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STABILITY OF REACTIVE FLOWS IN POROUS MEDIA:
COUPLED POROSITY AND VISCOSITY CHANGES*

J. CHADAM{§9, A. PEIRCE{, AND P. ORTOLEVAZ}§

Abstract. The infiltration flow of a reactive fluid in a porous medium is investigated. The reaction
causes porosity/permeability changes in the porous medium as well as viscosity changes in the fluid. The
coupling of the associated reaction-infiltration and Saffman-Taylor instabilities are considered. A mathemati-
cal model for this phenomenon is given in the form of a moving free-boundary problem. The morphological
instability of a planar dissolution front is demonstrated using a linear stability analysis. An unexpected
simplification occurs in that the resulting fourth-order equation can be solved explicitly.
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1. Introduction. If water is forced through a porous medium, the soluble com-
ponent will be dissolved upstream, and the water will become saturated sufficiently
far downstream. Between these extremes there is a dissolution zone (usually thin)
across which the soluble mineral content—and hence the porosity/permeability—
changes from its original downstream value to the altered value upstream. Note that
if this reaction zone protrudes into the unaltered region at some time, the flow of the
undersaturated water tends to be focused to the tip of the protrusion, because behind
it (on the upstream side) the permeability is greater than in the neighboring regions.
Thus dissolution is enhanced at the tip of the protruding zone, and it therefore advances
more rapidly than the rest of the zone. This is the reaction—infiltration instability. On
the other hand, diffusion from the sides of the tip raises the concentration of the
dissolved solute that is focusing at the tip and hence will decelerate its advancement.
The competition between these two mechanisms will lead either to restabilization to
a more complicated dissolution zone (fingering), or to the original planar zone. This
phenomenon was modelled and studied mathematically by us in a recent set of papers
[1], [2].

In this note, we allow for the possibility that the solute can increase the viscosity
of the fluid when it dissolves in the water. This process must certainly contribute in
an important way in the secondary recovery of oil (by acidifying the field to uniformly
increase permeability and hence the yield) or in the leaching of tar sand reserves. Since
the water is solute-free at the inlet and concentrated far downstream, this corresponds
to the unstable situation of forcing a less viscous fluid into one with a higher viscosity
[3]-[5]- On the other hand, the present phenomenon should be distinguished from
these Saffman-Taylor-like instabilities because here it is coupled and interacting with
the more fundamental reaction-infiltration instability. Chemical reactions, which are
not present in the Saffman-Taylor situation, are central here, causing the instability
through porosity/permeability changes. As a result, the front velocity is slower than
the fluid velocity in contrast to the Saffman-Taylor situation in which they are identical.
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In § 2, we present a mathematical model for the coupling of the above phenomena,
which in the geochemically relevant limit of large solid density asymptotics reduces
to a moving free-boundary problem. In § 3, the planar solution is given and the
linearization of the problem with respect to this solution is obtained. This problem
can be written as a fourth-order, linear, variable coefficient ordinary differential
equation that, quite surprisingly, can be solved explicitly in terms of Whittaker or
Kummer functions. An explicit form can thus be obtained for the spectrum, allowing
for comparisons with previous work that did not include viscosity variations and for
precise determination of the intervals of instability and the most unstable modes.

2. The mathematical model. A complete derivation of the nonlinear partial
differential equations that model the above phenomenology can be found in §§ 2 and
3 of [1]. For completeness, we state these model equations. In terms of the space-time
functions ¢, ¢, and p- the porosity, solute concentration, and pressure, respectively,
the governing equations are:

a(ce) o K(‘P)VP] e
(2.1a) 51 =V [@D(tp}Vc+cr,07u(c) + P
9¢ _
(2.1b) T +kG(eg, ),
k(e) _d¢
(2.1c) v [w,u(c) Vp]—ar.

Here the diffusion coefficient D(¢) and the permeability k(¢ ) depend on the porosity,
and G(e, ¢) is the reaction rate. These functions are left completely general to stress
that none of the subsequent analysis depends on their specific form. The constants k
and p are the dissolution rate constant and the molar density of the dissolved solid.
In these equations, we have used Darcy’s law for the velocity in the form

()
r(e)
where the viscosity u depends on the concentration of the dissolved solute. In the

following analysis, we have chosen a fairly typical form (see, e.g., [5]) for this
dependence,

(2.3) ulc)=Ae"

(2.2) v=-— Vp,

Problem (2.1) is completed by imposing the following boundary conditions:

d

(2.4a) c=0, ¢=¢, —P-=pj- as x> —0o,
ax

(2.4b) . C=Ceq, @ =, as x->+oo,

At the inlet (x = —c0), (2.4a) indicates that the water is solute free and that the flow
is driven by a pressure gradient in the x-direction. Furthermore, all of the soluble
mineral has been previously dissolved, and the porous medium has reached its final
porosity ¢,. Far downstream (x = +0), the water has reached its equilibrium concentra-
tion of the solute ¢.,. Since this precludes any reaction with the porous medium, it
remains at its initial unaltered porosity ¢,. Note that the downstream pressure gradient
(or equivalently the downstream velocity) must be determined as part of the solution.
In the following we take ¢, ¢, p; to be constant to stress that instabilities and
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subsequent pattern selection (shapes of the fronts of porosity/permeability change)
can result from this simplest, homogeneous (unpatterned) situation. This model differs
from our previous work [1], [2] in that it allows for concentration-dependent viscosity
(2.3), which had previously been taken constant to focus exclusively on the then newly
discovered reaction-infiltration instability. Here we investigate the effect of the competi-
tion of this instability with the more widely known (see [3]-[5] and references therein)
viscosity-change instability, which occurs when a less viscous fluid (o= u(0)=A) is
being driven into a more viscous fluid (u, = u(c.,) = A e\ea),

In typical geological situations, the ratio of the equilibrium solute concentration
to the density is quite small. This leads to a very narrow reaction zone since the water
becomes saturated quite rapidly as it comes into contact with the solid. Since it is the
shape of this reaction zone, and not its internal structure, which is of interest, it is
reasonable to study the problem (2.1)-(2.4) in the limit c.,/p - 0, the so-called solid
density asymptotic limit. Matched asymptotics to order O(V ¢,/ p) results (see [1, § 4])
in a Stefan-like moving free-boundary problem for the dissolution interface in the slow
time variable t,., = (kceq/ p)toa. If the further standard scalings are made,

x'=(v/Dys)x, y'=(v;/Dy)y, f’Z{U}fo)f
y=cfceq9 y':yf{ffs !'-"r:f-";‘,#f
p'=(ke/ us)p, R'(y', t) =(vs/ Df)R(y, 1),

then, dropping the primes, the resulting problem can be written in the following
convenient form:

(2.5a) Ay—p-Vy=0,

(2.5b) gedL in x<R(y 1),
u(y)

(2.5¢) V-v=0,

and

(2.6a) =1,

(2.6b) Ag=0. } in x> R(y,1).

Here x = R(y, t) is the location of the unknown dissolution interface across which the
porosity changes discontinuously; i.e.,

qo___{(pfs x{R(yy t},
®o,  x>R(y1).

For notational convenience, the pressure behind and ahead of the front is denoted by
p and g, respectively. The asymptotic analysis ([ 1, Appendix]) reveals that the boundary
conditions at the interface are:

(2.7)

(2.8a) . y=1, \

(2.8b) p=4,
ap .09

7 5 et ] =

(2.8¢) e Fan’ on x= R(y, 1),
d 5

(2.8d) Y (1- o/ @,)R,/(1+ R2)/?

an J

where d/dn is the normal derivative at the surface (into the unaltered zone) and
I' = @okof @, with ko and k, being, respectively, the initial and final permeabilities of
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the medium. These equations are to be solved for y (behind the front, since y=1
ahead of the front), p, g, and R subject to the asymptotic conditions

(2.92) y=b, B=i. Torws—w,
ax
9
(2.9b) H_9, forx>+ow,
ax

where the downstream pressure gradient is to be determined as part of the solution.
On the transverse boundaries, which can be taken at y==x# by scaling, zero-flux
conditions are used throughout.

Note that I' = ¢yk,/ ¢, is a measure of the porosity/permeability change, while
s/ o= e" is a measure of the maximum viscosity change. In this problem, they have
decoupled, allowing us to study the effects of the interaction of these two phenomena
on the shape stability of the reaction interface. Normally, they appear combined
through the mobility ratio (@oko/ o)/ @/ ity The factor (1—(¢o/¢r)), on the other
hand, in the Stefan condition (2.8d) will not effect the determination of which modes
are unstable (the sign of the spectrum of the linearized problem) but will adjust the
strength of their instability (amplitude of the spectrum), since it can be removed with
a rescaling of time in (2.8d).

3. Shape stability of the dissolution interface. In this section we give the planar,
travelling wave solution of problem (2.5)-(2.9) and examine its linear stability to a
complete set of perturbations of the form cos my, m=0,1,2,---. These form a
complete set because the channel has finite width 27 with zero flux boundary conditions.
If a is the velocity of the front, it is straightforward to check that, in a coordinate
system moving along with the front, x'=x —at (and dropping primes), the travelling
wave planar solution is

(3.1a) 5( )_{e", x<0
(3.1b) T, x>,

V]
(3.2a) px)= j w(y(§)) d¢,  x<0,
(3.2b) G(x)=—e"I''x, x>0,
and the velocity of the front is
(3.3) a=(1-eo/¢r) "

From the scaled version of Darcy’s law (2.5b), we obtain the fluid velocity to be in
the positive x-direction of magnitude

(3.4a) 3 {
(3.4b) v=

1, X <0,
| x>0,

Thus the front’s velocity is adjusted to accommodate the porosity change, and the
region of changing viscosity is carried along behind it in a region where the fluid
velocity is the same as that at the inlet. This situation, therefore, is different from the
classical Saffman-Taylor instability [3]-[5].
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Denoting the perturbation of the planar front by r(y, t) = R(y, t) — at, we consider
perturbations of the form

(3.5a) y(x, , 1) = ¥(x) + 8y,(x) e” cos my,
(3.5b) plx, y, 1)=p(x)+dp,(x) e” cos my,
(3.5¢) q(x, y, t)=g(x)+ 8q,(x) e”" cos my,
(3.5d) r(y,t)=0+8e” cos my,

where & is small. This perturbation problem can be transformed to a more standard
form by the change of variables x'=x—at—r(y, t). The free boundary then becomes
fixed at x' =0 so that the linearized versions of the boundary conditions (2.8) are the
same, while equations (2.5) become horribly nonlinear, involving r(y, t). The method
of linearizing such equations is straightforward though tedious. The resulting linearized
equations (with d/dx denoted by a prime and with the subscript 1 deleted) are (see

[2, §§ 2 and 3] for more details)
BN

(3.6a) Y'—y —m’y+ Ay y+y e Mp'+m’y =0, x<0,
(3.6b) P =AY p—m’p—Ap Yy +m’p' =0, x<0,

(3.6¢) qg'-m’q—m’al ' =0, x>0,

subject to the interface and asymptotic conditions,

(3.7) y=0, p=gq, p'=Tq, ¥'=(-¢o/¢)o, onx=0,
(3.8a) v-0, p'=0, asx->-—o0,

(3.8b) y-0, q'->0, asx-+co.

It is convenient and simpler to write these equations in terms of velocity rather
than pressure using the linearized versions of (2.5b) and (2.5¢). Specifically, writing
the x-component of the velocity as

(3.9a) u(x, y, 1) =1+ 8u,(x) e” cos my, x <0,
(3.9b) wix, y, 1)=T""+8w,(x) e’ cos my, x>0
with & small, (3.6)-(3.8) are replaced by (again dropping the subscript 1)
(3.10a) Y'—=y —mly—Ju+m’y =0, x<O0,
(3.10b) u'+Ayu —mu—mAy+Am*y =0, x<0,
(3.10¢) w' —m’w=0, x>0

with the interface conditions,

(3.11a) y=0, i

(3.11b) : u=Tw,

(.110) u':w'+{l_r}m2, y on x =0,
(3.11d) ¥ =(1—@o/ ¢r)o,

and the asymptotic conditions
(3.12a) v-=0, u—->0, asx-—oo,

(3.12b) y-0, w->0, asx-+00,
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If A=0 (no viscosity change), (3.6) and (3.10) decouple and can be solved-as a
sequence of second-order, constant coefficient equations giving the previous results
[1], [2] for the porosity/ permeability change instability. If A# 0, (3.10a) and (3.10b)
are a coupled pair of variable coefficient, second-order equations that can be most
conveniently treated by eliminating y to obtain a fourth-order, variable coeflicient
equation for u. Specifically, solving (3.10¢) for w(x)=A e "™ and using this in the
interface conditions (3.11b) and (3.11¢c) we obtain (with d/dx written as D)

(3.13) (D*—=D—-m*)(D*—=m*u+A e (D+1)(D*-m*)u=0, x<0
with the interface conditions

(3.14a) u'=—|mlu/T+m’(1-T)/T, x=0
(3.14b) u"= Alm|(u—|m|)/T+m’u, x=0

I

and the asymptotic conditions
(3.15) u, u"-0, as x— —o0,

The fact that (3.13) factors as indicated allows us to obtain an analytical solution
rather than being forced to resort to a numerical treatment at this stage. Specifically,
letting z = (D’ —m?”)u and making the change of variables t = A e* we obtain (with a
super dot indicating d/dt)

L (1 m?
(3.16) Z+ i+ S z=0, 0<t<A.

The solution of this equation can be written in terms of Whittaker or Kummer functions
(e.g., by writing it in terms of y(t)=e"?z(t) and using formulae 13.1.31-13.1.33 of [6,
p. 505]). That is,

(3.17) 2()=e "t""VIC:M(v—3,1+2p, )+ C,U(v—3, 1422, 1)],

where v = (m*+1/4)"?. Now (3.15) implies that z(0) = 0. Using the asymptotic behavior
of U as t-0 ([6, p. 508, 13.5.6]) we find that C,=0. Solving (D*—m”)u =z using
variation of parameters and the fact (3.15) that u(¢t=0)=0, we find

(3.18) u(’) s Cl l'lnll"'ﬁj (Il.nlls—ﬂml-r o i -Imjslrn]-l)z{s) ds.
0

The constants C, and C; can be determined from the conditions (3.14) most con-
veniently by writing them in the form

(3.192) 2= Alm|(u—|m])/T,
(3.19b) i = ml(m|(1-T) - u)/TA[ "

Indeed only C; is required because the object of our study, the spectrum of the
linearized problem, can be expressed using (3.11d) and (3.10b) as

a(m)=[2(A)+z(A)(1+|m|[/A—=1/A)+|m[*)/ m* (1 - @o/ ¢1)

=A

(3.20) =(1 —%/Qr)_'cam_z e_A[Aﬂ_IHM(D—%, 1+2w, A)(v—%+|m|l")

I

A""Uz(v—-lfz
2 v+1/2

where the Kummer functions and their integrals can be conveniently evaluated
using [7].

)M(v+%,2+2v,A):|+|m|,
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1(a). Graph of dispersion relation for I' =0.95, with A =0.1 and 0.5.
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Several graphs of o(m) are given for various values of I' and A that show that
the instability is enhanced in the same qualitative way as I' becomes smaller and A
becomes greater. The sequence in Figs. (1a) and (1b) shows that for fixed I'=.95 the
interval of instability grows as A increases. Similar conclusions follow for I'= .85 from
Figs. (2a) and (2b). Indeed from the calculations used to generate Fig. (2b), we find,
for example, that |m| (the value where o(m) changes sign) is .39 for A=1, .975 for
A =5, and 1.275 for A =10. By comparing Fig. (1a) with (2a) and Fig. (1b) with (2b)
we see the same behavior for various A’s as I" decreases from 1. For A -0+ in (3.20)
we recover the results of (3.15) in [2]:

2(1-T)

(3.21) lmo]=m.

The limit I'> 1— (i.e., no porosity/permeability change) is a singular limit, which
requires including nonstationary diffusion. The calculation of the spectrum (3.20) is a
nonlinear problem that requires numerical treatment. This analysis will be presented
elsewhere and the results compared with the related results of Tan and Homsy [5].

4. Conclusions. A mathematical model is proposed that incorporates not only the
porosity/permeability changes that occur when a reactive fluid infiltrates a porous
medium, but also the possible viscosity changes that might result when the solid
dissolves in the fluid. In a geochemically relevant limit, that is, the large solid density
limit when ¢4/, = 0, the problem reduces to a moving free-boundary problem. In this
framework, the problem of the shape stability of the dissolution interface can be solved
analytically. As one might expect on physical grounds, the number of modes that lose
stability increases as the porosity/permeability change increases and as the viscosity
change increases. We find that the spectrum of the linearized problem is linear with
slope 1 at |m|=0 and tends linearly to —co as |m|-co. The interval of instability and
the most unstable mode can be determined with arbitrary precision.
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