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Abstract

Xin, J., Peirce, A., Chadam, J. and P. Ortoleva, Reactive flows in layered porous media, {. Homogenization of frec boundary
problems, Asymptotic Analysis 11 (1995) 31-54.

A model of reactive flow in a layered porous medium is considered in which the layering is represented by small-scale
periodic structure. A novel form of homogenization analysis is presented, combining gecometric optics and multiple scales
expansions together with matched asymptotics to derive an effective free boundary problem for the motion of the reactive
interface. Applications of the cffective frec boundary equations are given in which travelling wave solutions and the stability
of shape perturbations are considered.

1. Introduction

The study of reactive flows in porous media is important in the fundamental understanding
of many geochemical situations such as the diagenesis and evolution of mineral deposits, oil
and gas reserves, assessing the integrity of chemical and nuclear waste repositories, and even in
mineral extraction processes such as in situ coal gasification, enhanced oil recovery and leaching
of minerals.
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The model we consider for this problem involves a solvent which is being forced into a porous
medium. The solute will be dissolved upstream while sufficiently far downstream the solvent
will become saturated. In between these two regions there is a reaction interface that is typically
thin and across which the porosity changes rapidly from its downstream value to its upstream
value as a result of the dissolution process taking place at the front. Understanding the possible
formation and stability of protrusions along the front and the shape selection of morphologically
more complicated reaction zones such as fingers is important in the above geochemical situations.
Such protrusions can result from a relatively higher permeability at one point of the front than at
neighboring points on the front. As a result of this permeability increase, the unsaturated solvent
is then focused at the tip of the protrusion which in turn advances more rapidly than the other
points of the front. This destabilizing mechanism is known as the recaction-infiltration instability.
There is, however, a competing process which tends to inhibit the uncontrolled growth of such
protrusions. As the aspect ratio of the protrusion increases, diffusion of solute from the sides of
the protrusion increases the concentration of the solute in the solvent at the tip, thereby inhibiting
the advancement of the protrusion (see Fig. 1). The shape stability of the reaction-infiltration
instability has been studied by us [1-3] in the case of a homogeneous porous medium.
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Fig. 1.

In this paper we consider the case of reactive flow through layered porous media. The inclusion
of layering in the model is important as many of the world’s natural gas and oil deposits are found in
underground chambers whose impervious sides are made up of alternating low and higher porosity
layers. These layers were formed by the oscillatory deposition caused by nucleation feedback and
coupled mechano-chemical processes. Similar processes also formed under-pressured chambers,
which instead of containing gas and oil are under vacuum. These under-pressured chambers are
currently being investigated as potential chemical and nuclear waste repositories. An assessment of
the integrity of the layered walls of such chambers depends on a fundamental understanding of their
resistance to unstable breakout by the flow of highly reactive fluids. Conversely acid injection
processes are also used in petroleum engineering to repair well damage to banded reservoirs.
Therefore, the effect of layering on the reaction-infiltration process is of fundamental importance
in these areas.

Layering occurs naturally on a wide range of length scales varying from a few grain diameters
to tens or even hundreds of meters. Specific examples of layering are found in the Anadarko basin
in the Simpson group of sandstones [12], the marl/limestone alterations [13] and selected shales
in the Woodford formation. Reaction fronts, such as those mentioned above, occur both naturally
and in the mineral extraction process. Variations in temperature or grain rate coefficients result
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in reaction fronts whose widths range from the grain scale to hundreds of meters. Therefore the
ratio of front-width to layer thickness can have asymptotic limits oo, 1, and 0 - all of which are
relevant. In this paper we model layering by assuming that the porosity of the medium has a fine-
scale periodic structure in the direction of the layering. We restrict ourselves to the distinguished
limit in which the period of the layering is the same as the width of the front. A practical example
of such a distinguished limit is provided by the HCI/HF acid injection process used to repair
layered reservoirs damaged by wells [12). In this case the period of the layering is typically
10 mm whereas the reaction front widths fall within the range 1-100 mm.

In this paper we provide the details of a novel application of homogenization in the context
of free boundary problems. Homogenization is used to reduce the reactive flow equations with
fine-scale layered structure to an effective free boundary problem. The approach uses combined
multiple scale-geometric optics expansions and matched asymptotics (similar to boundary layer
theory) in order to derive effective medium equations and jump conditions for the free boundary.
In this context the matching process is subtle as the true solution can be expected to exhibit the
same fine-scale oscillations present in the porosity function. Matching is achieved between inner
and outer solutions by stitching averaged inner variables to averaged outer variables. The effective
free boundary problem that results from this analysis is more tractable than the original reactive
flow equations. Indeed, it is possible to use the effective free boundary problem and to asses the
effect of layering on the stability of travelling wave solutions to morphological perturbations. The
details of the shape stability analysis for the effective free boundary problem have been presented
elsewhere [6] and will only be summarized briefly in this paper.

In Section 2 we present the mathematical model for reactive flow in a porous medium. By
considering the model equations in the large solid density limit and performing an appropriate
rescaling of the variables the equations are reduced to a singular perturbation problem with a
small parameter . In terms of this small parameter ¢, the width of the reaction front can be shown
by rigorous estimates [16] to be O(s'/ 2). In Section 3 we provide a detailed derivation of the
effective free boundary problem for the case of a horizontally layered medium in the distinguished
limit in which the layer period & equals the width of the front, i.e., § = ¢'/2. Other cases such as
vertical layering can be treated in a completely analogous fashion. In Section 4 we demonstrate
how the effective free boundary equations can be applied by providing a brief summary of the
results of the shape stability analysis.

2. The mathematical model

For the purposes of the model we consider reactive flow within the infinite strip (z,y) €
(—00,00). Within this strip the rate of increase in porosity, ¢(z,y,t), (equivalently the rate of
dissolution of the soluble minerals) is proportional to the reaction rate:

p, = —k(pr — 0" (c ~ ceq) 2.1)

where k is the reaction rate constant, ¢ (z,y,t) is the final porosity after complete dissolution and
c(z,y, 1) is the concentration of solute in the solvent with its equilibrium concentration being ceq.
The 2/3-power indicates that we are considering surface reactions, but as we shall see in the next
section, the actual form of the reaction rate in (2.1) does not affect our results since these details
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will be confined to an infinitesimally thin reaction zone when we take the distinguished limit. The
solute concentration per rock volume, c, satisfies a mass conservation equation:

(pc), = V - [¢D(p)Vc + pex(p)Vp] + py, (2.2)

where D and ¢ are the porosity dependent diffusion coefficient and permeability, and p is the
density of the minerals being dissolved. In (2.2), p is the pressure and Darcy’s law for the velocity
v = —x(p)Vp has been used. Finally the conservation of water implies

@, + V- (px(¢)Vp) = 0. (2.3)

The three equations (2.1)-(2.3) are to be solved for the three unknowns ¢, c, p subject to following
the imposed asymptotic conditions,

c—=0, p > s, and p; & p; aszT - —00 (2.4a)
and
C— Ceq, P — b, and pr =7 as T — +00 (2.4b)

along with initial data. The conditions (2.4a) have the following physical interpretations: at the
inlet (z = —o0), the water is free of solute, the porous medium has reached its final altered state
in which all the soluble minerals have been previously dissolved out, and a horizontal pressure
gradient (equivalently, velocity, through Darcy’s law) has been imposed. Similarly, the conditions
(2.4b) imply that at the outlet far downstream (z = +00), the water is saturated with solute, the
porous medium is in its original state with porosity y(x,y,t) and the horizontal pressure gradient
is to be determined as part of the problem. We take zero-flux boundary conditions on the transverse
boundaries of the strip.

In most geological examples of interest the (transverse) size of the reaction zone is several
orders of magnitude greater than its thickness and the details inside this zone are not of interest
per se except in the way in which the cumulative effect governs the evolution of the reaction zone
on this larger scale. To this end we scale the above equations in terms of the parameter [1]

£ = ce/p 2.5)

(typical values of ¢ range from 107> to 10~'%) and examine the limit ¢ — O (the so-called large
solid density limit) in the next section. One expects the thickness of the resulting reaction front
separating the two values of ¢ to be very thin (indeed, it is O(s‘/ 2)) and the front itself to move
very slowly. Thus we introduce a slow dimensionless time t by

T = e(keeg)t (2.6)
and space variables by

F = (keeg)'/?r @7
along with the scaled concentration

v =c/ceq (2.8)
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Equations (2.1)-(2.4) can then be written as (dropping the tildes, and writing d(¢) = @ D(@), A(p) =
p(p))

e(py), = V- [dVy + MVp] + ¢, (2.9)
ep, = —(p; — ) (v - 1), (2.10)
ep, = V- [AVp], 2.11)
v =0, ¢ = ¢y, and pr —+ p; as z — —oo, (2.12a)
v=1, ¢ =y, and pz -? as z — +oo. (2.12b)

3. Derivation of effective equations and interface conditions

The model presented in Section 2 is general in that no assumptions (such as layering) were
made about the porous medium itself. We build layering into the model by assuming that the
initial porosity ¢, in addition to its macroscopic dependence on x and y, has a fine-scale periodic
structure in one or both of the independent variables. In order to account for the effect of this fine-
scale layering on the movement of the reaction front, we develop a novel homogenization approach
that ultimately yields an effective free boundary problem. In order to illustrate this analysis we
consider the case of an initially vertically layered medium, which after interaction with the solvent,
has a homogeneous distribution of porosity, i.e., ¢, = ¢b(y/e'/ 2y and ¢; = constant. This case
is sufficiently rich to illustrate the methodology while retaining simplicity for the purposes of
presentation. The effective equations in a more general setting follow analogously and are merely
stated.

The reaction front is characterized by a narrow region having a width O(e'/?) across which
the dependent variables change rapidly. Our strategy is to assume inner and outer multiple scale
perturbation expansions of the unknowns. The outer expansion involves the macroscopic variables
z,y and ¢t as well as the microscopic variable y/é to represent the vertical periodicity on the
length scale § = £'/2. The inner expansion involves the microscope variables S(z,y,t,48)/§ and
y/8 representing the normal coordinate to the unknown free boundary and medium periodicity,
respectively, and the macroscopic variables T'(z, y, t, §) and ¢ representing the tangential coordinate
to the unknown free boundary and the time t, respectively. Redundancy in these representations
are removed by exploiting the periodicity assumption. We then derive a consistent set of effective
equations and interface conditions by matching averaged (i.e., macroscopically varying) inner
variables to averaged outer variables.

3.1. Outer expansions

We expand each of the independent variables ¢,y and p in a multiple scale perturbation expan-
sion of the form:

b5 = (&, ¥, y/8,t) = b2, ¥, /8, t) + 6, (z, %, y/6. ) + ... . G.1.1)

Here we have used (*) to distinguish an outer variable from an inner variable. However, within
this section dealing only with outer expansions we shall drop this notation.
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Scaled equations

Let = y/6 then dy¢ = (9, + 6"6,,)5 and (dropping the 7) (2.9)-(2.11) becomes:

8 (@) = (drz + Avpe)z + (3 + 67 '3y) [d(vy + 6 ')

| (3.1.2a)
+ Xy(py + 6 Pn)] + &,
8¢, = —(¢; - (v - 1), (3.1.2b)
(Ap2)z + (3y +87'3) [M(p, + 67 'pa)] = —(¢; — &) P(v - 1. (3.1.2¢)
Perturbation equations order by order
Substituting the expansions for ¢, v and p of the form (3.1.1) into (3.1.2) we obtain:
0~ >
[d(¢o)’)'(),,, + /\(d’o)')'op()_,,],, =0, (3.1.3a)
[AM¢0)po), = O (3.1.3b)

From (3.1.3b) it follows that pg,, = g(z, y,t)/M(¢o) and since pg is periodic in #:

0= (pO,n) = g(z, y, t)<A_l(¢0))'

Now assuming that ¢y > 0 it follows that ¢ = 0 from which it follows that the zeroth order
pressure function varies on the macroscopic scale only:

Py = Po(x, ¥, t). (3.1.3¢)
Similarly (3.1.3a) implies that
Yo = Yo, y. t). (3.1.3d)

Explc;iting the zeroth order macroscopic dependences (3.1.3c, d) the next order equations become:
O ") >

[d(80)(v0, + Y1) + M) NP0y + P1 )], = O (3.1.4a)

[M¢o)Poy + P1y)], = O. (3.1.4b)
Integrating (3.1.4b), dividing by A(¢p) and averaging we obtain

Meo)Poy, + P y) = F@ . t) = (Meg) ™) 'po,,- (3.1.4¢)
Averaging once again we obtain

(MeoIPy ) = Poy (M) ™" = (M) (3.1.4d)
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Integrating (3.1.4a) and using (3.1.4c) we obtain

d(¢())('}’o,y + )+ YoF (z,y,t) = Gz, y, t). (3.1.4e)
Dividing by d(¢g) and averaging we obtain

(d(30) ™) vy + WFE. 1.1) = Gz, u.1). (3.1.4D
Combining these last two equations we obtain

d(¢p)7y, = ({ddg) ™) = d(eg)) 10, (3.1.4g)
Averaging (3.1.4g) we obtain

(d(S)1) = Yo, ({dlb) ™)™ = (d(dp))). (3.1.4h)

Agagn exploiting the fact that v and py are macroscopic quantities the next order equations are:
O(8%) >

(d(d0)10.z + M) NoPo) , + (@) N0y + 1) + M) T(Poy, + 21y,
+ [d(@oIm 2 + Meo)ropr, + Mdp)mPy,,
+ d'($0)¢1 Y0, + MPo)b1 %P0,y (3.1.5a)
+ & (b1 1.y + dbg) 12y + (X801 %

+ /\(¢0)'71)P|',, + A(d’o)'Yon,,,]" + &gy = 0,
~(¢; — 90 - D=0, (3.1.5b)
(Me)po2), + (MeoIpoy), + (MeoIpy,), + (N(90)81p0, + Mo)py ),

+ (/\I(¢())¢lpl.7l + ’\(¢0)p2.1))q =0.

Let So(z,y,t) = O denote the limit free boundary surface, then the region upstream from the front
is characterized by Sy(z,y,t) < 0, while the region downstream from the front is characterized by
So(z,y,t) > 0. We note that (3.1.5b) implies that either ¢9 = ¢; or v9 = 1 depending on whether
we are upstream or downstream from the front, respectively.

(3.1.5¢)

Effective equations downstream from the front Sy(z,y,t) > 0

Using 9 = 1 in (3.1.4g) we see that v, = 0 so that v, is a macroscopic variable:

M =N v.t) (3.1.62)
Averaging over 7 in (3.1.5c) and using (3.1.4d) we obtain the effective pressure equation:
((MS0))Poz), + ((M80) ™) 'pg,), = 0. (3.1.6b)

Now applying the downstream boundary condition (2.1.2b) for ¢ we have ¢y = ¢. Thus in the
limit 6§ = €!/2 — 0 we have

d’& l_”) (¢b)» Ps Po(m, Y t)’ Y5 — I,
where po(z, v, t) satisfies (3.1.6b) with ¢p = ¢.
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Effective equations upstream from the front Sp(z,y,t) < 0

In the upstream region we have ¢9 = ¢;. Averaging (3.1.5a) over n and using the fact that
&5 = dy(n) we obtain:

({de N0z + (MENWoPo2) ; + (S )10, + (M) W0P0y),
+ ((d@o)n.) + (M&P1 ) W), = 0.

Making use of (3.1.4d, h) we obtain the effective concentration equation:

((d(d’j))’)’o,z + <’\(¢f»'YoPo,z)x

+ ({d(¢ )-l)—l -1 _ (3.1.6¢)
s Yoy + (AB1)7 ) Po,), = 0.

For the upstream effective pressure equation the same averaging procedure as we used for the
downstream case applied to (3.1.5c) yields (3.1.6a) but with ¢y = ¢;. Thus in the upstream region
So < O the solution in the limit § = ¢'/2 — 0 becomes:

¢6 I_U) <¢f)’ p& - po(fl:, Y, t)’ 76 — '7()(:3’ Y, t)
3.2. Inner expansions

We expand each of the independent variables ¢, « and p in interior multiple scale perturbation
expansions of the form:

b5 = ¢o(S(x,y,t,8)/8,T(z,y,1,8),y/6,t) + 8¢, (S/6, T, y/6,t) + ..., (3.2.1a)
where we assume the following expansions for the normal and tangential coordinates:

S = S(z,y.t:8) = So(z, ¥, t) + 6S)(z, y, /6, 8) + ... ,

(3.2.1b)
T =T(z,y,t;6) = To(z, y, 1) + 6 (z, v, y/6, t) + ... .

Note that the width of the front and the periodicity are assumed to be of the same order. Now
defining & = S/6, & = T and 5 = y/é we have the following multiple scale operators:

ag: — a_leaQ + Txasz)

dy — 671 5,0¢, + Tydg, + 8™ '0n, (3.2.1c)

0; — 6"15{05, + Ttagz + 0¢.
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Orthogonality condition

In order that the chosen coordinate variables S and 7" are orthogonal we impose the following
orthogonality constraint:

+68[S0:T1 2 + S1.2Tox + (Soy + S1.))T1y + Tay) (3.2.2)
+(S1y + S2)(Toy + Tiy)] + O(62).

Scaled equations

In terms of the rescaled variables (2.9)-(2.11) become:

(07" 510, + Tidg, + 0¢) [0y — 9]
= (67'520¢, + Txdg,) [d(87" 20, + Tedg,) v
+ Xy (67" 520, + Tudg,)p)] (3.2.3a)
+ (67" 8y0¢, + Tyde, + 67 '0y) [d(67' S0, + Tydg, + 6™ '0n)y

+ My (871 8,0, + Tydg, + 6709,

82(87"810¢, + Tede, + 00)¢ = —(8, — 9 (v - 1), (3.2.3b)
(67"'S20¢, + Txdg,) [A(5™' 820, + T, )] (3230
2.3c
+ (67" 8,0¢, + Tydg, + 67 '05) [M(67' Sy0¢, + Tydg, + 67 ') p.
Perturbation equations order by order
Substituting the expansions (3.2.1) into (3.2.3) and gathering terms we have:
0(572) >
S0.296 [A(80)Soz 0., + MP0)V0S0-P0.¢,] (3.2.49)
2.4a
+ (Soy0a +3n) [d(0)(SoyM0e, T Vo) + M) V(S0 yPog, + Pon)] =0,
So.:06 [M0)SozPog, ] + (So40¢, + 39) [Mo) (SoyPo, + Pon)] =0. (3.2.4b)

Now (3.2.4b) is an equation for py on the region (§),7) € (—o00,0) X T!. The limiting values
£} — oo correspond to the matching region where the inner expansions are matched to the outer
expansions, i.e.,

& l—'»Too po(gl ’ &2’ 7 t) = ‘i)'o(:lfo, Yo t) (325)
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where (zg, yo) satisfies

{O = S(zg, yp. . 9),
62 = T(m(]’ y()’ t’v 6)~

From (3.2.5) we conclude that since py(€),£2.7.,¢) has to match to the macroscopic quantity 7 it
follows that

lim =0
{100 Poy

and similarly with £ — —oco0. We multiply (3.2.4b) by py, integrate over the region (—oo, 00) x 7"
and integrate by parts to obtain

o0
/ A"l /\(¢0) [S(z)'mp(z)'sl + (SO.yPO.f, + p0.1))2] d€ dn =0.
Now since A(tp) > O it follows that

So.zPog, =0 and (So.4Po, +Poy) = 0. (3.2.6)

We now assume that |V, 50| # 0 and there are two possibilities:

Case 1: Sy, #0

From (3.2.6) it follows that pg¢, = O = py,. Thus py is constant over the region (—o0, c0) X T}
and since pp matches to py either side of Sy it follows that By is continuous across Sp, i.e.,
po(0+) = po(0-).

Case 2: Spy #0

SoyPoe + poy = 0 is a first order partial differential equation for py whose solution is py =
¥(& — Spym) for some ¢ € C'(R). Because po is periodic in 7 it follows that ¥(r) must be a
periodic function. However, since pp must match to a macroscopic quantity py as £, — oo the
only possibility is that pp = ¥ = constant. Thus Py is also continuous across Sp.

Since po¢, = 0 = poy, (3.2.4a) is reduced to

So.201 (d(¢0)50.x70.e,) + (5,0¢, + 9y) [d(‘f’o)(so,y’Yo.s. + '70.7;)] =0.

This equation is the same as (3.2.4b) but with A(¢p) replaced by d(¢g) > 0. Therefore the
above argument implies that v, = 0 = 7, and that F(0+) = F(0-). Moreover, since

70(+w9 629 7, t) = ‘70 = 1 it follows that Yo = 70(52! m t) =1
o6 hH >
Collecting the 0(5~") terms in (A 2.3c) yields:

So_zagl [/\(d’o)(T().:cPo,g2 + 50.31:171,5l )]

+ [(Soy + 5100, + 3n] (M) { (Toy + Tim)py, (3.2.7)

+ (SO.y + Sl-’l)pl.E| + pl.r;}] =0.
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Rearranging terms in (3.2.7) and using the fact that Sp, S|, Tp and T| do not depend on & we
obtain:

[S52 + (Soy + 51" ] (ABIP1 g, ), + [S02Toz + (Soy + St)(Toy + T
X (/\(¢0)Po,§2) £ + (Soy + S1.) ()\(‘ﬁo)P],q) & + [/\(¢o)(T0.y + Tl.q)Po,g2

+ )\(‘f’o)(so,y + Sl.r;)Pl,gl + A(¢0)P|,,,] 0= 0.

By means of the zeroth order in the orthogonality condition (3.2.2) equation (3.2.7) is further
reduced to

[ + (Soy + S12"] (ABIP1g, ), + (Sog + St (M BIP ),

(3.2.8)
+ [MeoH{Toy + Timpog, + (Soy + Siadprg, +Pig}], =0-

Collecting O(5~!) terms in (3.2.3a) and using Yo.e, = 0 = 70,y We obtain
50,20, [d(@0)To.zYo,e, + S0 ;) + Mbp)0(TozPo g, + So.2P1¢,)]
+ {(SO,y -+ Sl,n)aE| + a'fl} [d(¢0) ((TO,y + Tl ,1;)70_52 + (SO.y + Sl,n)’)’]_g] + 71'")
+M(do)70((Toy + Tin)Pog, + (Soy + StmdPrg, +Piy)] + Sosdog, =0

Gathering terms, using the orthogonality condition (3.2.2), and the fact that yp¢, = 0 = v, we
obtain

[85 + (S0 + S1.0°] (@ol11.¢, ), + Sy + S1) (AN, + Soehog,
+ [D(¢p){(Toy + T1.)Ne, + (Soy + Sidng, + ’71,,,}],, = 0.
Using the fact that vy = y(&2,7,t) = | the previous equation becomes
(S8 + (Soy + S} (dPo)n1 g, ), + S0y + St (d(BoIM,)e, + Sosdog,
+ [d(@){(Soy + Sinhvie, + Mig}], =0

(3.2.9)

3.3. Asymptotic matching

Having derived equations governing the outer and inner expansions we now present the pro-
cedure for matching the inner and outer solutions across the interface. This procedure results in
jump conditions for the normal derivatives of 7y and Py and the eikonal equation for Sy(z, y, t).

It should be noted that some matching has already been performed on 7 and Py themselves.
The reason for not delaying all the matching to this section is that we wished to exploit the
simplifications that result from the continuity of %y and Py as soon as possible in the interests of
brevity.
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Local inversion of the transformation: (£1,&2) = (z,y)

In the matching process we need to express the outer variables (z,y) in terms of the inner
variables (¢, £;). From (3.2.1b) we have:

061 = Sz, y.t;6) = So(z, ¥, t) + 6Sy(z, ., )+ ...,

(3.3.1)
& =T(z,y,t;6) = To(z,y, t) + 6T\ (z, y, ) + ... .

We want to match (€, &) to (z,y) while keeping 7 fixed. To achieve this consider the nominal
point (zg, yo) defined to be the solution of the system:

0 = S(mo, yo, t; 6),

(3.3.2)
&= T(mo’ Yo ts 5) .

The solution to (3.3.2) yields the parametric representation zg = x(£2), yo = yo(&2). We now
linearize the transformations (3.3.1) about (z, yp) and invert. Let

T=xy+0zTy+..., y=yo+oy +..., 3.3.3)

substitute these into (3.3.1) and expand. The O(§) terms yield a linear system having the following
solution

z; = To,&1/J, y, = -Toz/J, (3.3.4)

where J(xg, yo,t) = SozT0y — Soy7T0,z is assumed to be nonzero.

Matching inner and outer expansions for ~

Combining the properties of 9y and ~g established in Section 3.1 and 3.2, respectively, we
obtain:
Outer expansion:

So > O

¥y=1
Sp < O:

¥ =%y + 7@ +... . (3.3.52)
Inner expansion:

y=1+8v(&L&.nt) +... (3.3.5b)

matching in the region Sy > 0 is straightforward. To match in the region Sy < 0 we substitute
the expansions (3.3.3) for z and y into (3.3.5a), expand and eliminate x| and y; using (3.3.4) to
obtain:

7 = Yo(zo: Yo t) + 8[Fo.2(%0. Yo )T0,461/J
) (3.3.50)
= Fo.4(0s Yo ’VT0.261/J + F (2o, yg. 0. 1)] + O(6).
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Since zp = zo(&2) and yo = yo(&2), the outer expansion ¥ has effectively been expressed in terms
of tl(}e inner variables £, and &,. From (3.3.5b, c) we have the following matching conditions:
0@") >

1= ﬁo(zo’ y()v t)’
o' >

B4 (El ’ 52’ B t) = ’7()';;(1:0’ Yo t)TO,ygl /J

~ - (3.3.5d)
- ‘)’0'y(.’L‘0, Yo» t)TO.wgl/J + M (x()’ Yo 7 t) as §} — —oo.

We are now in a position to make use of the governing equation (3.2.9) for v, to derive conditions
for . We start by determining the limiting values of the derivatives of -, that appear in (3.2.9)
by means of the matching condition (3.3.5d). We notice that since xg = xo(£3), and yp = yo(£2)
it follows that ~; is linear in £; so that

Mg, = GozToy — Yoy Toz)/J := Fi(€a,t) as § — —oo. (3.3.5¢)
From (3.3.5d) it also follows that

7',7} = §l-7l as 6[ — —O00Q.

Now since ¢y b ¢y (which is independent of &) it follows that

lim ¢0,£l =0.

E|—)—OO

We therefore conclude that
i lim (dl@)n1 ¢, ), =0 and e,l-if'foo (d(@o)V1 )¢, =O-

Combining all these limiting conditions we see that in the limit £, = —o0 (3.2.9) becomes
d(é){(Soy + S1.)Fi(€2,8) + 7, .} =C (independent of 7).

Dividing by d(¢;) and averaging over n we obtain
C = (dg)™") ' SoyFi(€2,t)

which along with (3.3.5d) implies that

d(B,)(Soy + S19)F1(€2,8) + d(@ A, = (d(@ )" )~ Soy Fi (€2, 1). (3.3.6)

From (3.1.4g), 7, is a known function of 5 so that (3.3.6) is an equation which can be used to
determine the n dependence of S| and is known as the cell problem for S;.

We now integrate (3.2.9) over the region (£),7) € (—o00,00) X T' and use the fact that
Y1(+00, &, 1, t) = 0 (which comes from matching (3.3.5a, b) in the downstream region) to obtain:

F18524d(8)) + {(Soy + S1){d(@)(Soy + S1.)F) +d(@ )7, })

(3.3.7)
+ So.((¢)) — (¢p)) = 0.
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We notice that the quantity { } in (3.3.7) is just the left side of (3.3.6) so that (3.3.7) is reduced to
the form

Fy{{d(¢)Sb + (dd )"y 'S5, } + ((8)) — (#)) S0 =0
which is the eikonal equation for Sy. Eliminating F) using (3.3.5e) we obtain
(A ) + (dd ") 'S5,)
S0.:T0.y — SoyTo.2 (3.3.8)
+ ((87) — () S0, = 0.

(;Y'O,zTO‘!I - ;Y-O.yTz)

Matching inner and outer expansions for p

Vge follow the same procedure as in (3.3.5¢) to obtain the following matching conditions for p:
O(s") >

pO(£| » 62’ 7, t) = 50(2:()’ yo, t)y
ohH >
_ (=% ~+
P&, €2.m8) = (By (0. Yoo t) Toy/ I — By, (0o Yo T0.2/ J)

+5f(m0,y0,n, t) as & — oo,

where 'ﬁ,‘f represent the outer expansions in the regions Sp > 0, and Sy < 0, respectively. Following
a similar procedure as we did with v we obtain the following limiting conditions for p:

Prg = (5oi.xT0.y —”P'éyTo.x)/J = Ff(&.t) as £ = £oo (3.3.9a)
and
Piy = Py o Yoo t) 88 &1 — Ho00 (3.3.9b)
and
0

Pog, = z'ﬁg (zo(€2) yol€2)st) = (= Py, Soy + PaySoz)/J as & = too.  (3.3.9¢)

We now consider (3.2.8) in the limit § — 00, make use of the limiting equations (3.3.9) and
integrate with respect to n to obtain

(Toy + T1.0)Ppe, + (Soy + S1)F5 (€, t) + B, = C*Mep) ™' as & — Hoo
where C* are independent of 7. Averaging over 5 and eliminating C* we obtain
M) [(Toy + TiBye, + (Soy + Si1)F3 (€2, t) + 57, )

R N | ~t + (3.3.10)
= (/\(¢0) ) (T‘(LyPO'{z + S()'sz ).
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We now integrate (3.2.8) over the region (£),7) € (—00,00) X T', use (3.3.10), and the zeroth
order orthogonality condition (3.2.2) to obtain

B (M) Sz + (Me) ™)' S5,)
+ B, ((NB) SoaTo + (M) ™')™ SoyToy)
= F; ((Mé)Sz + (Mep™") 7' S5,)
+ Bye, (MND)S0.2Toz + (M) " S0,y Toy)

or making use of (3.3.9a, c) we obtain

(Bo=Tow — o, Toz) (M@ + (M) ™)' SE,)
+ (Po, S0 = PoaSoy) (M) S0.2Toz + (M) "Y' S0y Toy)
= (5. Tow — Po, Toz) (M@ )32 + (Mo ™) 7'SE,)

+ (Pg,, S0z = Po.2504) (M) S0 Tos + (M) ™) ™' SoyThy)

(3.3.11)

which is the jump condition for the pressure.
3.4. The effective free boundary problem for a general layered medium

For the sake of brevity, the asymptotic analysis required to derive the effective free boundary
problem in the large solid density limit (ceq/p — 0) was presented only for the case in which the
layering ahead of the front was horizontal while behind the front the medium was assumed to be
homogeneous. Precisely the same procedure can be followed for the cases in which the layering
is vertical and in which layering also occurs behind the front. In this subsection we present the
effective free boundary problem in a general form which incorporates all of the various cases
mentioned above. The general effective free boundary problem may be summarized as follows:

Upstream from the reaction front S(z,y,t) = O one has

dfvzz + Dyvyy + Apvzpz + Apyypy = 0} (3.4.1)
S(z,y,t) <0,
AjPzz + Aspyy =0 (@y.6) (3.4.2)
while downstream the concentration has reached its equilibrium concentration so that
v=1 (34.3)
S(z,y.t) > 0.
Nreet gy =0 S (3.4.4)

At the unknown reaction interface, S(z,y,t) = 0, one has
vy=1, (3.4.5)
p=q, (3.4.6)
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(P=Ty — pyTe)(A;S2 + AgSE) + 0ySz — PaSy)(ANS:Te + ApSyTy)

3.4.7)
= (¢:Ty — @yTr)(MS% + AyS2) + (qySz — qeSy) NSz Tr + ASyTy),
=Ty = 15Tx) dSz + DyS,y = =S:({es) — (ws)) (3.4.8)
Yedy — Yydz SzTy—SyTx = tilof ©Yb)}- 4.

Here the averaged constants dy, Dy, Ay, Ag, Ay, A, obtained via the homogenization procedure
outlined above are to be understood as follows. The “dees” (d, D) and lambdas (), A) denote ap-
propriate averages of the functions d(y) = ¢ D(yp) and A(p) = pse(yp), respectively. The subscripts
b and f refer to the original (unaltered, downstream) region and the final (altered, upstream) region,
respectively. The lower case indicates it is averaged in the z-direction in whatever manner the ho-
mogenization dictates, while the upper case is the same for the y-direction. As an example of this
notation consider the case considered in the asymptotic analysis presented above, i.e., in which the
porous medium ahead of the front is layered horizontally and behind the front it is homogeneous
as in Fig. 2. Then ¢/ is a constant so that ¢;D(¢y) and @ () are also constant resulting in
d; = Dy and Ay = Ay, In the downstream region A, = {(pp(pp)) and Ay = ((pb-lx(tpb)_l)_l
where the braces ( ) denote averaging over one period. In this example homogenization dictates
that in the z-direction the usual, arithmetic average is to be used, while in the y-direction the
harmonic average is appropriate.

A ¥
A N\
N

iy Y
p o

f 4

Fig. 2.

These equations are to be solved for v in the upstream region (since v = | in the downstream
region), p,q and S subject to the asymptotic conditions

v=0, o =9y, pr = p'j as r — —oo (3.4.9)
and
Y=@p a8T—> —00. (3.4.10)

Note that as x — +00, v = | automatically and ¢: is to be determined as part of the solution in
terms of the desiderata of the problem, especially the inlet pressure gradient p;. On the transverse
boundaries of the aquifer, which by scaling we can take as y = 0,7t we shall impose the no-flow
boundary conditions that -y, py, gy = O.
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4. Application of effective equations: analysis of morphological instabilities in layered
porous media

In this section we briefly summarize the results of the application of the effective free boundary
equations to the investigation of the shape stability of the reaction interface in layered porous
media. Full details of this analysis are presented in [6]. The approach follows the method used
in the homogeneous case studied in references [1, 2] in which the planar solutions are computed
explicitly and then a linearized stability analysis is used to examine the stability of a complete set
of perturbations of the form cos my. We shall obtain a formula for the spectrum of the linearized
problem for each m and compare it with that derived for the homogeneous case [1, 2] in order to
determine if the layering has a stabilizing or destabilizing effect.

4.1. Planar solutions

We seek planar solutions in which the normal and tangential coordinates of reaction interface
are of the form

Sz, y,t)=z—-Vt, T(z,y,t)=1y,
and the unknown functions are of the form

Substituting these special functional forms into (3.4.1)-(3.4.8) and solving the resulting system of
ordinary differential equations, boundary and interface conditions we obtain the following planar
solution:

!
—pA
Az — Vi) = eV o= % >0, z<Vt @.1.1)
f
p(z — Vi) = py(z — V), 4.1.2)
pl
Gz - Vi) = Tf (- Vi), T =X\/Ap (4.1.3)

with the velocity of the travelling front, obtained from (3.4.8), being

V= =pid/(en) = (o) = s (4.1.4)

7y

where the inlet velocity vy = —p']/\ s by Darcy’s law.
4.2. Linear shape instabilities
We consider small perturbations of the above planar solution of the form

S(z,y, t) =z -Vt + Ar(y,t) 4.2.1)
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where A, the size of the morphological disturbance, is much larger than the § the width of the
reaction front. By averaging the zeroth order orthogonality condition (3.2.2) over 5 we conclude
that, in order to recover the planar solution as A — 0, the orthogonality condition up to O(A4) is:

SO.IT().JJ + SO.yTO.y =0. 4.2.2)

To fix the front at = 0 and to build in the orthogonality condition (4.2.2) then we make the
change of variables:

z = Sp(z,y,t) = — Vit — Ar(y, t), (4.2.3)

Y = To(@y.t) = y — Azry(y,b). (4.2.4)

Writing (3.4.1)-(3.4.10) in terms of the new coordinates (4.2.3), introducing perturbations ¥ +
Ay, 7+ Ap, G+ Aq of the planar solutions (4.1.1)-(4.1.3), and retaining only terms up to O(4)
we obtain the linearized versions of (3.4.1)-(3.4.10). In order to investigate the stability of these
linearized equations it suffices to solve for a complete set of perturbations of the form

o(mjt

r(y,t)=¢e cosmy, Y, y,t) = Ym(z)e® ™" cos my, (4.2.5)

and similarly with p and g, where o(m) is the spectrum of the linearized problem. Substituting
(4.2.5) into the linearized equations yields (with ' = d/dz):

dry" + APy’ — m*Dyy — m?Dyae®™ + Ajoe®™p’ =0 0 (4.2.6)
<y,
g — m2A;p — mZAfp'f =0 4.2.7)
Mg’ — mPAyg = mP Ay /T =0, z>0, (4.2.8)
N=0 (4.2.9)
p=q s 0 (4.2.10)
p=rq - (4.2.11)
dry' = (= {oy) + (wp))o(m) (4.2.12)
vy—=0,p =0 asz— —oo, 4.2.13)
and
g =0 asz— +oo. (4.2.14)
Solving (4.2.7), (4.2.8) for p and ¢, and matching them at z = 0, we obtain
’ 1
pell — =
p=—pf+ Me"”lﬁ”, z <0, (4.2.15)
|+ L

Bol®

where
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Substituting (4.2.15) into (4.2.6) and solving for v, we obtain

a+t /a2+4m26}
x

Y(x) = Ce 2 - ac™

" 1-r ) | (4.2.16)

_ a'ﬂj"ml _T; . e(n+{3;|m|)x(aﬂf|ml + mz(ﬂ} _ (5}))_
r

Bo

where &; = (Dy/dy)"/?, and imposing the jump condition (4.2.9) it follows that

1-r _
5+ (Bylml + Im*(87 - 63)) ™.

Bo
The jump condition (4.2.12) together with (4.2.16) yield the following expression for the spectrum
o(m) of the linearized problem:

dy az—a,/a2+4m25}
{0}

C = a+ o*Bf|m|

o(m) =

(ps) — 2
4.2.17)
1-r g rlm|
+2 3 .
r+ ﬂ_z a+ 208;im| + ,/az +4m2542r
We note that o(m) has the following properties (see Fig. 3):
a(m) = —o0 as [m| = 00, ¢(0)=0, andc'(0)= l _f; afy > 0.
r+-.
Bo
Solving the equation o(mgp) = 0 we obtain after some simplification:
2
b1 a-r
ﬁo _ l
By \ "%
Imal 2f5f - - 5. (42.18)
Z+2-T ( %{ +2-T
oy - —— |+ 6}+6} —— -1
r+ it I+ =
Bo \ Bo
Now by introducing the variables
% 42-T 5
5= = >1 and t=-L>0

r+2 By
Bo
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Fig. 3.
(4.2.18) can be expressed in the simplified form:

@ -1 ' As P
mg| = ¢ =\- ) :
Il 20f 454+ /24121 (=) 2\/Dgdy ts+4 \/s2+1t2—1

In the case that there is layering only ahead of the front, ¢t = 1, and the formula reduces to

4.2.19)

pmol = (=) - L. £ =1 _ 4. G5+ D=1
mol = ( — Py 2d;  2s =a (ﬁal+1’)(ﬁ0"+2—1“)'

(4.2.20)

If there is, in addition, no layering ahead of the front (i.e., the medium is homogeneous) then
Bo = 1 and formula (4.2.20) reduces the expression in [1, 2].

4.3. Specific examples of layered porous media

In this section we examine the effect of layering on the stability of planar fronts in two typical
situations: layering only ahead of the front and layering ahead and behind the front with a fixed
proportion of the medium dissolved out as the front passes. These results will be compared with
the case of homogeneous porous media [1, 2].

<
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a) Layering ahead of the front

We examine the case of horizontal layering ahead of the front as depicted in Fig. 2. The case
of vertical layering ahead of the front can be treated in exactly the same manner. Behind the front
the porosity is a constant, which implies d; = D; = constant and Ay = A, = constant and hence

dy = By = 1. A typical form for the permeability is »(p) = K ©* where K,k > 0 so that

do(p) = Kogt'. 3.1

Since the layering is horizontal:
2 _ An/dn = (@ Dy g0 k] 2 _ 439
Bo=Ao/ro={pg ) ey ) <Bop=1 (4.3.2)

where we have used the fact that for convex functions (like z**!), the harmonic mean is less than

the arithmetic mean.
Similarly, exploiting convexity we obtain the following:

T = o/Ar = (o6 /eft! > (0o 16! = I (4.3.3)
To compare the critical value my with the one for a corresponding homogeneous porous medium
mo,, We set g(m) = 0 in (4.2.17), which upon using 8y = &y = 1 and a = —p}As/d; = ap
yields the following equation for mgp:

(c®+4m)'? =a + % <a+|m|(l =)< a+|m|(l - I}) (4.3.4)
2 :
1.8} (a® +4m?)1/?
L 2\ml(1 - T)
L6r (1//9041'1) T

a +|ml(1-Th)

14

e—="
.....
.....

-----
........

08¢ .
0.6 4
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0.2} i
[mol |mo.al
0 s 1
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the last expression with equality being the determining equation for |mg,| [1, 2]. We see that
|my| is the intersection of the branch of a hyperbola and a line (as in Fig. 4) whereas |my | is the
intersection of the same hyperbola (which is an increasing function of m) and a steeper straight
line. Therefore, |mg| < |mg,| so that the horizontal layering ahead of the front stabilizes the
front because the interval of unstable modes (0, |myg|) is shorter than that for the corresponding
homogeneous situation (0, g |). By exactly the same type of analysis, one can show that vertical
layering ahead of the front has a destabilizing effect.

b) Layering ahead and behind the front

We consider the situation in which the reactive fluid impinges on a layered porous medium
dissolving out a fixed proportion at every location and leaving behind a similarly layered medium
with higher porosity

wo(z,y) = Ops(z,y), 0<O<, (4.3.5)

where @ is the fixed proportion dissolved out. Again, we shall only treat the horizontally layered
situation — the similar vertically layered case can be treated analogously.
In this case

—(k+1)y — k41, —(k+1\ -1
_(¢0(+))l_0+(‘pf )

8 = : = ——7I_ =6} (4.3.6)
@
and
S TR A B
From these relations it follows that
Z42-T
s==—F5—=0B-D/T+D=5,
I+
Q

so that from (4.2.19) it follows that the magnitude of |mg| compared to that of mg, is determined
by the values of ¢ and /&y in the two cases. If t = | =t and a/d; = ap, then (4.2.19) reduces
to the expression for the homogeneous cutoff |mg,|. Since the right-hand side of (4.2.19) is a
decreasing function of ¢, it follows that if t < t;, = 1 (i.e., the diffusion term & is smaller than the
flow term B;) then the proportional horizontal layering either side of the front has a destabilizing
effect if a/8f > ay. In order to motivate these assumptions on ¢ and «/d; we assume a final
porosity function that is a small perturbation (with zero average) of the homogeneous porosity &:

or =0y +eps =P,(1 +exs(z,y)) (4.3.8)

where (@) = 0 so that §; = (@) and x; = $;/P,;. Now assuming the phenomenological
function A(p) = K¢**!, using the definitions for Ay and Ay, expanding in Taylor series and
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average remembering that (xs) = 0 and letting p denote the second moment (i.c., p = (x})), we
obtain the following expression for G;:

k1 (l _ B+1)k+2) 52})

A, Ko
b=t ). (1= (k + D’"p). (4.3.9)
I Kgpt! (l + = Ezp)

Similarly, if we assume the phenomenological function d(¢) = ¢ D(p) = Dg?*!, we obtain:

d+1)(d+2
, Dy DW}“(] _ a4+ )2(r+ )62

oF
d4+1)d
4 pgit! (1 + e2p)

) ~ (1 — (d+ 1)’e%p). (4.3.10)

From the above, we have

o As

— ’ —————————
5 ~ M@

Kgit! (k+ Dk (d+ 1)d -2
— / f 2 2

~1/2 (4.3.11)
. (l _(d+ 1)2(d+2) Ezp)

]
=0th(1 +5 ((k+D+d+ ])€2p)
> o
and

6}'/,31' — (1 —d+ I)ZEZP)I/Z(I —(k+ I)ZEZP)—I/Z
, (4.3.12)
= (145 B+ 17 =@+ 1))

which is smaller than the homogeneous value 1 if d > k; i.e., if diffusion (¢?*') is dominated by
flow (¢**1). The converse (d < k), is more complicated since, by (4.3.11), local analysis always
implies that o/d; > oy so that the effect of proportional horizontal layering now depends on a
competition between the effects of o/8; and 8;/8;. Analogous results can be obtained if the
layering is vertical.

5. Conclusions

We have presented a novel form of homogenization applicable in the context of free boundary
problems. We considered a model of reactive flow in layered porous media in which the layering is
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represented by small-scale periodic structure. The homogenization technique uses a combination of
the methods of geometric optics, multiple scales and matched asymptotics to derive the equations
for an effective free boundary problem for the reactive flow. The effective free boundary equations
are cast in terms of macroscopic variables which account for the effect of the fine-scale layering
on the movement of the reaction front.

As an application of the effective free boundary equations, we summarize the analysis [6] for the
spectrum of the linearized shape stability problem. This is used to compare the effect of the layered
medium on the onset of instability with that for homogeneous medium with the same average
porosity/permeability in two typical situations: i) layering ahead of the front and homogeneous
behind, and ii) layering ahead and behind the front subject to the physically reasonable assumption
that the layering in the altered and unaltered medium are related through a proportionality constant
(po(z, y) = Bpp(z, ¥)).
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