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A WEAKLY NONLINEAR ANALYSIS OF
ELASTO-PLASTIC-MICROSTRUCTURE MODELS*

LIANJUN AN' aNpD ANTHONY PEIRCE!

Abstract. At certain critical values of the hardening modulus, the governing equations of
elasto-plastic flow may lose their hyperbolicity and exhibit two modes of ill-posedness: shear-band
and flutter ill-posedness. These modes of ill-posedness are characterized by the uncontrolled growth of
modes at infinitely fine scales, which ultimately violates the continuum assumption. In previous work
L. An and A. Peirce, SIAM J. Appl. Math., 54(1994), pp. 708-730], a continuum model accounting
for microscale deformations was built. Linear analysis demonstrated the regularizing effect of the
microstructure and provided a relationship between the width of the localized instabilities and the
microlength scale. In this paper a weakly nonlinear analysis is used to explore the immediate post-
critical behavior of the solutions. For both one-dimensional and anti-plane shear models, post-critical
deformations in the plastic regions are shown to be governed by the Boussinesq equation (one of the
completely integrable PDEs having soliton solutions), which describes the essential coupling between
the focusing effect of the nonlinearity and the dispersive effect of the microstructure terms. The
soliton solution in the plastic region is patched to the solution in the elastic regions to provide a
special solution to the weakly nonlinear system. This solution is used to derive a relation between
the width of the shear band and the length scale of the microstructure. A multiple scale analysis of the
constant displacement solution is used to reduce the perturbed problem to a nonlinear Schrédinger
equation in the amplitude functions—which turn out to be unstable for large time scales. Stability
analyses of more complicated special solutions show that the low wave number solutions are unstable
even on the fast time scales while the high wave numbers are damped by the dispersive microstructure
terms. These theoretical results are corroborated by numerical evidence. This pervasive instability
in the strain-softening regime immediately after failure, indicates that the material will rapidly move
to a lower residual stress state with well-defined shear bands.

Key words. ill-posed equations, granular materials, shear banding, shear strain softening, loss
of hyperbolicity, singular perturbation, solitons
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1. Introduction. At certain critical values of the hardening modulus the gov-
erning equations of elasto-plastic flow can change type from hyperbolic to elliptic.
This change of type within a subdomain results in ill-posedness [11]-[13], [2] which
is characterized by uncontrolled growth of the amplitude of plane wave solutions in
certain directions. Two modes of instabilities result from the onset of ill-posedness:
namely the stationary shear-band instability and the moving flutter instability—which
are observed in granular materials such as density waves that occur when sand flows
through a hopper (7], and also in the failure modes of brittle rock around deep tabular
mining excavations [8].

Since the governing equations are not in conservation form (because of the history
dependence of the constitutive relation), it is not possible to derive shock solutions
to these equations which account for the instabilities. Linear analysis yields sufficient
criteria for the onset of these instabilities. However, the uncontrolled growth of these
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unstable modes does not occur in practice since the generation of arbitrarily fine-
scales eventually violates the continuum assumption. To correct the model we have
incorporated [4] two types of microstructure: one accounts for inter-granular rotations
via Cosserat theory and the other accounts for the formation of microscopic voids by
means of a pressure term related to the gradient of the dilation. By linear analysis it
is possible to show that the additional higher order microstructure terms, which are
dispersive, serve to regularize the solution and inhibit both modes of ill-posedness.
It is also possible using matched asymptotics and WKB theory to derive a relation
between the thickness of the localization internal layer and the internal length scale
implied by the small microstructure terms.

The previous investigations [5] have been restricted to linear analysis. To explore
the post-critical behavior of these elasto-plastic-micro (E-P-M) media, nonlinear ef-
fects need to be included. In this paper, we carry out a weakly nonlinear analysis of
elasto-plastic-micromaterials for simplified stress states. We show that the interaction
between the lower order nonlinear terms that change type and the small, higher or-
der, dispersive microstructure terms leads to equations that have a soliton structure
locally. In fact, by reformulating the governing equations in terms of displacements,
it is possible to reduce the problem to the solution of the Boussinesq equation—one of
the completely integrable PDEs exhibiting soliton solutions [1], [9]. The competition
of the focusing effect of the nonlinearity (near the critical state) and the spreading
effect of the dispersive microstructure terms, leads to a well-posed but growing “jump”
profile in which the unstable modes fall within the limits of the continuum assumption.

In §2, we introduce the governing equations and constitutive laws with microstruc-
ture. In §3, we analyze a 1-D model—the longitudinal motion of an elasto-plastic bar
and a 2-D model—anti-plane shearing. By performing a perturbation expansion near
the critical state and retaining second order terms, we obtain a system of nonlinear,
history-dependent equations in terms of the displacement gradients. In §4, we demon-
strate that the stationary solitary wave solution in the plastic region can be patched
to the elastodynamic solution on either side of the localization layer which leads to
the desired jump profile. In §5, we use a multiple scales analysis to show that the con-
stant displacement solution in the plastic region (near critical state) is not stable. The
instability of other special solutions is also demonstrated. In §6, we provide numerical
results which illustrate the analysis presented in this paper. In §7 we summarize the
results of this paper and make some concluding comments.

2. The governing equations and constitutive law. In this paper, we con-
sider an elasto-plastic material in which microscale rotational effects (e.g., due to slip
between grains) are modeled by a continuum description using Cosserat theory, and
microscale dilational effects (e.g., due to microscale voiding) are modeled by introduc-
ing a new pressure term into the constitutive relations. The summation convention is
assumed unless otherwise specified.

The unknowns consist of the density p, velocity v and the Cauchy stress T', subject
to the following equations

(a) Gp+ pdive =0,
(b) p@tvj — (')J"H = 0,
which express the conservation of mass and momentum respectively. For simplicity,
and because the inclusion of Lagrangian terms does not alter our results in a funda-

mental way, we use the ordinary derivative d; instead of the material derivative. In
fact, we may assume that the deformation rate is small because the deformation is

(2.1)



138 LIANJUN AN AND ANTHONY PEIRCE

rate-independent in our model. This assumption allows us to ignore the convective
term and to concentrate our analysis on the constitutive nonlinearity which causes the
system to change type.

We now provide a brief description of the constitutive law used in this paper.
A general derivation of elasto-plastic models can be found in [12], [13], [2] while a
description of elasto-plastic models with microstructure is provided in [4]. We decom-
pose the Cauchy stress T into three parts, the symmetric, the antisymmetric and the
dispersive pressure

Tij = Ti(js) + Ti(f) + pbi;

and decompose the strain rate V, given by
1
Vie = 5 (Okvr + Ovw)
into the elastic and plastic parts
(2.2) V=vey®,
Also we define the deviator and the norm of a tensor {4;;} as follows:
1 1
devA=A- ﬁ tI‘(A)I, |A|2 = §Aiinj,

where n is the dimension of the spatial variables.
It follows from the linear elasticity theory that

(2.3) Vi = Cyndi T,

where C is a fourth-order tensor whose inverse E can be expressed through the shear
modulus G and Poisson’s ratio v

2vG
Eijr = méijékl + G (61051 + 6ubjx) -
For the plastic part, we assume that
(2.4) Ve = \w

where the symmetric tensor ¥ indicates the direction of plastic deformation in stress
space (the flow rule). To describe the hardening process, we introduce a new un-
known—the total plastic shear strain v defined by

v = | dev V).

The multiplier ) in (2.4) can be obtained by differentiating the yield surface ¢(T7),~)
= 0, which yields:

sy , 09
(2.5) 00,1 + 5,7 =0
where the symmetric tensor & = 8¢/ AT®) is the normal direction to the yield surface.
For convenience, we assume that ¥ and ® are dimensionless and also normalized in

the sense that:
|dev ¥| = |dev®| =1.

It follows from (2.4), (2.5) that

1
(2.6) A=ldevV®| =8y = E@ijatTg)
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__(9\"
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is called the hardening modulus. Combining (2.2) with (2.3)-(2.6), we obtain

where

1 s
(2.7) V= (Cijkl + E\Ilijq)kl) atTZ(] ).
Inverting (2.7) yields:
s 1
(2.8) GtTig) = (Eijkl o (Eijmn¥mn) ((I)TSETsk:l)> Vit

where
H=h+ ;LY.

Substituting (2.8) in (2.5), we obtain

1 s 1
Oy = (;L—‘I)ijatTi(j )>+ i (@i B Vi) 4

where

(a)s = a if a > 0,
Y+= 10 ifa<o.

In Cosserat theory, a new couple stress S is introduced which is related to the
antisymmetric part 7(® of T through the conservation of angular momentum

O Sk + etmnT ) = 0,

where e}, is the alternating tensor with e105 = 1. As an extension of linear elasticity,
the deviator of S satisfies the following constitutive relation:

Oy (dev Skl) = 2nelmn3kwmn + 277/ekmnalwmn
with 7 > 0 and || < 1, where
1
Wy = 5(819'01 — Ov)

is the spin rate tensor. It follows that

1
(2.9) atTi(f) = —2n0kpwis — %@ (01 Skk) €sj1-
Similarly, we assume the following constitutive relation for p.
(210) 8“0 = —C@kk&vl.

which relates the rate of change of the dispersive pressure to the rate of dilational
change of the material. Together with (2.8)—(2.10), the constitutive relations can be
rewritten as
atjjij = [Eukl - % (Ezymnq/mn) ((I)rsETskl):l Vkl
— (OrrO1v16;5 — MOk (Osv; — O5vs) ,

X (@45 EijiiVier)

Oy = I7
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where the symbol x is a characteristic function which is zero for ¢(T*) v) < 0 and
one for ¢ = 0.

Remark 2.1. We build the microstructure into the models through the elastic part
(i.e. particles are connected by elastic springs) and as a result the effect is dispersive
[4]. In general, microstructure should also be built into the plastic part which would
result in dissipative effects.

It is true that, for some critical values of the hardening modulus, the system (2.1)
without microstructure [12], [13], [2], [3], [6] will lose hyperbolicity with respect to
plane waves in certain directions. There are two types of ill-posedness: shear-band
and flutter ill-posedness. In this paper, we restrict our analysis to shear-band ill-
posedness in simple models. Analysis for general cases (at least having two velocity
components, or dealing with flutter ill-posedness) will be given in future work.

3. A weakly nonlinear approximation of two model problems. In this
section we consider two special cases of the above elasto-plastic model with microstruc-
ture. The first corresponds to the longitudinal motion of an elasto-plastic bar while
the second corresponds to anti-plane shear deformation. We perform a perturbation
expansion about the critical state associated with the onset of instability and analyze
the nonlinear equations obtained by retaining second order perturbations.

3.1. Longitudinal motion of an elasto-plastic bar. In this case we have
1
(@mwhzaaﬂ (B0)P) = X = ;.

So the constitutive law is

1
8$v = E&T + at')/

It follows from the yield condition T = g(+) (we only consider the tensile case T > 0)
that

1 e
0y = (——b,T) =—2 (5,
o <¢W)t>+ Grg %)

where the function g(v) is shown in Fig. 3.1. We observe that, for this problem,
points on the yield surface will undergo further plastic deformation when 8,v > 0,
while points on the yield surface will undergo elastic deformation when d,v < 0.

T=g(v)

v

F1G. 3.1. The yield stress as a function of the total shear strain v.
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For easy reference, we rewrite the complete system as follows:
p@tv = 3xT,
8tT = Gazv - G8t7 - Cazzzva
By — { ot (Bev)r T =g(7),
0 if T < g(v)-

(3.1)

The third-order term comes from the dispersive pressure alone. Without this
term, we obtain the following nonlinear wave equation

Gg

3.2 v = | =———08v |

(3.2) POt <G T )x

when the material is undergoing plastic deformation. It is clear that the equation
(3.2) (or equivalently the system (3.1) without the third-order term) will change type
when ¢’ becomes negative. Thus there is a critical state (v.,7.) such that

gl('YC) =0, Te = g(e)-
We now assume small perturbations about the critical state of the form:
T=T+T, v=%+7% v=71,

which we substitute into (3.1) to obtain

pf)t = Tz
Tt = G"_)z - G'S/t - Cﬁzzz

1
’_Yt=(1—591/7>17m
1 1" ’
= 1———g/z7d'r)’t_1,
( G to x T

where the fact that ¢'(7.) = 0 has been used. We note that ¢”(y.) < 0 since g(v.) is
a maximum. In the plastic region (7, > 0), we have, by eliminating ¥

t
(3.3) oy = Ty, T,=g" (/ 17sz> Up — (V-
to

Note that the integral in (3.3) represents history-dependence of the plastic deforma-
tion.
Similarly, in the elastic region (7 = 0) we obtain

put = T, Tt =GV, — C'l_}z:cz~

For the purpose of analysis, it is convenient to remove this explicit history-
dependence by expressing the problem in terms of displacements instead of velocities.

Let
t
U= / odT.
to

Dropping the bars, the system in the plastic region then becomes:
(a) puge = Ty

3.4
( ) (b) Tt = g//ua:uzt - Cuzzzt,
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while in the elastic region we have:

, (a) pPut = T:

(35) (b) Tt = G’LLg;t - Cuz:c:ct-

Eliminating T in (3.4), we obtain:

1

(36) PUty = %(ui)z - Cu:ca:a:a: + fl:c(x)

It is easy to check that u, satisfies the Boussinesq equation [1], [9] (provided fi, = 0),
one of the completely integrable nonlinear PDE which has solutions exhibiting a soliton
structure.

3.2. Anti-plane shearing. In this subsection (cf. [14]), we consider the special
case of the general elasto-plastic equations in which the unknowns are assumed to be
of the special form v = v3(z1,z2), T = (T1,T2) = (T51,T52) and 7.

The strain-stress relations are as follows:

1
(a) (gradv)(® = EatT@
(3.7) (s)
RT'*®
P) — = _
(b) (gra‘d U) - )\ lT(s)l b

where the rotation matrix
( cosa sina )
R= )
—slna  cosa
has been included into the constitutive law to model a nonassociative flow rule in the
case a # 0. Differentiating the yield function ¢(T(®),~) = |T(®)| — g(y) = 0, we have

1 T(s)
. =—( ——,8,T®).
38 ey <IT(3)|’ ‘ >
It follows from (3.7.b) that

1 T(s)
A= |gradv®| = 8,y = <— 8T(5)>.
lg l 1Y 70 t

Hence

1 G (RTOYTENHT
dv= = |I 8, T,
B G[ gt IT@P ‘
Inverting we obtain

1 (RTO)(TENHT
 HI|T(RT®)(T®)T[?

- 8T® =@ {I } gradwv,

where

g < RT®) T6) > g
H_E+ IT(S)IZ —5+cosa.

Substituting this relation into (3.8), we have

1 /T
Oy = T <W,gradv>+
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For easy reference, we summarize the governing equations in this special case:

Patv = axlTl + 812T2)
1 < RT®) T(5) >

T =G [I - —EW} grad v — n grad(Oxv),

1 /76
8{)/ = —H_— <m,gradv>+ -

Note that, in this case, the third-order term comes from Cosserat theory alone.
It was found [14] that the system loses its hyperbolicity if and only if

(3.9)

1 (RT“))(T(S))T}

min &7 [I ~ 7 VAQIE

l¢l=1
— min — <H— <& RT® ><¢,T® >) _Ll(e _sin22
i€l=1 H ’ ! H\G 2
is negative where £ = (£, &2) is the wave number. Moreover, under uniform deforma-
tion
v(z1,T2,t) = 71, T(s)(xl,xg,t) = T(S)(t)’
and the appropriate choice of initial conditions, the solution first loses stability to plane

wave perturbations in the x;-direction. In this case, the equations lose hyperbolicity
when

() _ j(s) @ ¢ —
T ch I (COS 9 » SIIL 2) ) Y Ye
at which
. [87
g'(ve) =Gsin® 5, IT] =g(v).

It is possible to assume that the unknowns are functions of z; only (in what
follows we simply write = for x1). The system (3.9) in the plastic region is as follows:

(a) pdw=0;T1

G / T(s) o) .
(by 6,1y = Vi % — IT(Q—S)I? (T1( ) gina — TQ(S) coS oz)} OV — NOpaaV
3.10 (o)
(3.10) (c) 6Tr = % [T(ls) B (Tl(s) sina — T cos oz) v

while in the elastic region,

poww = 8,11,
O = GOpv — N0yeev,
Oy =0, Oy = 0.

As before we assume the perturbation expansion:

T=TO+T, v=0, y="+7
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By Taylor expansion,

g _ T ®) g’ ) | (. )
G Tf(gsjl? (Tl sina — T, cosa) = 5'7+0'T1 +0-T,%.
It follows from (3.10.d) that
1 ¢
v = 0, vd
7= Cos 2 Ji Vet
Thus the equation (3.10.b) becomes
B g// t
(3.11) 0Ty = -~ 0, 0dT - B0 — N0y V.
2 Jto

Letting

t
u=/ vdT,
to

and integrating (3.11) with respect to ¢ once, we obtain

1

1= m(ucc)z - nazzzu-
Combining with (3.10.a), we have

1"

(u2)z - nazzzzu
2cos§ " ¢

POy =
which, up to the factor cos 5, is the Boussinesq equation we obtained in the previous
subsection.

4. Special solutions and jump profile. In this section we derive some explicit
solutions of the equation (3.6). We assume that fi, = 0. It is clear that v = const
and u, = const are solutions of

1

(41) PUty = %(ui)m - Cuzzzz

Now we look for a traveling wave solution of the form
u=U(§), E=x Lt
It follows from (3.6) that

gll 9 !
chUI/ —_ ? (U/ ) _ CU”//'
Integrating once we obtain
gll 2
C2pU/ — ?U/ _ CU”I + A.

Multiplying by U”, integrating and letting z = U’ we obtain

2.2 1
cgz :%zs—gz'2+Az+B.
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Solving for z’ we obtain

i 3c? 6A 6B
2% = —g—g B N

g g ?
If the constants A and B are chosen so that the cubic in 2z on the right-hand side of the
above ODE has three real roots, then z will be periodic and can be can be expressed
in terms of Jacobian elliptic functions. These periodic solutions are not suitable for
our objective of obtaining jump profiles. However, if we choose A and B, such that

3c2p 6A 6B
P g~ oAl )

where z; and 2z satisfy

3 2
(4.2) 29 >0>2 and 221+ 20 = ;”p
In this case
d Al
Z id&.

(z —z1)W2 — 2 ==+ 3¢

Making use of the indefinite integral

/ dz _ 2 sech~1 Z— 21
(Z_Zl)\/ZQ—Z B V22 — 21 o — 21 ’

it follows that

1 —g" (29 — 21)
z— 21 = (23 — 21) sech® — .
1= (22— 21) (2 /3 c (£ —¢&)

Since we are considering shear-band ill-posedness, which corresponds to a station-
ary “jump” in the displacement, we let ¢ = 0. It follows from (4.2) that z2 = —2z1.
Therefore,

1 1
(4.3) Up = 21 {1 — 3sech? [5 g €Z1 (z— xo)} } )

which is shown in Fig. 4.1. The plastic part of the solution is denoted by the solid
bell-shaped curve between z2 and z1, while the dashed curves denote the extension of
this solution beyond its region of validity into the elastic region. In order determine
where to patch the elastic and plastic solutions, we search for those points, z1 and zs,
at which u, changes sign.

It follows from (4.3) that ug(z1) = uz(x2) = 0 where

T12 = To £ 24 _//C__ cosh ™' (V3).
gz

The second derivative of u at 12 is equal to

29" 2,
Use|yg, , = 21 3¢ sgn(z1,2 — Zo)-
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Uz

F1G. 4.1. The gradient of the displacement: a stationary solution to the simplified equations.
The dashed curves represent the extension of the solution in the plastic region.

For the elastic region we look for the solution to (3.5). Eliminating T we obtain

PUgy = Gug, — Cuxx:m: + f2z(x)

where f5 is an arbitrary function of z. Time-independent solutions to this equation
satisfy

Uggx = Uz — fZ(m)

¢

The solution to this equation is given by

+o00
ugy = C1 exp (\/§m> + Cyexp (—\/_§m> — \/g/ sinh <\/_§(x — y)) f2(y)dy.

If we require u,{(+00) = 0, then for z > x,, we have

+00 '
Uz = Cyexp (—\/g(x - x1)> - \/g/x sinh <\/§(3’ - y)) F2(y)dy.

The condition ug(z;) = 0 yields

+o0
Cy = \/g/ sinh (\/%(xl - y)) f2(y)dy.

The second derivative of v at = is given by

+o00
L —/w exp (\/g(xl - y)) fa(y)dy.
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r=z7 = uxw}x:xi, 1.€.,

214 %’51 sgn(r; — o) = _/00 exp (\/%(551 - y)) f2(y)dy.

Similarly, we can find an expression for u in the region x < xo2. The function u, is
shown in Fig. 4.1. The dashed curves represent the extension of the Boussinesq solution
Uy beyond the plastic region. The function u, which is obtained by integrating u,, is
shown in Fig. 4.2. The dashed curves represent the extension of v beyond the plastic
region.

By an appropriate choice of fa(y), we can make uml

AN zz \

\ T \

Fic. 4.2. The displacement obtained from integration of ug. The dashed curves represent the
extension of the integration in the plastic region.

Without microstructure, solutions will have a jump at z = xg. In order to get
a well-posed model, certain jump conditions need to be imposed. As we mentioned
in the introduction, the constitutive relation cannot be written in conservation form.
Therefore the quantity to be conserved across the jump cannot be determined direct-
ly from the equations without microstructure. In order to obtain the correct jump
structure, we consider the small microstructure limit of the microstructure equations.
This approach is analogous to the small viscosity limit [15] used to derive the jump
structure for conservation laws. In order that the jump be finite, we require that the
height of the jump should be independent of {. In our problem, the height of the jump
is equal to the integral of (4.3) from z2 to ;.

1 r1 1 1
L= / ug(z)dr = —zl/ {1 — 3sech? (5 g Czl (x — x0)> } dx
T2 2
Ty 1 gllz1
= -2z / 1—3sech? | = T dz
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where Z; = 2,/ - cosh ™ 1(\/_ After changing variables in the above integral we

obtain
CZ cosh™1(+/3)
L=4 e / (3sech?(y) — 1)dy.

If z; ~ %, then L is independent of {. As a result

.’132—33'1:4 /,C
\/921

Alternatively, the same result can be obtained by rescaling variables in the equa-
tion:

3) ~ C¢

g//

If we let X = (®x, then the equation becomes

1
g
ECSQ(Ugc)X =My xxx.

The relation 3o = 1 + 4« implies that o = —1 from which it follows that z = (X.

This special solution assumes that the stress T is in an equilibrium state. There-
fore the above limiting process which we used to obtain the jump structure will only
apply to loading paths in which the stress T reaches an equilibrium state at values
of the total plastic shear strain vy which are close enough to the critical state for the
weakly nonlinear approximation to be valid. In general T' will ultimately move to the
constant stress state characterized by the flat part of the yield curve (cf. Fig. 3.1).
However, the values of v at this stage will be beyond the region of validity of the
weakly nonlinear approximation so the jump conditions will no longer apply.

Remark 4.1. The assumption that f1, = 0 in (3.6} allows us to construct solutions
easily. The vanishing of fi, in (3.6) only affects the zeroth order nominal solution but
does not affect the stability analysis.

5. Instability of special solutions.

5.1. Multiple scales analysis of the constant displacement solution. In
this subsection, we carry out the multiple scales analysis described in [10] for the
equation

(51) Uy + QUg Uz + Cuzxxm =0.

Essentially, this method generates a hierarchy of linear differential equations from
which secular terms are removed.
Suppose that

o0

(5.2) u(z,t) = Z e u( (Xo, X1, T, T, To) + u®
n=1

where 4(9 = const and

(5.3) X =€z, k=0,1 and Ty =€, k=0,1,2.

The fast scales in time and space correspond to k& = 0 while the longer space and
slower time scales correspond to the higher values of k. Using the chain rule for
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differentiation, we obtain
0 <~ 0 o~ 0
5.4 — = T — = "
(5.4 DI aX, B2t T,
n=0 n=0
Substituting (5.2)—(5.4) into (5.1) and collecting terms with equal powers of €, we
generate a hierarchy of equations of which the first three members are

(5.5) Lu =,

(5.6) Lu(z) = —28T0T1’M(1) — a@XOu(l)é)XOXOu(l) — 4<8X0X0X0X1U(1),
Lu(3) = _(aToTz + aTlTl )u(l) - 28T0T1u(2) - 2<(38X1X1X0X0u(1)
(5.7) + 28X0X0X0X1u(2)) —Qa [8X0u(1) (23)(0)(111,(1) + 8X0X0u(2))

+3X0X0u(1) (8)(1 A8 + onu@))]
where L is the linear operator (the beam equation)

82 8
(5.8) L= 572+ ozt

Now consider a solution of (5.5) of the form

2
(59) u(l) = Z AJ (X1> le T2)ei0j + A_)]k (X17 Tla TQ)e_ioj
j=1

where A* is the complex conjugate of A and
9]‘ = kX() — ijg, j = 1,2.

For (5.9) to be a solution of (5.5), the wave frequency w and the wave number k
have to satisfy the following dispersion relation:

wj = (1771 /Ck?, j=1,2.

When the problem is considered in a bounded domain, the choice of the wave numbers
will be discrete. Substituting (5.9) in (5.6), we obtain

2
Lu® = Z {,L'eiGj (QaTl Ajw; + 4<k38X1Aj)
(5.10) =t

— e~ (2w;0r, AT + 4Ck*Ox, A}) + ai (A?ezwf - A;ze_zw]-) }

To remove secular terms, we impose the condition
(5.11) O Ajw; +2(k*0x, A; =0, j=1,2.
We then find that (5.10) has a solution of the form

2

ia 105 *2 —21
6512 i =3 g (417 %),

J=1
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Substituting (5.9) and (5.12) in (5.7), we find that secular terms can be removed by
imposing the condition

(513) —iwjaTzAj + 8T1T1Aj — 6Ck28X1X1 A IA |2

6Ck
It follows from (5.11) that

Onm A; = 4CK*0x, x, A;.
Thus, (5.13) becomes

8T2 ( J ! 2\/_6X1X1A + lejl2 =0, ji=12

6¢/C \/_ k3
which is the nonlinear Schrédinger equation in the variables T3, X;. It was shown

(see, for instance, [16]) that the envelope A; is unstable, since coeflicients of the second
two terms have the same sign.

5.2. Instability of the constant strain solution. In this case, it is not
necessary to carry out a delicate multiple scales analysis in order to detect instabilities
since instabilities occur even in the fast scales in time and space.

We assume that u,(0) = ¢ > 0, since the equation only holds in the plastic region.
The linearized equation is

(514) Ugz + GU‘S}O) Ugy + Cuzxmv =0.

Without the microstructure term (¢ = 0), the initial value problem is ill-posed. With
the microstructure term, the initial value problem becomes well-posed but some of the
Fourier modes may still be unstable. In fact, substituting u = 4e**¢+> in (5.14), we
obtain

A+ ac(i€)® + ¢(ig)* =

Re(\;2) = €|V ac — (€2H (ac — (€?)

where H is the Heaviside function. The solution to (5.14) will be unstable with respect

to low Fourier modes
€l < (/5
sy

5.3. Instability of soliton solutions. The linearized equation around the
soliton solution is

It follows that

(5.15) Ug + augco)um + augom)uz + CUggrs

where u(®) = 49 (z) is the solution obtained in §4. Again, we only look at the region

where 4l > 0.
Substituting u = 7e®*¢*+*t in (5.15), we obtain

A2 = 2(aul) — ¢€?) —iaul¢,

from which it follows that

1/2
lRe(A1,2)1=%{\/éj(au§°’ &) + (a6 + (au 0’—<§2>§2} ,
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which satisfies

| Re(A)] ~ %\/alu(ﬁ?llél as €0

[Re(A1,2)] ~

Note that, this argument can be justified by the previous multiple scales analysis
when ug)) and ugi) do not change too rapidly in z (at least in the interior of the plastic
region).

From the stability analyses of the above three special solutions, we conclude
that when the stress is just beyond the critical state the solution is unstable and
the amplitudes of the lower wave-numbers grow. This phenomenon is a net result of
competition between the focusing effect of the nonlinearity and the dispersive effect
of the microstructure terms. The nonlinearity provides a self-focusing effect which, if
it were not inhibited by the microstructure terms, would cause uncontrolled growth
of arbitrarily fine scales. The microstructure terms inhibit the uncontrolled growth
of the highest wave-numbers which means that only the lower wave-numbers {which
fall within the limits of the continuum assumption) can grow. The growth of these
physically relevant wave-numbers ultimately leads to the formation of shear bands.
These conclusions only apply in the region of validity |y — o] < 1 of the small
perturbation analysis that was used to derive (5.1). If the plastic strain ~ is much
larger than ~p (see for example the flat part of the v — T curve in Fig. 3.1), then
stress state could become constant and in this case the velocity will reach a stable
Jump profile. However, in this case (5.1) is no longer valid—in fact the velocity in this
regime satisfies the beam equation and the nonlinear term disappears.

6. Numerical experiments. Here we only present some numerical experiments
on the perturbed equation (5.1} and its elastic counterpart. Further numerical results
for the complete system (3.1) will be given in another paper [5] in which the process
from uniform deformation to localization is demonstrated.

In the plastic region (u},; > u}_;), we employ the difference approximation:

At\? q

+1 __ n n—1 i n

w2 - (Ax) oAy Y T UmD) (W g — 2u)
At?

(6.1) - (A—xz(ugﬂr? +ui_o —dufyy —dui g +6ul);

while in the elastic region (u}; <uf ), we use

2
u? Tl — gy gyl 4 ﬁ (Wl +u?, —2u?)
j 3 J Az A A 7

At?

(6.2) - CA—#

n n n n n
(Uj+2 + U’j—Z — 4'LLJ+1 — 4U'j—1 + 6’U,J ).

'To guarantee stability in the elastic region, it is necessary to require that

(Az)?
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In order to derive this condition, we substitute

U,;' — )\neijkAa:
into (6.2) to obtain

2
A2 2 {1 + (1 — cos(kAx)) <§—i> + % (1- cos(cha:))2} A+1=0.

The condition (6.3) follows from the requirement [A| < 1.
In our computation, we assume that ¢ = 0.5, { = 0.005, and Az = 0.01. We also
use the boundary condition %]mzo,l = 0 and the initial condition

u(z,0) = tan™! (10(x — 0.5)) [1 —0.3exp <_2_6(272()0?))TII>] .

In Figs. 6.1 and 6.2, we see that, after £ = 0.05, the amplitude of the jump
grows significantly. Since the microstructure terms have been included in this model,
amplitude growth is only restricted to the lower wave-numbers and as a result the dis-
placement curve is quite smooth. In Figs. 6.3 and 6.4, we start with the same initial
data but exclude the microstructure term. By time ¢t = 0.029 we observe spontaneous
jumps in the displacement profile which correspond the uncontrolled growth of the
large wave-numbers. These jumps develop into numerical overflows almost immedi-
ately after this time-step. These results are consistent with the conclusions of our
stability analysis in §5 and our previous conjecture.

7. Conclusions. The nonlinear equations of elasto-plastic flow are known to
exhibit ill-posedness for certain values of the hardening parameter. The nonlinear-
ity in the model, which in this context tracks the damage history of the material
through the accumulation of plastic strain, provides a self-focusing mechanism. With-
out microstructure this term would make the initial value problem ill-posed which is
characterized by the uncontrolled growth of the higher frequency modes. As a result
infinitely fine-scale deformations are mobilized, which ultimately violate the continu-
um assumption of the model. The effects of such microscale deformations are built
into the original continuum model by including the appropriate higher order dispersive
terms. Previous studies of ill-posedness in elasto-plastic models and of the stability
of elasto-plastic-micromodels have been restricted to linear analyses. Linear analysis
shows that incorporating the microstructure terms into the model makes the problem
well posed and leads to a stably growing profile for the displacement.

In this paper we used a weakly nonlinear analysis to explore the immediate post-
critical behavior of elasto-plastic-micromodels. By considering small perturbations of
the model equations about the critical state, we demonstrated that the gradient of
displacement field satisfies the Boussinesq equation—one of the completely integrable
PDE having soliton solutions. We used the Boussinesq equation, governing the evolu-
tion of small perturbations to the critical state, to explore two distinct features of the
post-critical behavior of the solution. Firstly, we patched the special soliton solution
in the plastic region to the solution in the elastic regions and were able to obtain the
correct jump structure for certain loading paths. Secondly, we consider the stability
properties of perturbations to certain special solutions. With help of multiple scale
analysis we were able to show that a perturbation to a constant displacement solution-
s is unstable on a slow time-scale. While perturbations to more complicated special
solutions such as the constant strain solution and the soliton solution are unstable on
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Band with microstructure
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F1G. 6.1. The displacement curves (with microstructure) which are shown at different time-steps.

FIG. 6.2. The displacement (with microstructure) as a function of z and t.

a much shorter time-scale and do not even require multiple scale analysis to detect
them. The instability of these perturbations into the post-critical region indicates
that the material will move rapidly away from the region in which ¢’(y) < 0 to the
flat part of the v — T curve (cf. Fig. 3.1).

Numerical approximations will be required in order to investigate larger pertur-
bations to the critical state and more general stress states. The results in this paper
will be useful in the interpretation of the numerical experiments. Similar analyses (to
those performed in this paper) of the discretized equations can be used to determine if
observed phenomena, in the numerical results are due to the physical model or if they
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Shear band instability
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FiG. 6.3. The displacement (without microstructure) which is shown at different time-steps.
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Fic. 6.4. The displacement (without microstructure) as a function of x and t.

are artifacts that can be attributed to the discretization process. The analysis carried
out in this paper can be generalized to multi-dimensional models in order to examine

post-critical behavior.
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