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Abstract 
Most hydraulic fracturing treatments are in the viscosity-
dominated regime. Hence, fracture growth does not depend on 
the rock toughness and it can be shown that the fracture aper-
ture w  near the fracture front, when viewed at the scale of the 
whole fracture, is not characterized by the classical square root 
behavior predicted by linear elastic fracture mechanics 

1 2
~w s

/ , where s  is the distance from the tip. Instead, the 
asymptotic tip aperture that reflects the predominance of vis-
cous dissipation is of the form 2 3

~w s
/ , under conditions of 

large efficiency and small fluid lag. After demonstrating the 
intimate connection between the tip aperture and the fracture 
propagation regime, we report the results of hydraulic fractur-
ing laboratory experiments in PMMA and glass blocks that 
employ a novel optical technique to measure the fracture 
opening. These experiments provide incontrovertible evidence 
that the power law index, characterizing the fracture aperture 
near the tip, depends on the propagation regime in accordance 
with theoretical findings. Finally, we demonstrate that a 
coarsely-meshed planar hydraulic fracture simulator can pro-
duce accurate results relative to benchmark solutions provided 
that the appropriate tip behavior is embedded in the algorithm. 
Through theoretical, experimental, and computational consid-
erations, these results make it clear that advances in the accu-
racy and efficiency of fracture simulators critically depend on 
a sophisticated treatment of the near-tip aperture that goes 
beyond basic linear elastic fracture considerations.  
 
Introduction 
Fluid-driven fractures represent a particular class of tensile 
fractures that propagate in solid media, typically under preex-
isting compressive stresses, as a result of internal pressuriza-
tion by an injected viscous fluid. Hydraulic fractures are most 
commonly engineered for the stimulation of hydrocarbon-
bearing rock strata to increase the production of oil and gas 

wells [1-3], but there are other industrial applications such as 
remediation projects in contaminated soils [4-6], waste dis-
posal [7,8], excavation of hard rocks [9], preconditioning and 
cave inducement in mining [10,11]. Furthermore, hydraulic 
fractures manifest at the geological scale as kilometer-long 
vertical dikes bringing magma from deep underground cham-
bers to the earth’s surface [12-14], or as subhorizontal frac-
tures known as sills that divert magma from dikes [15-17].  
 
Since the pioneering work by Kristianovitch and Zheltov [18], 
there have been numerous contributions on the modeling of 
fluid-driven fractures that have been mainly motivated by the 
application of hydraulic fracturing to the stimulation of oil and 
gas wells. The early efforts naturally focused on analytical 
solutions for fractures having simple geometries, either along 
straight lines in plane strain or penny-shaped in situations of 
radial symmetry [18-25]. However, all these solutions were 
approximate as they contain strong assumptions about either 
the opening or the pressure field.  In recent years, the limita-
tions of these solutions have shifted the focus of research to-
wards the development of numerical algorithms, to model the 
three-dimensional propagation of hydraulic fractures in lay-
ered strata characterized by different mechanical properties 
and/or in-situ stresses [26-33].  
 
Most of the hydraulic fracture simulators that are freed of a 
priori constraints on the fracture shape and of the approxima-
tions associated with models commonly referred to as 
“Pseudo-3D,” are based on linear elastic fracture mechanics 
(LEFM); this is reflected by the imposition of a square root 
asymptotic behavior on the fracture aperture, 1 2

~w s
/  (where 

s  is the distance from the crack front) in the tip region. As it 
is well known, the square root asymptote is intimately linked 
to the energy dissipated in the creation of new fracture sur-
faces in the rock [34]. However, it was progressively realized 
in the late 1980’s and early 1990’s [35-37] that another tip 
asymptote of the form w ~ s2/3  (for a Newtonian fluid and in 
the absence of leak-off) arises under conditions where the en-
ergy in the tip region of a propagating fracture is essentially 
dissipated in viscous flow.  These results then motivated a 
systematic reexamination of the classical KGD and penny-
shaped fractures [38-49] as well as the construction of com-
prehensive tip asymptotics that incorporate toughness, leak-
off, viscous flow and the existence of a lag between the fluid 
front and the crack edge [50-54].   
 
The first practical outcome of these rigorous studies was the 
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recognition that several time scales control the evolution of a 
hydraulic fracture. One of the time scales is associated with 
the transition between a regime of propagation where the en-
ergy input of mechanical work at the wellbore is essentially 
dissipated in viscous flow of the fracturing fluid and another 
regime where most of the energy is used to fracture the rock. 
A second time scale characterizes the evolution from situa-
tions where the injected fluid is essentially stored in the frac-
ture (efficiency close to 100%) to situations where most of the 
fluid has leaked into the rock (vanishing efficiency). A third 
time scale is linked to the progressive disappearance of the lag 
between the fracturing fluid front and the fracture tip, and de-
pends, among other parameters, on the magnitude of the in-
situ stress and pore pressure. However, a parametric analysis 
indicates that, for most hydraulic fracturing treatments, only 
the time scale associated with the change of efficiency is rele-
vant.  Indeed, the time scale associated with the transition 
from the viscosity- to the toughness-dominated regime is typi-
cally very large compared to the treatment time, while the time 
scale associated with the vanishing of the lag is typically very 
small compared to the treatment time. In short, most hydraulic 
fractures for reservoir stimulations propagate in the viscosity-
dominated regime under conditions in which the fluid front 
coincides with the fracture front.  
 
The second outcome of these research activities was the reali-
zation that the combination of the square root tip asymptote 
and the relatively small number of discretization cells (of or-
der O(100 ~ 1000) ) typically used in numerical computations 
artificially forces the fracture to propagate in the toughness-
dominated regime.  In other words, simulation of a hydraulic 
fracture in the viscosity-dominated regime requires the impo-
sition of a different tip asymptote, whose strength depends on 
the tip velocity.  
 
This paper describes a preliminary effort to construct a hy-
draulic fracture simulator that incorporates the viscosity as-
ymptote, under the restricted conditions of zero leak-off.  Af-
ter a description of the equations governing this problem both 
at the global scale of the fracture and at the tip scale, we show 
incontrovertible experimental evidence that the fracture aper-
ture near the tip behaves according to w ~ s2/3  in the viscos-
ity-dominated regime and according to w ~ s1/2  in the tough-
ness-dominated regime. Finally, we show that a coarsely-
meshed planar hydraulic fracture simulator produces accurate 
results relative to benchmark solutions provided that the ap-
propriate tip behavior is embedded in the algorithm.  
 
Mathematical Model 
Governing Equations 
The equations governing the propagation of a hydraulic frac-
ture in a reservoir have to account for the dominant physical 
mechanisms taking place during the treatment, namely defor-
mation of the rock, creation of new fracture surfaces, flow of 
the fracturing fluid in the crack, formation of a cake, and leak-
off of the fracturing fluid into the reservoir.  Besides the stan-
dard assumptions regarding the applicability of linear elastic 
fracture mechanics (LEFM) and lubrication theory, we make a 
series of simplifications that can readily be justified for the 

purpose of this contribution: (i) leak-off is neglected, (ii) the 
rock is homogeneous (toughness K

Ic
, Young’s modulus E , 

and Poisson ratio !  thus have uniform values), (iii) the frac-
turing fluid is incompressible and Newtonian (viscosity µ ), 
(iv) the fracture is always in limit equilibrium, (v) gravity is 
neglected in the lubrication equation, and (vi) the fluid front 
coincides with the crack front, because the lag between the 
two fronts is negligible under typical conditions of reservoir 
stimulation [49,50]. With these assumptions, the fracture aper-
ture w(x, y, t) , the fluid pressure pf (x, y, t) , and the position 
of the front C(t)  are governed by the following set of equa-
tions (Figure 1):  
• Elasticity equation 
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where S(t)  denotes the fracture footprint (enclosed by the 
crack front C(t) and having a characteristic dimension L(t) ), 
and!

o
(x, y) is the far-field compressive stress perpendicular to 

the fracture plane (and a known function of position);  
• Reynolds equation 
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where ! (x, y)  denotes the Dirac delta function, with the origin 
of the system of coordinates (x, y)  taken to coincide with the 
injection point, and Q(t)  is the volumetric injection rate (a 
given function of time);  
• Boundary conditions at the moving front C(t)  
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where s  denotes the distance from the crack front C(t)  (with 
the s -axis directed inwards). The first condition (3) is a clas-
sical result of LEFM, while the second simply expresses a no-
flux boundary condition at the fracture tip.  
 
The material parameters E ! , K ! , and µ !   
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have been introduced to keep equations uncluttered by nu-
merical factors; for convenience, they are referred to as the 
elastic modulus, the toughness, and the viscosity.  
 
The system of equations (1)-(3) is closed and can, in principle, 
be solved to determine the evolution of a hydraulic fracture, 
given appropriate initial conditions.  However, the accurate 
numerical solution of this system represents a formidable 
problem, despite the apparent simple form of the equations. 
Indeed, three challenging issues arise from the structure of the 
mathematical model: (i) the non-locality of the elastic re-
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sponse of the fracture (meaning that the opening w  at one 
point of the fracture depends on the fluid pressure pf  at an-
other point), (ii) the non-linearity originating from the de-
pendence of the fracture conductivity on the cube of the crack 
opening, and (iii) the moving boundary associated with the 
propagating crack front.  These challenges have been well-
known since the late 1970’s when numerical methods specifi-
cally designed to solve this class of problems were first devel-
oped [26], and still remain to this date as evidenced by the on-
going drive to improve the efficiency of the computational 
algorithms [55].  
 
Only recently, however, has it been appreciated that the non-
local and non-linear nature of the governing equations, com-
bined with the fracture propagation criterion, conspire to yield 
a multiscale structure of the solution near the fracture tip 
[50,51,42,53].   In particular, there are conditions – actually 
prevalent in hydraulic fracturing treatments – when the classi-
cal square root asymptote of linear elastic fracture mechanics 
exists at such a small scale that it cannot be resolved at the 
discretization length used to conduct the computations.  Under 
these conditions, which correspond to the viscosity-dominated 
regime of fracture propagation, significant errors in the predic-
tion of the fracture dimension and width result from imposing 
an asymptotic behavior that is not relevant at the grid size used 
to carry out the computations.  That the behavior of the solu-
tion in the tip region has such an overwhelming influence on 
the global response of the hydraulic fracture is to be expected 
from the nature of the problem where only the volume of the 
fracture is constrained (which is not even the case when leak-
off is taken into account).  
 
It will be made clear in the following, that numerical simula-
tors for hydraulic fractures must account the multiscale nature 
of the solution in the tip region, to ensure accurate predictions.  
 
Scaling 
Before summarizing the behavior of the solution in the tip 
region, it is useful to scale the governing equations. Thus, we 
introduce a length scale L

!
, a time scale T

!
, a characteristic 

fracture aperture W
!
, and a characteristic (net) pressure P

!
 (all 

yet to be defined). The physical quantities of the problem are 
thus formally expressed as  
 
x = L!", y = L!# , t = T!$ , w =W!%, pf = P!& f                  (5) 
 
By introducing the above relations in the governing equations, 
it can readily be shown that four dimensionless groups emerge  
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where Q

o
 is the characteristic injection rate, Q(t) = Q

o
! (" ) , 

with ! (" )  representing a dimensionless injection schedule. 
Then, setting G
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On the one hand, the condition G

e
= 1  simply means that the 

average aperture scaled by the fracture dimension is of the 
same order as the average net pressure scaled by the elastic 
modulus, in accordance to elementary elasticity considera-
tions. On the other hand, the conditions G

m
= G

k
= 1  (with 

G
m

 and G
k

 having the meaning of a dimensionless viscosity 
and toughness, respectively) imply that T

!
 reflects the time of 

transition between a viscosity and a toughness-dominated re-
gime, since equal weight is placed on viscosity and toughness. 
Actually, calculation for a penny-shaped fracture propagating 
under a constant injection rate Q

o
 indicates that T

!
 effectively 

marks the end of the viscosity-dominated regime. Finally, the 
condition G

v
= 1  guarantees that L

!
 is the characteristic di-

mension of the fracture at t = T
!
.  

 
This scaling ensures that for an ideal case, characterized by 
uniform properties and stress (which obviously leads to the 
formation of a penny-shaped fracture) as well as a constant 
injection rate, all the problem parameters (Q

o
, K ' , E ' , and 

µ ' ) are embodied in the scaling factors, noting that !
o

 serves 
only as a reference for the fluid pressure, in the absence of a 
lag. Finally, the governing equations transform in the numeri-
cal scaling as follows:  
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where !

o
 is the scaled far-field stress !

o
/ P

"
.  Note that it is 

advantageous to introduce the net pressure ! = ! f " #o ,  if 
!
o

 is homogeneous. The characteristic dimension of the frac-
ture (e.g., the fracture radius) is ! (" ) = L / L# .  
Finally, we note that the tip velocity V , the critical quantity 
that legislates the asymptotic behavior of the solution, is equal 
to the average fluid velocity in the tip region in the absence of 
leak-off.  By introducing the scaling factor V

!
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the scaled tip velocity v = V /V

!
 can be expressed as  
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v = lim
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1

#2

$% f
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where !  is the scaled distance from the fracture front. As 
shown below, the asymptotic solutions for !  and ! f  depend 
only on !  and v .  
 
Tip Region 
Theoretical Analysis 
It can be shown [56] that the equations governing the aperture 
!  and the net pressure f o! = ! "#  in the vicinity of the 
fracture edge degenerate into 
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where the propagation velocity V  is given by the instantane-
ous local propagation velocity of the fracture front (Figure 2). 
Note that the spatial variation of the far-field stress can gener-
ally be ignored when viewed at the tip scale, unless the stress 
field is discontinuous (in which case, the tip solution outlined 
here is not appropriate).  Equations (13) are in fact identical to 
the governing equations for the problem of a semi-infinite 
fluid-driven fracture steadily propagating at constant velocity 
and characterized by zero lag [50,42]. In other words, the tip 
asymptotic solution is given at any time by the solution of the 
stationary semi-infinite crack problem with a constant tip ve-
locity corresponding to the current propagation speed of the 
finite fracture. The tip solution is thus autonomous.  
 
The tip asymptotics can be rewritten more advantageously in 
terms of a normalized distance from the tip ˆ! , opening !̂ , 

and net-pressure !̂ , respectively defined as,  
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where the tip length scale 
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Through the tip scaling, the dependence of the asymptotic 
solution upon the material parameters µ ! , E ! , K ! , as well as 
on the tip velocity V  is entirely captured in the scaling factors 

!L̂ , 
!Ŵ , and 

!P̂ . In other words, the tip asymptotic solution 

has a universal form !̂("̂)  and !̂("̂) .  Although the complete 
tip solution has to be computed numerically, its series expan-
sion for small and large ˆ!  is known explicitly [42]. The series 

expansion for !̂("̂)  is given by 
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1
~ 0 0371887! . , ~ 0 138673h . . The 

complete semi-infinite tip solution is plotted in Figure 5, to-
gether with some experimental results (discussed below). It 
can be seen from this Figure that the LEFM behavior ( 1 2

!̂
/ ) 

applies for 
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#5  and the viscous dissipation asymp-
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The tip asymptote can readily be expressed in terms of !(")  
from the relationship between the two scalings,  
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which can be simplified as  
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Thus !  behaves according to the viscosity asymptote, 
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Now consider a fracture for which the scaled extent is 
! = L / L"  so that size of the near-tip region is !" , where !  is 
a small number of order 

 
O(10

!2
! 10

!1
) . In light of the above 

analysis, the relevance of either limiting asymptotic behavior, 
as far as the global solution is concerned, depends on the 
comparison of the length 

m
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k
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2  with !" . Hence, 

the tip will be locally dominated by the viscosity asymptote if  
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In contrast, the tip is expected to behave, at the global scale, 
according to the LEFM asymptote if  
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It is clear from this analysis that, for a given problem, the na-
ture of the tip asymptote depends critically on the tip velocity. 
If the tip velocity is sufficiently large compared to a character-
istic velocity (which is a function of the viscosity of the frac-
turing fluid, the toughness, and the elastic properties of the 
rock) then the tip solution is dominated at the fracture scale by 
the viscosity asymptote (

 
! ! "

0
v
1/3#2/3 , with ! / " = O(#) ). 

However if the tip velocity is sufficiently small then the aper-
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ture in the tip region is given by the LEFM asymptote 
(
 
! ! "1/2 , with ! / " = O(#) ). This multiscale nature of the 

fracture tip is, in fact, related to a competition between two 
energy dissipation mechanisms, with domination of the LEFM 
asymptote corresponding to the predominance of energy dissi-
pation due to creation of new surfaces in the rock while domi-
nation of the viscosity asymptote corresponds to the predomi-
nance of energy dissipation due to viscous flow. Furthermore, 
implementing this multiscale asymptote in numerical fracture 
simulators is essential in order to construct accurate solutions 
for finite fractures.  
 
Experimental Validation 
Laboratory experiments were performed in order to validate 
the hydraulic fracture tip solution. Circular hydraulic fractures 
were driven through Polymethyl Methacrylate (PMMA) or 
borosilicate glass specimens (200 x 200 x 150 mm), using 
fluids which were solutions of water, blue food dye, and either 
glycerine or glucose so that the dynamic viscosity µ  was var-
ied between 0.08 and 36 Pa ! s. Note that the viscosity of these 
fluids depends strongly on the temperature, hence the meas-
urement from a temperature probe (Figure 3) was used to 
compute the viscosity based on a calibrated relationship de-
termined for each fluid using a Canon-Fenske viscometer [17].  
 
The fractures were driven either through intact glass blocks 
( E !

= 75.3  GPa, K
Ic
= 1.25  MPa !m 1 2/ ), or along a 0.01 mm 

thick, low toughness ( K
Ic
= 0.38  MPa !m 1 2/ ), brittle epoxy 

interface in the case of the PMMA blocks ( E !
= 3.93  GPa), as 

indicated in Figure 3. Prior to and during the fracturing treat-
ment, the specimens were loaded using water-filled flatjacks 
in a specially designed polyaxial reaction frame. The loading 
was applied so that !

o
 varied from 5 to 16 MPa, which was 

sufficient in each case to prevent formation of a visible lag 
between the fluid and fracture fronts [50,57]. The lateral stress 
was then adjusted to be larger than the vertical stress so that 
horizontal fracture growth was promoted.  
 
The polyaxial frame used here has the particular advantage 
that stresses can be applied perpendicular to the direction of 
eventual fracture opening while also permitting the growing 
fracture to be monitored continuously using a digital video 
camera. This capability relies both on a PMMA lower platen, 
which also serves as a light source, and on a transparent 
PMMA upper reaction plate (Figure 3). Using this 
light/camera apparatus with the transparent loading system 
and specimens, the fracture tip velocity was determined di-
rectly from the video images. Furthermore, the fracture open-
ing w  was determined from analysis of grayscale images of 
the growing fracture according to [58]  
 

w(x, y) = k log10
Po (x, y)

P(x, y)
,         (22) 

 
where P

o
 and Ps  are grayscale pixel values 

( 0 ! P,P
o
! 256 ), with P(x, y)  corresponding to the value at 

a location ( )x y,  within the fluid filled portion of the fracture 
and P

o
(x, y)  giving the value at that same location prior to 

fracture growth. Here k  is a factor determined by calibration 
with fluid-filled wedges for which the opening w  was known. 
It has been demonstrated that this novel photometric technique 
is capable of measuring the full-field fracture opening within 
10% accuracy provided that all lighting conditions are care-
fully controlled [57].  
 
Figure 4 shows two contrasting examples of fracture tip open-
ing profiles measured in this way. Each gives data from a sin-
gle video frame recorded during fracture growth and analyzed 
according to (18). Both results give the average of the opening 
measured along 16 radial lines for these circular fractures. 
However, Figure 4a gives the results from a case where 
1 / ! v2 = 1.8 "1011 , as computed from the test parameters 

( E !
= 3.93  GPa, K

Ic
= 0.38  MPa !m 1 2/ , µ = 0.10  Pa ! s, 

V = 3  mm/s, R = 20  mm). In this case, as predicted by (21), 
the aforementioned tip structure does not develop and instead 
one only observes the LEFM (w ! s

1/2 ) asymptote. In con-
trast, Figure 4b shows results for which 1 / ! v2 = 0.07  

( E !
= 3.93  GPa, K

Ic
= 0.38  MPa !m 1 2/ , µ = 28.9  Pa ! s, 

V = 2  mm/s, R = 30  mm), and one can see directly that the 
observable behavior of the fracture tip is predominantly de-
scribed by the w ! s

2/3  asymptote as predicted by (20).  
 
Going a step further, a collection of results of the form shown 
in Figure 4 can be scaled according to (18) and presented to-
gether with the tip solution !̂("̂)  [57]. Figure 5 shows results 
from 7 tests performed in epoxy-bonded PMMA blocks and 3 
performed in glass specimens. The parameters for these tests 
were varied so that different asymptotic behaviors dominated 
the observable scale. Reported here are results from analysis 
of 3 to 8 video frames from each of the 10 tests, taking the 
outer 15% of the fracture as the tip region and ensuring that 
the fracture radius was no more than half of the distance to the 
nearest specimen boundary so that boundary effects were 
minimized. The experimental data exhibit some scatter, 
mainly due to the fact that the fracture opening becomes very 
small in the tip region which can be to the detriment of the 
signal to noise ratio for the measurements. Nonetheless, the 
close agreement between the experimental and analytical re-
sults for the fracture tip opening uphold the boundary layer 
solution that has been developed to describe the tip region of 
hydraulic fractures [57].  
 
Numerical Algorithm 
 
Method of Resolution 
We now discuss the principles behind the multiscale fixed grid 
algorithm, implemented in the planar hydraulic fracture code 
MALIKA. The algorithm is built on a fixed computational 
grid consisting of a uniform mesh of rectangular constant dis-
placement discontinuity (DD) elements for the elasticity com-
putations [59], coupled with a five node finite difference sten-
cil for the fluid flow calculations [33]. The computational 



6  SPE 106115 

scheme further relies on dividing the fracture into two regions, 
the “Channel” representing the main part of the fracture, and 
the “Tip,” which is under the asymptotic umbrella, and on 
iterating at a each new time step between the solution in the 
Channel and that in the Tip. In fact, the Channel corresponds 
to the contiguous set of fully-filled elements, while the Tip is 
the set of partially filled elements at the periphery of the frac-
ture. Tip elements exchange fluid only with Channel elements.  
Determining the solution in the Channel requires solving a 
system of non-linear equations obtained from discretizing the 
lubrication and elasticity equations, which are formulated in 
terms of the constant apertures of the DD elements as the pri-
mary unknowns. The solution in the Tip involves computing 
the location of the front in the partially filled elements, using 
the tip asymptotic volume and the current volume of fluid 
stored in the tip elements; the appropriate asymptotic behavior 
relies on the tip velocity, which is extrapolated from the fluid 
velocity at the Channel/Tip interface. Essentially, the current 
conditions at the tip enable one to determine how to map the 
analytic tip solution to a tip element by comparing the variable 
tip length scales with the tip element size. The local computa-
tion of the front position as well as that of the mean aperture 
of the tip elements is made possible by the one-dimensional 
nature of the tip asymptote. A critical issue of the proposed 
scheme is the accurate calculation of the local tip velocity, 
which directly influences the asymptotic behavior. The stag-
gered computation scheme involves a two-way communica-
tion between the Channel and Tip calculations. Namely, a new 
estimate of the flux (magnitude and direction) is provided to 
the Tip at the end of a Channel calculation, while the Tip 
computation returns an updated aperture of the Tip elements, 
which affects the Channel solution via the non-local elasticity 
operator.  

 
Discrete Equations 
In order to simplify the discretization process we consider a 
uniform rectangular mesh with spacings !"  and !"  in the 
two coordinate directions to encompass the region into which 
the fracture will move. The fracture surface S  is therefore 
decomposed into rectangular elements S

mn
 such that 

S = !S
mn

. The elasticity equation (1) is then discretized by 
assuming that the fracture opening !(",# ,$ )  is piecewise 
constant over each rectangular element 

mn
S , i.e.  

 
!(",# ,$ ) =

m,n

%!
mn
($ )H

mn
(",# )  

 

in which H
mn

(!," ) =
1 for (!," ) #S

mn

0 for (!," ) $S
mn

%

&
'

(
'

 is the characteristic 

function for the mn th element. Substituting this approxima-
tion into the integral equation (1) and evaluating the pressures 
at the collocation points comprising the element centres, yields 
a system of algebraic equations of the form: 
 
!

kl
(" ) =

m,n

#C
k$m,l$n

%
mn
(" )  (23) 

 

 
where  
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In order to discretize the fluid flow equation (2) in a way that 
is compatible with (23), we use the pressures !

kl
(" )  and 

widths !
kl
(" )  at element centres along with central difference 

approximations of the partial derivatives to arrive at the fol-
lowing spatial discretization: 
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 (24) 

 
This system of ordinary differential equations applies in the 
channel region where the elements are completely filled with 
fluid. By eliminating the pressure !

kl
(" ) between (23) and 

(24) we obtain an extremely stiff system of nonlinear ordinary 
differential equations, which require an L ! stable method 
such as the backward Euler scheme to march the solution for-
ward in time. This requires the solution of a large system of 
nonlinear equations at each time step.  

 
Tip and Channel 
The nonlinear channel equations are solved by assuming a 
known trial solution for the tip elements. Once an equilibrium 
solution has been obtained for the channel elements, the 
widths of the channel elements are frozen and the tip solution 
is adjusted in the following way to match the overall volume 
balance between the two regions. On the boundary between 
the channel region and the tip region, the fluxes are evaluated 
to determine the volume of fluid in each tip element. These tip 
fluid volumes are then combined with the appropriate asymp-
totic solution to locate the fracture front. For example, if the 
applicable asymptotic power law is of the form ˆ ˆ( ) ~ c

!
" "#  

then the tip volume ( )V !  can be expressed in the form: 
 

0

ˆ ˆˆ( ) ( )V l c d
!
" # ##= $

!

 

 
where ˆ!  is the distance from the local fracture front, ˆ( )! "  is 
the local dimension of the current element in a direction paral-
lel to the front, and !  is the distance between the front and the 
opposite vertex of the tip element. Average width values cal-
culated from the tip fluid volumes are then allocated to the tip 
width values in order to set the current tip trial solution. With 
this new trial solution in the tip region we then proceed with 
the solution of the nonlinear channel equations. This process is 
repeated, until the front position and the channel and tip solu-
tions all reach equilibrium.  
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Radial Fracture in the Viscosity Regime 
Analytical Solution 
The assumption of a uniform far-field stress 

o
! , in addition to 

the other assumptions adopted earlier lead, necessarily to a 
radial fracture geometry.  Furthermore we will restrict consid-
erations to a constant injection rate 

o
Q  from time 0t =  (i.e., 

the pumping schedule function ( ) 1! " = ). The characteristic 
dimension L  of the fracture at time t  is naturally taken to be 
the fracture radius ( )R t  and thus the scaled radius is 
( ) R L! "

#
= / . The solution ( )F !  is then of the form ( )! " , 

( )! "# , , ( )! "# ,  where !  is the radial coordinate 

( 0 ( )! " #$ $ ) given by ! = " 2
+# 2  

 
It can be proven using scaling arguments [39,60] that the solu-
tion ( )F !  degenerates into a self-similar solution both at 
small time  
 

4 9 4 9 1 3( ) ( ) 1
mo mo mo

! ! " # " # " "/ / $ /
= ,% = % ,& = & , <<      (25) 

 
and at large time 
 

2 5 1 5 1 5( ) 1
ko ko ko

! ! " # " " "/ / $ /
= ,% = % ,& = & , >>         (26) 

 
where ( )! ! " #= /  noting that 0 !"  1! . More importantly, 
however, the small time similarity solution (25) corresponds to 
the viscosity dominated regime, and the large time solution 
(26) to the toughness dominated regime. Indeed, it can readily 
be shown, by reverting to the physical quantities using the 
scaling relationships (5), that the small time solution does not 
depend on the toughness, while the large time solution is inde-
pendent of the viscosity. Furthermore, numerical simulations 
[39,48] indicate that the fracture propagates essentially in the 
viscosity dominated regime as long as 1! "  (

*
t T! ).  

 
A first order approximation of the self-similar solution 

mo
! , 

( )
mo

!" , ( )
mo

!"  is given by [39] 
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A B
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     (28) 

 
with 0 696

mo
! = . , 

1
0 3581A = . , 0 09269B = . , 

1
2 479! = . , 

1
0 6846C = . , 

2
0 07098C = . .   

 
Numerical Results 
In this section we compare the MALIKA numerical solution 
for a fracture propagating in a homogeneous elastic material 
having a negligible toughness with the corresponding radial 
solution (25) for a hydraulic fracture propagating in the vis-

cosity dominated regime. For the example considered we used 
square elements with !" = !# = 1  and choose ! (" ) = 1.   
 
In Figure 6 we plot the fracture footprint after 23 time steps, 
which corresponds to ! = 119.28. The elements in the channel 
region are colored green, while those in the tip region are col-
ored red. The local fluid velocity vectors are indicated by the 
scaled red arrows, while the exact fracture front is indicated by 
the magenta circle. The approximate front positions are indi-
cated by the yellow circles joined by the black line segments. 
Even for this relatively coarse mesh, the numerical solution is 
able to locate the circular fluid front relatively accurately. In 
Figure 7 we plot the cross section of the width surface 
!(",# )  through the plane 

 
! = 0  for both the numerical solu-

tion (solid line) and the exact solution (solid circles) given in 
(27). There is close agreement between these two solutions. In 
Figure 8 we plot a similar cross section through the fluid pres-
sure surface !(",# )  for both the numerical pressure (solid 
line) and the exact pressure (solid circles) given (28), which 
also show remarkable agreement given the coarseness of the 
mesh. In Figure 9 we compare the numerical fracture radius 
! (" )  computed by averaging the interception points between 
the approximate front segments and the element boundaries 
over the whole perimeter of the fracture. Initially there are a 
few ripples in the numerical ! (" )  caused by the fluid in the 
rows of elements in the north and south of the fracture and the 
corresponding fluid in the symmetric columns of elements in 
the east and west of the fracture advancing into the hitherto 
unfractured rock. If there are very few active elements then 
these advances have a large impact on the estimate for the 
fracture radius. However, as time evolves the resolution of the 
field quantities as well as the fracture front becomes more 
precise, and these ripples are damped from the solution.  
 
Conclusions 
In this paper we have shown that hydraulic fractures propagat-
ing in the viscosity dominated regime, which is typical of most 
stimulation treatments, are characterized by a tip behavior that 
differs from the classical square root asymptote of linear elas-
tic fracture mechanics. This finding stems from a theoretical 
analysis of the governing equations and is confirmed by ex-
perimental evidence. We have then demonstrated that a hy-
draulic fracture simulator that embeds the relevant tip asymp-
tote is able to accurately capture a benchmark solution even 
with a coarse mesh. We should emphasize that the accurate 
simulation of a fracture propagating in the viscous regime 
using an algorithm that embeds the LEFM asymptote would 
require such a dense mesh that it would make the calculations 
impractical. In fact, we encourage the developers of hydraulic 
fracture simulators to duplicate the benchmark test that has 
been documented in this paper.  
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Figure 1: Sketch of a planar fracture. 

 

 
Figure 2: Tip of an advancing fracture. 

 

 
Figure 3: Experimental setup, after [57,58]. 
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Figure 4: Experimental fracture tip opening along with w ! s
1/2  

and w ! s
2/3 asymptotics for cases where a) the boundary layer 

thickness L̂
*

 is much greater than the fracture radius R , and b) 

the boundary layer thickness L̂
*

 is approximately the same as 
R . 

 

 
Figure 5: Experimental results, with each experiment indicated 
by a different color, along with tip solution layer. After [57]. 

 

 
Figure 6: Footprint of fracture after 23 time steps obtained by 
MALIKA  and the exact viscosity dominated solution. 

 
 

 
Figure 7: Width profile of the fracture along ! = 0 after 23 time 
steps.  The MALIKA viscosity dominated solution is compared to 
the exact solution (25) . 
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Figure 8: Pressure profile of the fracture along ! = 0 after 23 
time steps. The MALIKA viscosity dominated solution is 
compared to the exact solution (25) . 

 
 

 
Figure 9: Comparison of fracture radius ! (" )  computed after 50 
time steps of calculations with MALIKA and the exact viscosity 
dominated solution (25). 

 


