN � 0.04 and using
a 5 × 5 tiltmeter array with h = 7. While the performance of the EFK-ILSA scheme is
clearly worse for this far-field case than it is for the near-field case, the identifications are
still fairly accurate and show significant robustness to perturbations introduced by noise in the
measurements.

4.3. Monitoring an HF in a medium with a symmetric stress jump

The numerical experiments considered in this subsection are motivated by the symmetric stress
jump experiments reported in [11], in which an HF is initiated within a channel having a low
confining stress, which is sandwiched between two regions in which there is a high confining
stress. The extent to which the HF penetrates the high stress zones is of great practical interest
in the oil industry. To simulate data from this type of situation, we generate synthetic tiltmeter
data by considering a viscosity-driven HF propagating in an elastic medium in which the
well bore is located midway between two jump discontinuities in the confining stress field
�oϕ(χ, η). In particular, the well bore is located at (χb, ηb) = (7.1667, 7.1667), while the
confining stress has the following jump discontinuities across the planes η = 6.6667 and
η = 7.6667:

�o = 3/4; ϕ(χ, η) =
{
1 if |η − ηb| � 1/2
0 if |η − ηb| < 1/2.

(4.5)

To generate the synthetic tilt measurements, we use a rectangular mesh comprising square
elements whose edges are defined by the Cartesian product of the following partitions
χk = 0 : �χ : 14.3333 and ηk = 0 : �η : 14.3333, where �χ = �η = 1/9. A radially
symmetric starter crack is assumed in which the initial radius is set to ρ = 0.2778 at time
τ1 = 0.1260 and the pressure and width profiles are initialized to the radially symmetric
viscous solution [30]. The time duration of the simulation is assumed to be τ1 � τ � 21.5521,
which is subdivided into 300 uniform time-steps of size�τ = 0.0713. The EKF-ILSA scheme
assumes a forward model for which ϕ(χ, η) = 0, so that a radially symmetric fracture would
develop without an update from the measurements via the EKF component of the algorithm.

The tilt array in this case is defined by the parameters a = 0, b = 16, h = 3 and 1,
and d = 10. The effective square side length, having an area equivalent to the evolving
fracture footprint, is initially 2c = 0.492 35 and is increased to 2c = 4.5165 by the end
of the simulation. This corresponds to a dimensionless distance parameter δ in the range
20.3108 � δ � 2.2141 > δc so the fracture remains in the far-field regime throughout.

In figure 6(a), we plot the evolving synthetic fracture fronts for τk : k ∈
{10, 20, 30, 50, 75, 100 : 50 : 300} and the corresponding fracture fronts identified by the
EKF-ILSA scheme with φ = 0.01 and no noise, σN = 0. We have chosen a particularly small
value of the resolution parameter to demonstrate that the EKF-ILSA scheme can compensate
for significant unmodeled dynamics and resolve these extreme changes in fracture geometry
by taking into account the tilt measurements. For this run, a 6× 6 tiltmeter array with spacing
h = 3 is used. Unfortunately, the EKF-ILSA scheme is not robust to noise in the measurements
for such a small value of φ. In the previous subsection, we found that robustness to noise could
be traded for resolution by increasing the parameter φ. However, for this problem, with extreme
changes in the geometry, even a moderate increase in the resolution parameter φ results in a
significant degradation in the quality of the identified fracture footprints. This is illustrated in
figure 6(b) in which we plot the same sequence of fracture fronts corresponding to φ = 0.4.
It is clear that if we want to achieve a reasonably accurate EKF-ILSA identification of the
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(c) ∂Sk with φ = 0.2 and σN = 0.02

Figure 6. These figures show a sub-sequence of the fracture fronts ∂Sk for selected pairs (φ, σN )

in which the synthetic solution is represented by solid line segments (in red) and the EKF-ILSA
solution by solid lines with the • symbols.

fracture footprints for this problem, wewill have to use a relatively small value of the resolution
parameter, φ = 0.2 for example. In order to achieve robustness to noise for such a small value
of φ it will be necessary to make use of a tilt array with a greater density to exploit the noise
cancelation effect achieved by the additional redundancy in measurements. To this end we
reduce the array spacing parameter from h = 3 to h = 1. In figure 6(c), we plot results for
the EKF-ILSA identification of the symmetric stress jump footprints using the more dense
tiltmeter array h = 1, φ = 0.2 and assuming a noise amplitude σN = 0.02. These front
identifications are clearly an improvement on those shown in part (b) of this figure despite the
noise in the measurements.

4.4. Monitoring an HF in a medium with an asymmetric stress jump

The numerical experiments considered in this subsection are motivated by the asymmetric
stress jump experiments reported in [42], in which an HF is initiated within a channel, having
an intermediate confining stress, which is sandwiched between a high-stress region and a
low-stress region. We consider precisely the same configuration of layers as in the previous
subsection except that the confining stress field has the following form:

�o = 1; ϕ(χ, η) =
⎧⎨⎩
1 if η − ηb � 1/2
1/2 if |η − ηb| < 1/2
0 if η − ηb � −1/2.

(4.6)

In this case, the fracture penetrates very little into the higher stress region, propagates only a
moderate distance in the intermediate stress region and herniates dramatically into the low-
stress region in which the majority of the fracture footprint and fluid volume ultimately reside.
To generate the synthetic tilt measurements, we use the same run parameters, mesh, starter
fracture and time-step as that used for the symmetric stress jump described in subsection 4.3.
As before the EKF-ILSA scheme assumes a forward model for which ϕ(χ, η) = 0 and would
generate a radially symmetric fracture without input from the tilt measurements. The tilt array
in this case is defined by the parameters a = 0, b = 16, h = 1 and 3, and d = 50. The
effective square side-length, having an area equivalent to the evolving fracture footprint, is
initially 2c = 0.492 35 and is increased to 2c = 4.8403 by the end of the simulation, which
corresponds to a dimensionless distance parameter 101.5538 � δ � 10.3299 > δc in the
far-field regime throughout.

In figure 7(a) we compare the synthetic fracture fronts with those obtained by EKF-ILSA
identification assuming φ = 0.1 and no noise. The EKF-ILSA scheme provides a very good
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Figure 7. Using the same symbol convention as in figure 6 we plot the EKF-ILSA solution with
and without noise.

identification of the fracture front positions in the low-stress region where the fracture has
herniated and the widths are large. However, in the high-stress region, where the fracture
opening is relatively small, the EKF-ILSA is not able to identify all the details of the fracture
footprints as the fracture widths are much smaller than in other parts of the fracture. The
relatively poor match of the fracture footprint in the high-stress region affects the way in
which the footprint is approximated in the intermediate stress zone between the stress jump
interfaces. The EKF-ILSA fronts show a moderate inflection point in this region and are only
able to approximate the synthetic fracture fronts in an average sense.

It is interesting to contrast the performance of the EKF-ILSA scheme for this asymmetric
fracture with that of the symmetric fracture discussed in subsection 4.3. Though both tilt arrays
in these two examples are operating in the far-field regime, the array for the asymmetric stress
jump is five times farther from the fracture than in the case of the symmetric stress jump.
In spite of this, the tilt array in the asymmetric case is able to capture the fracture footprint
much more accurately than in the symmetric case. This discrepancy can be explained by
observing that, in the symmetric case, the majority of the front identification takes place in the
high-stress regions where the fracture widths are relatively small compared to the widths in
the well-bore channel. Indeed, the identification of the fracture fronts in the channel region is
particularly accurate. In contrast, for the asymmetric case, the majority of the fracture front is
being identified in the herniated region where the fracture widths are much larger than in the
remainder of the fracture. In figure 7(b), we compare the fracture footprints for the synthetic
and EKF-ILSA identification assuming φ = 0.6 and a noise level σN = 0.04. To achieve
robustness for such a large noise amplitude, it is necessary to decrease the sample spacing of
the tilt array to h = 1. Compared to the plots shown in part (a), we observe some degradation
in the identification of the front positions with the increase of φ, but this identification is still
remarkably accurate given the level of noise. The slight asymmetry in the results is due to
the fact that the tilt array is not distributed symmetrically with respect to the well bore in the
χ -direction.

5. Conclusions

In this paper, we propose a novel algorithm to invert time-series of tiltmeter measurements
sampled at selected points within an elastic medium in order to identify the fracture footprints
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and fracture opening as an HF propagates. The algorithm is based on integrating the EKF
with the stable and efficient ILSA, recently developed to solve the highly nonlinear degenerate
integro-partial differential equations governing the dynamics of the moving fracture front. The
unique property of the ILSA scheme is that it uses predicted state values close to fracture tip
alongwith the tip asymptotic relation, for a given propagation regime, to locate the fracture-free
boundary. This feature enables integration with the EKF without having to resort to explicit
parametrization and identification of the fracture-free boundary. The proposed scheme uses
the EKF state predictions and measurement updates, assuming a given fracture footprint, to
determine corresponding ILSA front updates to arrive at an iterative algorithm that has both
state and front updates that are consistent with the measurements.

By means of the appropriate scaling we are able to identify the parameter choices
for the EKF component of the algorithm that are suitable for the identification of remote
measurements. In particular, we identified the parameter γ = φ2, which determines the
relative weight the Kalman filter places on the observed measurements compared to the state
predicted by the dynamic model. This interpretation of the parameter choices is corroborated
in all the numerical experiments.

We considered three numerical experiments comprising different physical situations each
of which has real-world realizations: buoyancy-driven fracture propagation, breakthrough
by an HF propagating in a channel formed by a symmetric stress jump and an asymmetric
stress jump. Some interesting patterns emerge from the numerous numerical results presented.
(i) The EKF-ILSA scheme provides successful identifications in both the near-field and far-
field regimes. As is to be expected, the resolution is better in the near-field regime than in
the far-field regime. (ii) The EKF-ILSA scheme footprint and width errors initially increase
to a maximum level after which they decrease and eventually tend to an asymptote. This
characteristic can be explained by the improved estimates of the state covariance matrix �k|k
as the data are accumulated. (iii) The resolution of the identification degrades roughly linearly
with increasing φ—as more weight is taken away from the measurements and placed on the
state evolution model. (iv) The EKF-ILSA scheme can tolerate noise of up to 5% of the
maximum measurement amplitude. The robustness to noise in the measurements typically
increases as φ is increased. Another way in which an array of tiltmeters can be made more
robust to noise in the measurements is to increase the density of tilts in a given region. In this
way, the EKF-ILSA scheme can exploit the redundancy in the additional measurements by
canceling the independent fluctuations in measurements from neighboring stations. Increasing
the density of tilts typically does not improve the error characteristic but does improve the
robustness. Though the deployment of extremely dense arrays to improve robustness to noise
may not be practical at this time, this noise cancelation feature of the EKF-ILSA schememight
be an important consideration in deciding the placement of tiltmeters or to provide a stimulus
for the development of new tiltmeter technology.

Having established the basic methodology a number of developments and extensions of
the EKF-ILSA scheme can be considered. The EKF is based on a linearization of the state
equation (3.1) about a nominal state comprising the estimate at the previous update. However,
there is a limit to the validity of this form of linear approximation especially in the light of
the fact that the EKF update equations are derived by taking conditional expectations of the
linearized system. However, for an arbitrary nonlinear function f (x) and random variable
x it is, in general, definitely not true that E[ f (x)|y] = f (E[x|y]), which is a fundamental
approximation made in the linearization procedure used to formultate the EKF. This error is
compounded even further in the calculation of the covariance matrices. Different approaches
to evaluating these expectations have been developed such as the so-called unscented Kalman
filter (UKF) [13, 14, 39]. TheUKF approximates the desired expectations by taking appropriate
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weighted sums evaluated at so-called sigma points and has been shown to be much more stable
than the EKF in the context of highly nonlinear systems. The UKF is typically computationally
equivalent to, or even more efficient than, the EKF; however, for the HF problem each new
sample point will involve a completely new solution of the system of coupled equations (2.12).
Thus the UKFwill clearly require more development in this context, which is beyond the scope
of this paper.

We believe that this novel EKF-ILSA scheme brings a new approach to the classic elasto-
static inverse problem. Having established the potential of the method in silico via numerical
experiments with synthetic measurements, our next objective is to test the procedure on real-
field data. If this is shown to be promising, then there will be a great deal of potential for the
development of more efficient algorithms to make the real-time monitoring and possibly even
control of propagating hydraulic fractures a reality.
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